1
|
Zhang S, Xu T, Xue N, Zhang G, Zhou H, Qiu P. Ferrate(VI) promotes inactivation of antibiotic-resistant bacteria and chlorine-resistant bacteria in water. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138298. [PMID: 40245720 DOI: 10.1016/j.jhazmat.2025.138298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
The increasing problem of antibiotic resistance has garnered significant global attention. As a novel water treatment agent with strong oxidizing, disinfecting, and bactericidal properties, ferrate(VI) holds promise for inactivating antibiotic-resistant bacteria (ARB) and chlorine-resistant bacteria. The results showed that complete inactivation of ARB (10⁵ CFU/mL) was achieved when the ferrate(VI) concentration was 10 μM and the treatment duration was 5 min. For higher concentrations of ARB (108 CFU/mL), it was also possible to reduce the concentration by 1.73 log units. The concentration of Acinetobacter baylyi ADP1 was also reduced by 1.77 log units. Additionally, the absolute abundance of antibiotic resistance genes (ARGs), including aphA, blaTEM, and tetA, was significantly reduced. Ferrate(VI) was rapidly consumed in the early stages of treatment, undergoing a stepwise reduction process that generated high-valent Fe intermediates and reactive oxygen species (ROS), both of which contributed to bacterial inactivation. Throughout the reaction, •O2- played a dominant role in bacterial inactivation, with H₂O₂ acting synergistically and •OH contributing at later stages, leading to ROS overload, severe cellular damage, and enhanced membrane disruption. This study confirmed that ferrate(VI) could effectively inactivate ARB and chlorine-tolerant bacteria, and reduce the abundances of ARGs.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ningxuan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Gongxu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Huimin Zhou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
2
|
Mechouche MS, Merouane F, Addad A, Karmazin L, Boukherroub R, Lakhdari N. Enhanced biosynthesis of coated silver nanoparticles using isolated bacteria from heavy metal soils and their photothermal-based antibacterial activity: integrating Response Surface Methodology (RSM) Hybrid Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies. World J Microbiol Biotechnol 2024; 40:252. [PMID: 38913279 DOI: 10.1007/s11274-024-04048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
This study explores the biosynthesis of silver nanoparticles (AgNPs) using the Streptomyces tuirus S16 strain, presenting an eco-friendly alternative to mitigate the environmental and health risks of chemical synthesis methods. It focuses on optimizing medium culture conditions, understanding their physicochemical properties, and investigating their potential photothermal-based antibacterial application. The S16 strain was selected from soils contaminated with heavy metals to exploit its ability to produce diverse bioactive compounds. By employing the combination of Response Surface Methodology (RSM) and Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies, we optimized AgNPs synthesis, achieving an improvement of nearly 2.45 times the initial yield under specific conditions (Bennet's medium supplemented with glycerol [5 g/L] and casamino-acid [3 g/L] at 30 °C for 72 h). A detailed physicochemical characterization was conducted. Notably, the AgNPs were well dispersed, and a carbonaceous coating layer on their surface was confirmed using energy-dispersive X-ray spectroscopy. Furthermore, functional groups were identified using Fourier-transform infrared spectroscopy, which helped enhance the AgNPs' stability and biocompatibility. AgNPs also demonstrated efficient photothermal conversion under light irradiation (0.2 W/cm2), with temperatures increasing to 41.7 °C, after 30 min. In addition, treatment with light irradiation of E. coli K-12 model effectively reduced the concentration of AgNPs from 105 to 52.5 µg/mL, thereby enhancing the efficacy of silver nanoparticles in contact with the E. coli K-12.
Collapse
Affiliation(s)
- Meroua Safa Mechouche
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria.
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, IEMN - UMR 8520, 59000, Lille, France.
| | - Fateh Merouane
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria
| | - Ahmed Addad
- UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS - UMR 8207, 59000, Lille, France
| | - Lydia Karmazin
- Institut Chevreul FR2638, Pôle Diffraction Et Diffusion Des Rayons X, Cité Scientifique-Université de Lille, Avenue Paul Langevin, CEDEX, 59652, Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, IEMN - UMR 8520, 59000, Lille, France
| | - Nadjem Lakhdari
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria
| |
Collapse
|
3
|
Sahoo A, Dwivedi K, Almalki WH, Mandal AK, Alhamyani A, Afzal O, Alfawaz Altamimi AS, Alruwaili NK, Yadav PK, Barkat MA, Singh T, Rahman M. Secondary metabolites in topical infectious diseases and nanomedicine applications. Nanomedicine (Lond) 2024; 19:1191-1215. [PMID: 38651634 PMCID: PMC11418228 DOI: 10.2217/nnm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.
Collapse
Affiliation(s)
- Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Utta Pradesh, 283135, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Abdurrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq, 65779-7738, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | | | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Pradip Kumar Yadav
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin, 39524, Saudi Arabia
| | - Tanuja Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
4
|
Scolari IR, Páez PL, Granero GE. Synergistic bactericidal combinations between gentamicin and chitosan capped ZnO nanoparticles: A promising strategy for repositioning this first-line antibiotic. Heliyon 2024; 10:e25604. [PMID: 38356535 PMCID: PMC10864972 DOI: 10.1016/j.heliyon.2024.e25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Gentamicin (GEN), a widely used broad-spectrum antibiotic, faces challenges amid the global emergency of antimicrobial resistance. This study aimed to explore the synergistic effects of zinc oxide nanoparticles (ZnO NPs) in combination with GEN on the bactericidal activity against various bacterial strains. Results showed ZnO NPs with MICs ranging from 0.002 to 1.5 μg/mL, while the precursor salt displayed a MIC range of 48.75-1560 μg/mL. Chitosan (CS)-capped ZnO NPs exhibited even lower MICs than their uncapped counterparts, with the CS-capped synthesized ZnO NPs demonstrating the lowest values. Minimal bactericidal concentrations (MBC) aligned with MIC trends. Combinations of CS-capped synthesized ZnO NPs and GEN proved highly effective, inhibiting bacterial growth at significantly lower concentrations than GEN or ZnO NPs alone. This phenomenon may be attributed to the conformation of CS on the ZnO NPs' surface, enhancing the positive particle surface charge. This possibly facilitates a more effective interaction between ZnO NPs and microorganisms, leading to increased accumulation of zinc and GEN within bacterial cells and an overproduction of reactive oxygen species (ROS). It's crucial to note that, while this study did not specifically involve resistant strains, its primary focus remains on enhancing the overall antimicrobial activity of gentamicin. The research aims to contribute to addressing the global challenge of antimicrobial resistance, recognizing the urgent need for effective strategies to combat this critical issue. The findings, particularly the observed synergy between ZnO NPs and GEN, hold significant implications for repositioning the first-line antibiotic GEN.
Collapse
Affiliation(s)
- Ivana R. Scolari
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Paulina L. Páez
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Gladys E. Granero
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
5
|
Nadeem M, Pervez L, Khan AM, Burton RA, Ullah S, Nadhman A, Celli J. Microbial-mediated synthesis of gold nanoparticles—current insights and future vistas. GOLD BULLETIN 2023; 56:69-81. [DOI: 10.1007/s13404-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2024]
|
6
|
Paesa M, Remirez de Ganuza C, Alejo T, Yus C, Irusta S, Arruebo M, Sebastian V, Mendoza G. Elucidating the mechanisms of action of antibiotic-like ionic gold and biogenic gold nanoparticles against bacteria. J Colloid Interface Sci 2023; 633:786-799. [PMID: 36493743 DOI: 10.1016/j.jcis.2022.11.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
The antimicrobial action of gold depends on different factors including its oxidation state in the intra- and extracellular medium, the redox potential, its ability to produce reactive oxygen species (ROS), the medium components, the properties of the targeted bacteria wall, its penetration in the bacterial cytosol, the cell membrane potential, and its interaction with intracellular components. We demonstrate that different gold species are able to induce bacterial wall damage as a result of their electrostatic interaction with the cell membrane, the promotion of ROS generation, and the consequent DNA damage. In-depth genomic and proteomic studies on Escherichia coli confirmed the superior toxicity of Au (III) vs Au (I) based on the different molecular mechanisms analyzed including oxidative stress, bacterial energetic metabolism, biosynthetic processes, and cell transport. At equivalent bactericidal doses of Au (III) and Au (I) eukaryotic cells were not as affected as bacteria did, maintaining unaffected cell viability, morphology, and focal adhesions; however, increased ROS generation and disruption in the mitochondrial membrane potential were also observed. Herein, we shed light on the antimicrobial mechanisms of ionic and biogenic gold nanoparticles against bacteria. Under selected conditions antibiotic-like ionic gold can exert a strong antimicrobial activity while being harmless to human cells.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Cristina Remirez de Ganuza
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Cristina Yus
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Víctor Sebastian
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| |
Collapse
|
7
|
Fang H, Liu Y, Qiu P, Song HL, Liu T, Guo J, Zhang S. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128733. [PMID: 35334270 DOI: 10.1016/j.jhazmat.2022.128733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Considering conventional disinfection methods are not effective in simultaneously removing ARB and ARGs, a novel electrochemical disinfection (ED) process assisted by molybdenum carbide (Mo2C) electrodes was developed in this study. The established ED process was proved to effectively inactivate multi-resistant ARB (i.e. Escherichia coli K-12 LE392 with resistance to kanamycin, ampicillin, and tetracycline) and to degrade ARGs (including tetA and blaTEM in the form of both intracellular (iARGs) and extracellular ARGs (eARGs)). Specifically, within 15 min treatment by the Mo2C-assisted ED under 2.0 V, a 5-log ARB removal was realized, without any ARB regrowth observed, indicating a permanent inactivation of ARB by the process. Moreover, degradation of the iARGs (0.4-log reduction of the blaTEM and 3.1-log reduction of the tetA) and the eARGs (4.2-log reduction of the blaTEM and 1.1-log reduction of the tetA) were achieved within 60 min, further underpinning the viability of the Mo2C-based ED. While e-, H2O2, and •O2- played leading roles in the entire process of ED, H+ and •OH contributed to bacterial inactivation in the early and late stages of ED, respectively. The reactive species induced by electrolysis posed pressure to the ARB strains, which enhanced oxidative stress response, triggered higher reactive oxygen species generation, induced membrane damage and changed cellular structure. Collectively, the Mo2C-assisted ED demonstrated in the present study represents an attractive alternative to the traditional disinfection methods in combating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
8
|
Fang C, Wang S, Xu H, Huang Q. Degradation of tetracycline by atmospheric-pressure non-thermal plasma: Enhanced performance, degradation mechanism, and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152455. [PMID: 34952084 DOI: 10.1016/j.scitotenv.2021.152455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Tetracycline is a common antibiotic and is often carelessly released into the natural environment, thus constantly posing potential threats to the environment. Currently, due to lack of effective methods to remove it from the environmental water system, researchers are still exploring new ways to deal with tetracycline. In this work, we employed atmospheric-pressure non-thermal plasma (NTP) to treat tetracycline in water and investigated the involved degradation mechanism. The enhanced degradation efficiency was acquired and investigated, and the degradation mechanism by the plasma-generated active species were explored. The tetracycline degradation pathways via especially the interactions with plasma-generated hydroxyl radical and ozone were examined by virtue of UV spectroscopy, three-dimensional fluorescence spectroscopy, high performance liquid chromatography-mass spectrometry (HPLC-MS), together with the assistance of theoretical simulations. Moreover, the toxicological evaluation of NTP treatment of tetracycline was also provided, which confirmed that the biological toxicity of tetracycline degradation products was negligible. Therefore, this work provides not only the effective way of treating antibiotics by engineered plasma technology, but also the insights into the mechanisms of degradation of antibiotics by NTP.
Collapse
Affiliation(s)
- Cao Fang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Shenhao Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Hangbo Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
9
|
Liu Y, Zhang S, Fang H, Wang Q, Jiang S, Zhang C, Qiu P. Inactivation of antibiotic resistant bacterium Escherichia coli by electrochemical disinfection on molybdenum carbide electrode. CHEMOSPHERE 2022; 287:132398. [PMID: 34597647 DOI: 10.1016/j.chemosphere.2021.132398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic-resistant bacteria (ARB) pose a substantial threat to public health worldwide. Electrochemistry, as a low energy consumption and environmentally friendly technique, is ideal for inactivating ARB. This study explored the utility of electrochemical disinfection (ED) for inactivating ARB (Escherichia coli K-12 LE392 resistant to kanamycin, tetracycline, and ampicillin) and the regrowth potential of the treated ARB. The results revealed that 5.12-log ARB removal was achieved within 30 min of applying molybdenum carbide as the anode and cathode material under a voltage of 2.0 V. No ARB regrowth was observed in the cathode chamber after 60 min of incubation in unselective broth, demonstrating that the process in the cathode chamber was more effective for permanent inactivation of ARB. The mechanisms underlying the ARB inactivation were verified based on intercellular reactive oxygen species (ROS) measurement, membrane integrity detection, and genetic damage assessment. Higher ROS production and membrane permeability were observed in the cathode and anode groups (p < 0.001) compared to the control group (0 V). In addition, the DNA was more likely to be damaged during the ED process. Collectively, our results demonstrate that ED is a promising technology for disinfecting water to prevent the spread of ARB.
Collapse
Affiliation(s)
- Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shan Jiang
- South China Institute of Environmental Science, MEE, China
| | - Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
10
|
Qiu K, Anselmo AC. Enhanced Storage of Anaerobic Bacteria through Polymeric Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46282-46290. [PMID: 34558893 DOI: 10.1021/acsami.1c11785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Live microbes such as lactobacilli have long been used as probiotic supplements and, more recently, have been explored as live biotherapeutic products with the potential to treat a range of conditions. Among these microbes is a category of anaerobes that possess therapeutic potential while exhibiting unique oxygen sensitivity and thus requiring careful considerations in the formulation and storage processes. Existing microbial formulation development has focused on facultative anaerobes with natural oxygen tolerance; a few strategies have been reported for anaerobes with demonstrated oxygen intolerance, warranting novel approaches toward addressing the challenges for these oxygen-sensitive anaerobes. Here, we develop a polymeric encapsulation system for the formulation and storage of Bifidobacterium adolescentis (B. adolescentis), a model anaerobe that loses viability in aerobic incubation at 37 °C within 1 day. We discover that this strain remains viable under aerobic conditions for 14 days at 4 °C, enabling formulation development such as solution casting and air drying in an aerobic environment. Next, through a systematic selection of polymer encapsulants and excipients, we show that encapsulation with poly(vinyl alcohol) (PVA) acts as an oxygen barrier and facilitates long-term storage of B. adolescentis, which is partially attributed to reduced generation of reactive oxygen species. Lastly, PVA-based formulations can produce oral capsule-loaded films and edible gummy bears, demonstrating its compatibility with both pharmaceutical and food dosage forms.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Selvakesavan RK, Franklin G. Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. Nanotechnol Sci Appl 2021; 14:179-195. [PMID: 34588770 PMCID: PMC8476107 DOI: 10.2147/nsa.s333467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords "green synthesis" and "nanoparticles" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (Bhasma) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of Bhasma.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
12
|
Phytoassisted synthesis and characterization of palladium nanoparticles (PdNPs); with enhanced antibacterial, antioxidant and hemolytic activities. Photodiagnosis Photodyn Ther 2021; 36:102542. [PMID: 34547470 DOI: 10.1016/j.pdpdt.2021.102542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
With increasing demand for the treatment of microbial resistance around the globe, it is necessary to develop metallic nanoparticles , ideally by the use of nontoxic medium i.e. plant constituents, that could arrest the microbial growth. For this reason, small and highly crystalline PdNPs were effectively synthesized by using Eryngium caeruleum leaf extract as both the reducing and capping agent. During the synthesis of PdNPs, the size and shape were made controlled by using different solvents i.e., ethanol, methanol and aqueous extract of Eryngium caeruleum. A series of physicochemical characterizations were applied to inquire the synthesis, crystal structure, particles size, and surface morphology of PdNPs. Furthermore, the PdNPs demonstrated excellent potential for the inactivation of gram-positive and gram-negative bacteria, where the methanol-PdNPs exhibited maximum growth inhibition zones against tested bacteria as compared to ethanol-PdNPs and aqueous-PdNPs. Besides, PdNPs showed better antioxidant activity to effectively scavenge 2, 2 diphenyl-1-picrylhydrazyl (DPPH). More importantly, the synthesized PdNPs are not only active for ROS generation but also show no hemolytic activity. We believe that this greener approach uncovered the useful and efficient applications of highly active PdNPs and their biocompatibility.
Collapse
|
13
|
Alinaghi Langari A, Soltaninezhad S, Zafarnia N, Heidari M, Varma RS, Ebrahimi Z, Azhdari S, Borhani F, Khatami M. CeO 2 foam-like nanostructure: biosynthesis and their efficient removal of hazardous dye. Bioprocess Biosyst Eng 2020; 44:517-523. [PMID: 33136201 DOI: 10.1007/s00449-020-02464-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
In this study, CeO2 (cerium oxide) nanoparticles were synthesized using Pinus halepensis pollen and were characterized by field emission scanning electron microscopy (FESEM), powder X-ray diffraction (PXRD) and Raman spectroscopy. The results showed that the ensuing CeO2 nanostructures, ranging in size from 5 to 25 nm, had high porosity. Synthesized CeO2 showed the effective catalytic activity towards the photocatalytic removal of dyes. In this work, the photocatalytic activity to removal dye (methyl violet 2B), in the absence of UV radiation, using cerium dioxide nanoparticles (CeO2-NP) was determined. In this research, four main factors such as effect on color, concentration and pH were examined and maximum %R was obtained about was 97% in 75 min in presence of 50 mg of hydrogen peroxide.
Collapse
Affiliation(s)
- Aliakbar Alinaghi Langari
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | | | - Niloofar Zafarnia
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mohammadreza Heidari
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | - Zahra Ebrahimi
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Sara Azhdari
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran. .,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Huang Q, Fang C. Degradation of 3,3',4,4'-tetrachlorobiphenyl (PCB77) by dielectric barrier discharge (DBD) non-thermal plasma: Degradation mechanism and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139926. [PMID: 32540661 DOI: 10.1016/j.scitotenv.2020.139926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a kind of persistent organic pollutants (POPs) with stable chemical properties which can be enriched in a biological body for a long time. They are often carelessly released into natural environment and thus constantly posing a potential threat to human health. However, because of lack of effective ways of degrading PCBs, researchers are still striving to explore new approaches to remove them from the environment. In this work, we employed atmospheric-pressure non-thermal dielectric barrier discharge (DBD) plasma to treat 3,3',4,4'-tetrachlorobiphenyl (PCB77) in aqueous solution and investigated the removal efficiency under different DBD conditions using different discharging gases. As a result, we showed that He-DBD had the highest removal efficiency with hydroxyl radical playing the major role in the degradation, while O2-DBD also gave rise to relatively high efficiency with ozone making an important contribution. After 2 min of treatments by He-DBD and O2-DBD, over 75% of PCB77 was degraded with removal rate of 23.65 mg/L and 22.19 mg/L per minute, respectively. Besides, the toxicological evaluation for the DBD treatment was also provided, confirming that the PCB77 degradation products had negligible biotoxicity. This work therefore provides a new effective approach to treatment of persistent organic pollutants (POPs) in the environment.
Collapse
Affiliation(s)
- Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| | - Cao Fang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int J Biol Macromol 2020; 161:977-998. [DOI: 10.1016/j.ijbiomac.2020.06.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
|
16
|
Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Seifalian A, Khatami M. Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:242-251. [PMID: 31851843 DOI: 10.1080/21691401.2019.1699830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nickel-ferrite (NiFe2O4) nanorods particles (NRP) was biosynthesised for the first time by the Rosemary Extract. The NRP was fully characterised, including the type, nanostructure and physicochemical properties of using XRD, HRTEM, FeSEM, XPS, FTIR and VSM. TEM confirmed rod-shaped nano-sized particles with average sizes ranging from 10 nm to 28 nm. The EDAX Analysis showed the presence of iron, nickel, oxygen, and carbon. XRD analysis confirmed the synthesis of NiFe2O4 crystals. XPS curves showed photoelectron for iron, oxygen and nickel. EDS showed the atomic, weight percentages ratios of Ni(12%): Fe(24%) and: O(48) are close to the theoretical value (Ni: Fe:O = 1:2:4), of bimetallic magnetic NiFe2O4 NRP. NiFe2O4 NRP had cytotoxicity effect on MCF-7 cells survival which suggests that NiFe2O4 NRP can be used as a new class of anticancer agent in design novel cancer therapy research.
Collapse
Affiliation(s)
- Hajar Q Alijani
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Shahram Pourseyedi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London, United Kingdom
| | - Mehrdad Khatami
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Iqbal J, Abbasi BA, Munir A, Uddin S, Kanwal S, Mahmood T. Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities. Microsc Res Tech 2020; 83:706-719. [DOI: 10.1002/jemt.23460] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Javed Iqbal
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Akhtar Munir
- Department of Chemistry and Chemical EngineeringSBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA Lahore Pakistan
| | - Siraj Uddin
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Sobia Kanwal
- Department of ZoologyRawalpindi Women University Rawalpindi Pakistan
| | - Tariq Mahmood
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| |
Collapse
|
18
|
Abbasi BA, Iqbal J, Ahmad R, Zia L, Kanwal S, Mahmood T, Wang C, Chen JT. Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles. Biomolecules 2019; 10:biom10010038. [PMID: 31888037 PMCID: PMC7022592 DOI: 10.3390/biom10010038] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet-visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.
Collapse
Affiliation(s)
- Banzeer Ahsan Abbasi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.A.); (T.M.)
| | - Javed Iqbal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.A.); (T.M.)
- Correspondence: (J.I.); (J.-T.C.)
| | - Riaz Ahmad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China;
| | - Layiq Zia
- Superconductivity and Magnetism Laboratory, Department of Physics Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sobia Kanwal
- Department of Zoology, University of Gujrat, Sub-Campus Rawalpindi, Punjab 46300, Pakistan;
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.A.); (T.M.)
| | - Canran Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: (J.I.); (J.-T.C.)
| |
Collapse
|
19
|
Biogenic Silver Nanoparticles/Hydrogen Peroxide/Ozone: Efficient Degradation of Reactive Blue 19. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00695-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Das P, Karankar VS. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. J Microbiol Methods 2019; 167:105766. [PMID: 31706910 DOI: 10.1016/j.mimet.2019.105766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these 'green nanoparticles'. Biological wastes have also been focused in this direction thereby promoting the value of waste. Reports indicate that green nanoparticles exhibit remarkable antimicrobial activitiesboth singly as well as in combination with standard antibiotics. The current phenomenon of multi-drug resistance has resulted due to indiscriminate administration of high-doses of antibiotics followed by significant toxicity. In the face of this emergence of drug-resistant microbesthe efficacy of green nanoparticles might prove greatly beneficial. Microbial biofilm is another hurdle in the effective treatment of diseases as the microorganismsbeing embedded in the meshwork of the biofilmevade the antimicrobial agents. Nanoparticles may act as a ray of hope on the face of this challenge tooas they not only destroy the biofilms but also lessen the doses of antibiotics requiredwhen administered in combination with the nanoparticles. It should be further noted that the resistance mechanisms exhibited by the microorganisms seem not that relevant for nanoparticles. The current review, to the best of our knowledgefocuses on the structures of these green nanoparticles along with their biomedical potentials. It is interesting to note how a variety of structures are generated by using resources like microbes or plants or plant products and how the structure affects their activities. This study might pave the way for further development in this arena and future work may be taken up in identifying the detailed mechanism by which 'green' synthesis empowers nanoparticles to kill pathogenic microbes.
Collapse
Affiliation(s)
- Palashpriya Das
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India.
| | - Vijayshree S Karankar
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
21
|
Allafchian A, Hosseini SS. Antibacterial magnetic nanoparticles for therapeutics: a review. IET Nanobiotechnol 2019; 13:786-799. [PMID: 31625518 PMCID: PMC8676097 DOI: 10.1049/iet-nbt.2019.0146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 07/29/2023] Open
Abstract
Along with the extensive range of exotic nanoparticle (NPs) applications, investigation of magnetic NPs (MNPs) in vitro has ushered modern antibacterial studies into an increasingly attractive research area. A great number of microorganisms exist in the size scales from nanometre to micrometre regions. The enormous potential of engineered MNPs in therapeutic procedures against various drug-resistant bacteria has declined the menace of fatal bacterial infections. Many biocompatible MNPs have been introduced that possess remarkable impacts on various bacterial strains. Conventional synthesis methods such as co-precipitation or hydrothermal techniques have been widely adopted in the production of MNPs. The MNPs for antibacterial applications are mainly required to be superparamagnetic, recyclable and biocompatible. To implement novel strategies in developing new generation antimicrobial magnetic nanomaterials, it is essential to obtain a comprehensive preview of recent achievements in synthesis, proposed antibacterial mechanisms and characterisation techniques of these nanomaterials. This review highlights notable aspects of antibacterial activity in engineered MNPs and nanocomposites including their particle properties (size, shape and saturation magnetisation), antibacterial mechanisms, synthesis methods, testing methods, surface modifications and minimum inhibitory concentrations.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyed Sajjad Hosseini
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
22
|
Rice KM, Ginjupalli GK, Manne NDPK, Jones CB, Blough ER. A review of the antimicrobial potential of precious metal derived nanoparticle constructs. NANOTECHNOLOGY 2019; 30:372001. [PMID: 30840941 DOI: 10.1088/1361-6528/ab0d38] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The field of nanotechnology is rapidly growing. The promise of pharmacotherapeutics emerging from this vast field has drawn the attention of many researchers. However, with the increase in the prevalence of antibiotic resistant microorganisms, the manifestations of these promises are needed now more than ever. Many have postulated the antimicrobial potential of nanoparticle constructs derived from precious metals/noble metals nanoparticles (NMNPs), such as silver nanoparticles that show activity against multidrug resistant bacteria. In this review we will evaluate the current studies and explore the data to obtain a clear picture of the potential of these particles and the validity of the claims of drug resistant treatments with NMNPs.
Collapse
Affiliation(s)
- Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States of America. Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States of America. Biotechnology Graduate Program West Virginia State University, Institute, WV, United States of America. Department of Health and Human Service, School of Kinesiology, Marshall University, Huntington, WV, United States of America
| | | | | | | | | |
Collapse
|
23
|
Khan ZUH, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, Tahir K, Safi SZ, Khan FU, Imran M, Ahmad N, Ullah F, Ahmad A, Sayed M, Khalid MS, Qaisrani SA, Ali M, Zakir A. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 192:147-157. [PMID: 30738346 DOI: 10.1016/j.jphotobiol.2019.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022]
Abstract
Synthesis of nanoparticles (NPs) through "green" chemistry is an exciting area of research with wide applications. Trianthema portulacastrum's extract containing greater amount of reducing agents has been explored first time for the synthesis of ZnO-NPs that characterized with UV/Vis, XRD, FT-IR, SEM,EDX, HR-TEM and XPS. The particles of ZnO-NPs are crystalline and having the size in the range of 25-90 nm. The cell viability of ZnO-NPs was studied using Mouse pre-osteoblast cell line MC3T3-E1 sub-clone 14 cells which confirmed its biocompatibility that render for biomedical applications. The antibacterial properties were evaluated against Staphylococcus aureus and Escherichia coli which showed high potency of synthesized ZnO-NPs against these species. The antifungal activities of ZnO-NPs were screened against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus of fungal species. The antioxidant activity of the as-synthesized NPs was also studied using DPPH (2, 2-diphenyl-1-picrylhydrazyl) substrate. The ZnO-NPs were evaluated for catalytic activity through degradation of Synozol Navy Blue-KBF textile dye using solar irradiation that causes 91% degradation of the dye in 159 min. Mechanistic pathways for the degradation of Synozol Navy Blue-KBF dye using ZnO-NPs were also proposed from the pattern of the degradation of the dye and the resulting by-products. The results concluded that the ZnO-NPs synthesized by green method have high biological and photocatalytic applications.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China.
| | - Hafiz Masood Sadiq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Arif Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Kamran Tahir
- Institute of Chemical Science, Gomal University DIK, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Faheem Ullah Khan
- Department of Biotechnology, Woman University of AJ&K Bagh, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Naveed Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology, Bannu 28100, Pakistan
| | - Ashfaq Ahmad
- Department of Chemistry, Women University of AJ&K Bagh, Pakistan
| | - Murtaza Sayed
- Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Mazhar Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ali Zakir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| |
Collapse
|
24
|
Guruprasad VS, Maheshwari V. Magnetic nano-nets for capture of microbes in solution based on physical contact. J Colloid Interface Sci 2019; 535:33-40. [PMID: 30278327 DOI: 10.1016/j.jcis.2018.09.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 11/29/2022]
Abstract
Self-assembly of Au nanoparticles with Fe ions is used to develop magnetic nano-nets similar to fishing nets for capture and removal of microbes in aqueous medium. The nano-nets have a high aspect ratio, span microns in length with openings of 80-300 nm. This allows them to sample the liquid medium even at low volume fraction and also entrap the microbes in the solution. The nets and the trapped microbes can be effectively pulled from the solution by using an off the shelf magnet. Since the capture is based on physical contact, the nano-nets overcome the ability of the microbes to develop resistance to the cytotoxic effects of chemical compounds and nanomaterials. Using the nano-nets an absolute inactivation of 0.9 is achieved in 5 min. in a non-deaerated solution with Escherichia coli (E. coli). Further the removal of the nano-nets along with the captured microbes also predominantly eliminates the nanomaterial from the aqueous medium for future use.
Collapse
Affiliation(s)
- Venkatesh S Guruprasad
- Dept. of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Vivek Maheshwari
- Dept. of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
25
|
Electronic origin of antimicrobial activity owing to surface effect. Sci Rep 2019; 9:1091. [PMID: 30705415 PMCID: PMC6355919 DOI: 10.1038/s41598-018-37645-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Nanomaterials have displayed promising potential as antimicrobial materials. However, the antimicrobial mechanism owing to surface effects, where the emission of harmful substances such as metallic ions and reactive oxygen species is not required, is still poorly understood. It is important to figure out relationship between the physical properties and antimicrobial activity based on deep understanding of antimicrobial mechanism for their safe and effective applications. Here, we show that the work function is representative of the surface effect leading to antimicrobial activity, which originates from the electronic states of the surface. We investigated the antimicrobial activity and the work function of nanoporous Au-Pt and Au without the emission of Ag ion, and found that there was a positive correlation between them. In addition, we performed a first-principles calculation and molecular dynamics simulation to analyze the electronic states of the Au surface and the cell wall. These demonstrated that positive correlation was owing to peculiar electronic states at the Au surface, namely, the spilling out phenomenon of electrons. Our finding will contribute to advance the understanding of biological phenomena from a physical view.
Collapse
|
26
|
Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly(8-anilino-1-naphthalene sulphonic acid) modified electrode. Food Chem 2019; 282:18-26. [PMID: 30711102 DOI: 10.1016/j.foodchem.2018.12.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 12/22/2018] [Indexed: 01/05/2023]
Abstract
The aim of the present work was to develop an amperometric biosensor for tyramine (Tyr) measurement in food and beverages. The biosensor architecture is based on tyrosinase (Tyrase) immobilization on glassy carbon electrode modified by a nanocomposite consisting of gold nanoparticles (AuNP) synthesized by a green method and poly(8-anilino-1-naphthalene sulphonic acid) modified glassy carbon electrode. Under optimized experimental conditions for fixed potential amperometric detection, the biosensor exhibited a linear response to tyramine in the range 10-120 µM and the limit of detection was estimated to be 0.71 µM. The novel platform showed good selectivity, long-term stability, and reproducibility. The strong interaction between tyrosinase and the nanocomposite was revealed by the high value of the Michaelis-Menten constant (79.3 μM). The fabricated biosensor was successfully applied to the determination of Tyr in dairy products and fermented drinks with good recoveries, which makes it a promising biosensor for quantification of tyramine.
Collapse
|
27
|
Alijani HQ, Pourseyedi S, Torkzadeh Mahani M, Khatami M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.103] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Khatami M, Zafarnia N, Heydarpoor Bami M, Sharifi I, Singh H. Antifungal and antibacterial activity of densely dispersed silver nanospheres with homogeneity size which synthesized using chicory: An in vitro study. J Mycol Med 2018; 28:637-644. [PMID: 30100172 DOI: 10.1016/j.mycmed.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
With increase in isolation of multi and extensive drug resistance hospital pathogens (MDR, XDR) in burn centers of many hospitals in the world, attempt to use nanomaterials for treatment of burn-infected patients is the focus of researches all around the world. In the present investigation silver nanospheres (Ag NSs) has been synthesized by chicory seed exudates (CSE). The various parameters influencing the mechanism of Ag NSs synthesis including temperature, concentration, pH and time were studied. Greener Ag NSs were formed when the reaction conditions were altered with respect to pH, concentration of AgNO3 and incubation temperature. Finally, we evaluated antimicrobial activity of silver nanospheres biosynthesized by chicory (Cichodrium intybus) against most prevalent burn bacteria pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, and fungus Fusarium solani. The UV visible spectroscopy, X-Ray diffraction (XRD), dynamic light scattering (DLS) used for primary screening of physicochemical properties. The transmission electron microscopy (TEM) images showed the Ag NSs (with globular shape) with a size less than 25nm that they have the same size about 8nm (more than 97% are 8nm). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Ag NSs against the standard strains of A. baumannii, P. aeruginosa and K. pneumonia showed a relatively high inhibitory and bactericidal activity (MIC 1.56μg/mL and MBC 3.12μg/mL) of the nanoparticles and F. solani cultures. In antifungal tests, the lowest level of zone of inhibition was observed at a concentration of 5μg/mL synthesized silver nanospheres with the 7% inhibition of growth. Ag NSs have high antimicrobial activity against three common burn bacteria pathogens and fungus F. solani. Therefore, Ag NSs can be used to prevent burn infection and for wound healing.
Collapse
Affiliation(s)
- M Khatami
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran; Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - N Zafarnia
- School of Nursing and Midwifery, Bam University of Medical Sciences, Bam, Iran.
| | - M Heydarpoor Bami
- Population and Infertility Research Center, Bam University of Medical Sciences, Bam, Iran
| | - I Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - H Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside 92521, USA; Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| |
Collapse
|
29
|
da Silva W, Ghica ME, Ajayi RF, Iwuoha EI, Brett CMA. Impedimetric sensor for tyramine based on gold nanoparticle doped-poly(8-anilino-1-naphthalene sulphonic acid) modified gold electrodes. Talanta 2018; 195:604-612. [PMID: 30625590 DOI: 10.1016/j.talanta.2018.11.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
A novel impedimetric sensor for the determination of tyramine (Tyr), a biogenic amine, on the surface of gold nanoparticle-poly-(8-anilino-1-napthalene sulphonic acid), AuNP-PANSA modified gold electrode (AuE) is presented for the first time. The AuNP were successfully synthesized by a green synthesis method. Their characterization and optimization were conducted using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. Under optimal conditions, the impedimetric sensor revealed a relatively broad linear range from 0.8 to 80 µM similar to more complex architectures found in the literature and the limit of detection of 0.04 µM was the lowest achieved until now. In order to test the reliability of the proposed method, real sample application studies were conducted using dairy products and fermented drinks. It was found that the sensor presented a good selectivity and recovery. Furthermore, the impedimetric sensor shows good reproducibility, stability, selectivity and very small interferences which augur well for its application in food safety control processes.
Collapse
Affiliation(s)
- Wanderson da Silva
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Mariana Emilia Ghica
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rachel F Ajayi
- SensorLab, Department of Chemistry, University of Western Cape, 7535 Bellville, Cape Town, South Africa
| | - Emmanuel I Iwuoha
- SensorLab, Department of Chemistry, University of Western Cape, 7535 Bellville, Cape Town, South Africa
| | - Christopher M A Brett
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
30
|
Khatami M, Alijani HQ, Sharifi I. Biosynthesis of bimetallic and core-shell nanoparticles: their biomedical applications - a review. IET Nanobiotechnol 2018; 12:879-887. [PMID: 30247125 PMCID: PMC8676289 DOI: 10.1049/iet-nbt.2017.0308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/25/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Recently, researchers succeeded in designing and manufacturing a new class of nanoparticles (NPs) called hybrid NPs. Among hybrid NPs, bimetallic and core-shell NPs were a revolutionary step in NPs science. A large number of green physiochemical and methods for nanostructures synthesis have been published. Eventually, physiochemical methods are either expensive or require the use of chemical compounds for the synthesis of bimetallic and core-shell nanostructures. The main challenges that scientists are facing are making the process cheaper, facile and eco-friendly efficient synthesis process. Green synthesis (biosynthesis) refers to the use of bio-resources (such as bacteria, fungi, plants or their derivatives) for the synthesis of nanostructures. The popularity of the green synthesis of nanostructures is due to their environmental friendliness and no usage of toxic materials, environmental friendliness for the synthesis or stability of nanostructure. Bimetallic and core-shell NPs have many biomedical applications such as removing heavy metals, parasitology, molecular and microbial sensor, gene carrier, single bacterial detection, oligonucleotide detection and so on. The purpose of this study is to discuss briefly the biosynthesised bimetallic and core-shell NPs, their biomedical applications.
Collapse
Affiliation(s)
- Mehrdad Khatami
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hajar Q Alijani
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Iraj Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
31
|
Teow SY, Wong MMT, Yap HY, Peh SC, Shameli K. Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs). Molecules 2018; 23:molecules23061366. [PMID: 29882775 PMCID: PMC6100366 DOI: 10.3390/molecules23061366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles (NPs) are nano-sized particles (generally 1–100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
Collapse
Affiliation(s)
- Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Magdelyn Mei-Theng Wong
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Hooi-Yeen Yap
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Suat-Cheng Peh
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
- Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Kamyar Shameli
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
| |
Collapse
|
32
|
Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs- an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:208-217. [DOI: 10.1016/j.jphotobiol.2018.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 11/21/2022]
|
33
|
Miyazawa N, Hakamada M, Mabuchi M. Antimicrobial mechanisms due to hyperpolarisation induced by nanoporous Au. Sci Rep 2018; 8:3870. [PMID: 29497139 PMCID: PMC5832825 DOI: 10.1038/s41598-018-22261-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials such as nanoparticles exhibit remarkable antimicrobial activities. Nanoparticles directly disturb the cell membrane or cytoplasmic proteins because they pass through the cell wall. Nanoporous Au (NPG) is another antimicrobial nanomaterial, which cannot pass through the cell wall of bacteria but can still kill bacteria, utilising interactions between the surface of NPG and cell wall of bacteria. The origins of antimicrobial activities without direct interactions are unknown. It is necessary to elucidate these mechanisms to ensure safe usage. Here we show that the antimicrobial mechanism of NPG consists of two interactions: between the surface of NPG and cell wall, and between the cell wall and cell membrane. Fluorescent experiments showed that the cell wall was negatively hyperpolarised by NPG, and molecular dynamics simulations and first-principles calculations suggested that the hyperpolarisation of the cell wall leads to delicate structural changes in the membrane proteins, rendering them bactericidal. Thus, the hyperpolarisation induced by NPG plays a critical role in both interactions. The combination of molecular dynamics simulations and first-principles calculations allows a deeper understanding of the interactions between metallic surfaces and biomolecules, because charge transfer and exchange interactions are calculated exactly.
Collapse
Affiliation(s)
- Naoki Miyazawa
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan.
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
34
|
Comparative Therapeutic Effects of Plant-Extract Synthesized and Traditionally Synthesized Gold Nanoparticles on Alcohol-Induced Inflammatory Activity in SH-SY5Y Cells In Vitro. Biomedicines 2017; 5:biomedicines5040070. [PMID: 29244731 PMCID: PMC5744094 DOI: 10.3390/biomedicines5040070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
The present study describes potential beneficial and adverse effects of plant-extract synthesized gold nanoparticles (AuNPs) on ethanol toxicity in SH-SY5Y cells. Although kudzu root extract (K), edible-gum extract (G), alone or in combination (KG), reduced Au3+ into AuNPs, the extract’s composition and the reaction temperature determined their size (AuNPKG(90<50<37) << AuNPK(90,50<37) < AuNPG(90<50); the subscript KG, K, or G is extract identification and numerical vales are reaction temperature in Celsius) and biological properties (AuNPKG(90,50>37) << AuNPK(90,50>37) < AuNPG(90,50)). The surface of each AuNP contained the extract’s active ingredients, that were analyzed and confirmed using laser desorption ionization (LDI)) and low-matrix laser desorption-ionization (LMALDI). AuNPKG-50 was (i) least toxic to SH-SY5Y cells, but most effective in suppressing the adverse effects of ethanol on SH-SY5Y cells, and (ii) more effective than a combination of free kudzu and gum extracts. The beneficial and adverse effects of AuNPs may have been modified by the formation of proteins corona. This study provides a proof of concept for possible application of plant-extract synthesized AuNPs in mitigating ethanol toxicity.
Collapse
|
35
|
Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 2017; 115:57-63. [PMID: 29248514 DOI: 10.1016/j.micpath.2017.12.039] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) exhibit abundant biomedical applications. Anisotropic ZnONPs with a defined shape and size were synthesized using Bacillus megaterium (NCIM 2326) cell free extract as a bio-reductant. The study investigated the multidimensional effect of ZnONPs on Helicobacter pylori strains and assessed its biosafety in normal human mesenchymal stem cells (hMSc). The highly stable ZnONPs were produced using B. megaterium and Zinc nitrate as a precursor. The phase of ZnONPs formation and structural characterization were performed by UV- visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Field Emission Scanning electron microscopy (FESEM) analysis. Furthermore, the ZnONPs exhibited higher biocompatibility against human mesenchymal stem cells (hMSC) and proved to be potentially safe in mammalian cells. Corroborating the current investigation, we described the anti-H. Pylori dosage of ZnONPs was safe to hMSC and could efficiently use as nano-antibiotic.
Collapse
Affiliation(s)
- M Saravanan
- Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Ethiopia; Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603203, India
| | - V Gopinath
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Malaysia.
| | - Mukesh Kumar Chaurasia
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603203, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - N Purushothaman
- Department of Genetic Engineering and SRM Research Institue, SRM University, Kattankulathur, 603203, India
| |
Collapse
|