1
|
Rodríguez J, Vázquez L, Flórez AB, Mayo B. Epicoccum sp. as the causative agent of a reddish-brown spot defect on the surface of a hard cheese made of raw ewe milk. Int J Food Microbiol 2023; 406:110401. [PMID: 37722266 DOI: 10.1016/j.ijfoodmicro.2023.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Colour defects can affect the appearance of cheese, its flavour, the safety of its consumption, and the price it can demand. This work reports the identification of five fungal isolates from a dairy plant where the surface of most cheeses was affected by patent, reddish-to-brown stains. One of these isolates was obtained from cheese, two from brine, and two from a bulk tank containing ewe milk. Molecular identification by partial amplification, sequencing, and database comparison of the concatenated sequence of the genes coding for the largest subunit of RNA polymerase II (RPB2), β-tubulin (β-TUB), and the large subunit of the rRNA molecule (LSU), plus the internal transcribed sequence (ITS) regions, assigned the isolates to Epicoccum layuense, Epicoccum italicum, and Epicoccum mezzettii. Features of the growth of these different species on different agar-based media, and of the morphology of their conidia following sporulation, are also reported. The strain isolated from cheese, E. layuense IPLA 35011, was able to recreate the reddish-brown stains on slices of Gouda-like cheese, which linked the fungus with the colour defect. In addition, two other strains, E. italicum IPLA 35013 from brine and E. italicum IPLA 35014 from milk, also produced stains on cheese slices. Epicoccum species are widely recognized as plant pathogens but have seldom been reported in the dairy setting, and never as human or animal pathogens.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
2
|
Dongmo Zeukang R, Kalinski JC, Tembeni B, Goosen ED, Tembu J, Tabopda Kuiate T, Ngono Bikobo DS, Tagatsing Fotsing M, Atchadé ADT, Siwe-Noundou X. Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:52. [PMID: 37996570 PMCID: PMC10667191 DOI: 10.1007/s13659-023-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.
Collapse
Affiliation(s)
- Rostanie Dongmo Zeukang
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon.
| | - Jarmo-Charles Kalinski
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Babalwa Tembeni
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa
| | - Eleonora D Goosen
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Jacqueline Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Turibio Tabopda Kuiate
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | | | - Maurice Tagatsing Fotsing
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Alex de Théodore Atchadé
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa.
| |
Collapse
|
3
|
Tariq A, Salman M, Mustafa G, Tawab A, Naheed S, Naz H, Shahid M, Ali H. Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: An in vitro and in silico approach. PLoS One 2023; 18:e0289723. [PMID: 37561679 PMCID: PMC10414564 DOI: 10.1371/journal.pone.0289723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Lactic acid bacteria are known to produce numerous antibacterial metabolites that are active against various pathogenic microbes. In this study, bioactive metabolites from the cell free supernatant of Loigolactobacillus coryniformis BCH-4 were obtained by liquid-liquid extraction, using ethyl acetate, followed by fractionation, using silica gel column chromatography. The collected F23 fraction effectively inhibited the growth of pathogenic bacteria (Escherichia coli, Bacillus cereus, and Staphylococcus aureus) by observing the minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). The evaluated values of MIC were 15.6 ± 0.34, 3.9 ± 0.59, and 31.2 ± 0.67 μg/mL and MBC were 15.6 ± 0.98, 7.8 ± 0.45, and 62.5 ± 0.23 μg/mL respectively, against the above-mentioned pathogenic bacteria. The concentration of F23 fraction was varying from 1000 to 1.9 μg/mL. Furthermore, the fraction also exhibited sustainable biofilm inhibition. Using the Electrospray Ionization Mass Spectrometry (ESI-MS/MS), the metabolites present in the bioactive fraction (F23), were identified as phthalic acid, myristic acid, mangiferin, 16-hydroxylpalmatic acid, apigenin, and oleandomycin. By using in silico approach, docking analysis showed good interaction of identified metabolites and receptor proteins of pathogenic bacteria. The present study suggested Loigolactobacillus coryniformis BCH-4, as a promising source of natural bioactive metabolites which may receive great benefit as potential sources of drugs in the pharmacological sector.
Collapse
Affiliation(s)
- Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Applied Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hafsa Naz
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Misbah Shahid
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C,PIEAS), Faisalabad, Pakistan
| |
Collapse
|
4
|
Li T, Im J, Lee J. Genetic Diversity of Epicoccum nigrum and its Effects on Fusarium graminearum. MYCOBIOLOGY 2022; 50:457-466. [PMID: 36721792 PMCID: PMC9848293 DOI: 10.1080/12298093.2022.2148394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 06/18/2023]
Abstract
Epicoccum nigrum is a saprophytic or endophytic fungus that is found worldwide. Because of the antagonist effects of E. nigrum on many plant pathogens, current studies on E. nigrum have focused on the development of biological control agents and the utilization of its various metabolites. In this study, E. nigrum was collected from a wheat field, and its genetic diversity was analyzed. Phylogenetic analyses identified 63 isolates of E. nigrum divided into seven groups, indicating a wide genetic diversity. Isolates antagonized the wheat pathogen Fusarium graminearum, and reduced disease symptoms caused by F. graminearum in wheat coleoptiles. Moreover, pretreatment of wheat coleoptiles with E. nigrum induced the upregulation of pathogen-related (PR) genes, PR1, PR2, PR3, PR5, PR9, and PR10 in wheat coleoptiles responding to F. graminearum invasion. Overall, this study indicates that E. nigrum isolates can be used as biological pathogen inhibitors applied in wheat fields.
Collapse
Affiliation(s)
- Taiying Li
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Jihyeon Im
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, Korea
| |
Collapse
|
5
|
Zhang T, Cai G, Rong X, Xu J, Jiang B, Wang H, Li X, Wang L, Zhang R, He W, Yu L. Mining and characterization of the PKS-NRPS hybrid for epicoccamide A: a mannosylated tetramate derivative from Epicoccum sp. CPCC 400996. Microb Cell Fact 2022; 21:249. [PMID: 36419162 PMCID: PMC9685919 DOI: 10.1186/s12934-022-01975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Genomic analysis indicated that the genomes of ascomycetes might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained enigmatic. The ascomycete genus Epicoccum, belonging to the family Didymellaceae, is ubiquitous that colonizes different types of substrates and is associated with phyllosphere or decaying vegetation. Species of this genus are prolific producers of bioactive substances. The epicoccamides, as biosynthetically distinct mannosylated tetramate, were first isolated in 2003 from Epicoccum sp. In this study, using a combination of genome mining, chemical identification, genetic deletion, and bioinformatic analysis, we identified the required BGC epi responsible for epicoccamide A biosynthesis in Epicoccum sp. CPCC 400996. RESULTS The unconventional biosynthetic gene cluster epi was obtained from an endophyte Epicoccum sp. CPCC 400996 through AntiSMASH-based genome mining. The cluster epi includes six putative open reading frames (epiA-epiF) altogether, in which the epiA encodes a tetramate-forming polyketide synthase and nonribosomal peptide synthetases (PKS-NRPS hybrid). Sequence alignments and bioinformatic analysis to other metabolic pathways of fungal tetramates, we proposed that the gene cluster epi could be involved in generating epicoccamides. Genetic knockout of epiA completely abolished the biosynthesis of epicoccamide A (1), thereby establishing the correlation between the BGC epi and biosynthesis of epicoccamide A. Bioinformatic adenylation domain signature analysis of EpiA and other fungal PKS-NRPSs (NRPs) indicated that the EpiA is L-alanine incorporating tetramates megasynthase. Furthermore, based on the molecular structures of epicoccamide A and deduced gene functions of the cluster epi, a hypothetic metabolic pathway for biosynthesizing compound 1 was proposed. The corresponding tetramates releasing during epicoccamide A biosynthesis was catalyzed through Dieckmann-type cyclization, in which the reductive (R) domain residing in terminal module of EpiA accomplished the conversion. These results unveiled the underlying mechanism of epicoccamides biosynthesis and these findings might provide opportunities for derivatization of epicoccamides or generation of new chemical entities. CONCLUSION Genome mining and genetic inactivation experiments unveiled a previously uncharacterized PKS - NRPS hybrid-based BGC epi responsible for the generation of epicoccamide A (1) in endophyte Epicoccum sp. CPCC 400996. In addition, based on the gene cluster data, a hypothetical biosynthetic pathway of epicoccamide A was proposed.
Collapse
Affiliation(s)
- Tao Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Guowei Cai
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.452240.50000 0004 8342 6962Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xiaoting Rong
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.510447.30000 0000 9970 6820College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003 Jiangsu China
| | - Jingwen Xu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Bingya Jiang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Hao Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Xinxin Li
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Lu Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Ran Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Wenni He
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Liyan Yu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
6
|
Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, Shahid M, Ijaz A, Ali H. The Antibacterial and Larvicidal Potential of Bis-(2-Ethylhexyl) Phthalate from Lactiplantibacillus plantarum. Molecules 2022; 27:7220. [PMID: 36364044 PMCID: PMC9657160 DOI: 10.3390/molecules27217220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Lactic acid bacteria produce a variety of antibacterial and larvicidal metabolites, which could be used to cure diseases caused by pathogenic bacteria and to efficiently overcome issues regarding insecticide resistance. In the current study, the antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate isolated from Lactiplantibacillus plantarum BCH-1 has been evaluated. Bioactive compounds were extracted by ethyl acetate and were fractionated by gradient column chromatography from crude extract. Based on FT-IR analysis followed by GC-MS and ESI-MS/MS, the active compound was identified to be Bis-(2-ethylhexyl) phthalate. Antibacterial potential was evaluated by disk diffusion against E. coli (12.33 ± 0.56 mm inhibition zone) and S. aureus (5.66 ± 1.00 mm inhibition zone). Larvicidal potency was performed against Culex quinquefasciatus Say larvae, where Bis-(2-ethylhexyl) phthalate showed 100% mortality at 250 ppm after 72 h with LC50 of 67.03 ppm. Furthermore, after 72 h the acetylcholinesterase inhibition was observed as 29.00, 40.33, 53.00, 64.00, and 75.33 (%) at 50, 100, 150, 200, and 250 ppm, respectively. In comet assay, mean comet tail length (14.18 ± 0.28 μm), tail DNA percent damage (18.23 ± 0.06%), tail movement (14.68 ± 0.56 µm), comet length (20.62 ± 0.64 µm), head length (23.75 ± 0.27 µm), and head DNA percentage (39.19 ± 0.92%) were observed at 250 ppm as compared to the control. The current study for the first time describes the promising antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum that would have potential pharmaceutical applications.
Collapse
Affiliation(s)
- Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad 38000, Pakistan
| | - Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad 38000, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad 38000, Pakistan
| | - Muhammad Kashif Zahoor
- Department of Zoology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad 38000, Pakistan
| | - Misbah Shahid
- Department of Biochemistry, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad 38000, Pakistan
| | - Anam Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Kumar A, Kaur S, Dhiman S, Singh PP, Bhatia G, Thakur S, Tuli HS, Sharma U, Kumar S, Almutary AG, Alnuqaydan AM, Hussain A, Haque S, Dhama K, Kaur S. Targeting Akt/NF-κB/p53 Pathway and Apoptosis Inducing Potential of 1,2-Benzenedicarboxylic Acid, Bis (2-Methyl Propyl) Ester Isolated from Onosma bracteata Wall. against Human Osteosarcoma (MG-63) Cells. Molecules 2022; 27:molecules27113478. [PMID: 35684419 PMCID: PMC9182111 DOI: 10.3390/molecules27113478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 μM, 56.05 μM, and 47.12 μM, respectively. In Mg-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (−151.13 kcal/mol) and CDK1 (−133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sukhvinder Dhiman
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Prithvi Pal Singh
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Bhatia
- Department of Biochemistry, Pt. Jawaharlal Nehru Government Medical College and Hospital Chamba, Chamba 176310, India;
| | - Sharad Thakur
- Biotechnology Division, COVID-19 Project, CSIR-IHBT, Palampur 176061, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subodh Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
- Correspondence: (A.G.A.); or (S.K.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, Dubai 345050, United Arab Emirates;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
- Correspondence: (A.G.A.); or (S.K.)
| |
Collapse
|
8
|
Effect of fungal endophytes on plant growth and nutrient uptake in Trifolium subterraneum and Poa pratensis as affected by plant host specificity. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01732-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe introduction of well-adapted species, such as Trifolium subterraneum (subclover) and Poa pratensis (Kentucky bluegrass), might enhance the forage yield and quality of dehesa pastures for feeding livestock. However, the climatic hardness and poor soils in these agrosystems may limit plant establishment and development. Since fungal endophytes have been found to alleviate the environmental stresses of their host, the aim of this study was to assess the effect of five isolates on forage yield, nutritive value, and plant mineral uptake after their inoculation in the two abovementioned plant species. Two experiments were established (under greenhouse and field conditions) using plants inoculated with two isolates in 2012/2013 (Epicoccum nigrum, Sporormiella intermedia) and three isolates in 2013/2014 (Mucor hiemalis, Fusarium equiseti, Byssochlamys spectabilis). Fusarium equiseti (E346) increased the herbage yield of T. subterraneum under greenhouse conditions, and B. spectabilis improved the forage quality of T. subterraneum by reducing fiber content and of P. pratensis by increasing crude protein. S. intermedia increased the mineral uptake of Ca, Cu, Mn, Pb, Tl, and Zn in subclover, and M. hiemalis increased the uptake of K and Sr in Kentucky bluegrass. These results evidence the potential of the studied fungal endophytes to enhance herbage yield and nutritional value of forage, although further studies should include all of the target forage species as certain host specificity in the effect was observed.
Collapse
|
9
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
10
|
Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis. Molecules 2021; 26:molecules26092510. [PMID: 33923072 PMCID: PMC8123281 DOI: 10.3390/molecules26092510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
Collapse
|
11
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
12
|
Tazik Z, Rahnama K, White JF, Soltanloo H, Hasanpour M, Iranshahi M. LC-MS based identification of stylosin and tschimgine from fungal endophytes associated with Ferula ovina. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1565-1570. [PMID: 33489030 PMCID: PMC7811810 DOI: 10.22038/ijbms.2020.46334.10703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives Ferula ovina is an Iranian medicinal plant. Tschimgine and stylosin are two of its major monoterpene derivatives. In this study, we proceeded to investigate some fungal endophytes from F. ovina that can produce plant secondary metabolites. Materials and Methods The isolated endophytic fungi were fermented in potato dextrose broth (PDB) medium and their extracts were screened for the presence of the plant compounds by liquid chromatography-tandem mass spectrometry (LC-MS). Endophytes identification was performed by morphological and molecular methods. Three markers (ITS, LSU, and TEF1) were used for accurate molecular identification. Results Forty isolates from 9 different genera of endophytic fungi were identified, of which two recently reported species of O. ferulica and Pithoascus persicus were able to produce tschimgine and stylosin. Conclusion These fungi can be used as a substitute for the production of plant's medicinal compounds independent of wild populations of the source plant.
Collapse
Affiliation(s)
- Zahra Tazik
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Kamran Rahnama
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Hassan Soltanloo
- Department of Biotechnology & Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Abed RM. Exploring Fungal Biodiversity of Genus Epicoccum and Their Biotechnological Potential. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Abstract
The advantages and emergent interest in organism-derived bioactive molecules have recently renewed scientific research attention in this field. Since 1967, about 52 different derivatives of phthalate ester (PE) have been reported from different taxonomic groups. Anthropogenic derivatives of the PEs are confined to petroleum products, as a plasticizer. These derivatives exhibit a potential toxicity on the living system, particularly those having a reduced molecular weight. An organism-derived PE differs chemically from that of synthetic ones in terms of the abundance of 14C and its bond structure, leading to its varied activities in the biological system. The study of the biosynthetic pathway and the optimization of parameters for product enhancement have advocated their organism-derived nature. Various bioactivities of such organisms-derived derivatives of phthalates such as antibacterial, antifungal, an inducer of apoptosis and cell cycle arrest, antioxidant, cytotoxic, antitumor, allopathic, larvicidal, antifouling, chemotactic, antimelanogenic, antiviral, and anti-inflammatory activities have been well documented. This is the first review that focuses on the positive bioactivities of such organism-derived PEs in detail. There is enormous scope for research in this field to search for the utilization of such organism-derived phthalate derivatives will have potential bioactivity, their possible use to improve their efficacy.
Collapse
Affiliation(s)
- Raj Narayan Roy
- Microbiology Research Laboratory, Department of Botany, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Purba-Bardhaman, India
| |
Collapse
|
15
|
Piecuch A, Ogórek R, Dyląg M, Cal M, Przywara K. Epicoccum nigrum Link as a Potential Biocontrol Agent Against Selected Dermatophytes. ACTA MYCOLOGICA 2020. [DOI: 10.5586/am.5516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
<em>Epicoccum nigrum </em>Link is well known for producing biologically-active substances with activities against prokaryotic and eukaryotic cells. The major goal of this study was to assess <em>E. nigrum </em>as a potential in vitro agent against selected species of dermatophytes. The effects of the types of media used in this study on the interactions between the microscopic fungi were also examined. <em>Epicoccum nigrum</em>’s bioactive metabolites exhibited a strong growth inhibitory effect against the dermatophytes, suggesting its potential as a biocontrol agent. Notably, the strength of these interactions was dependent on the type of the medium. These secondary metabolites are not toxic against the higher eukaryotic organisms, which was further demonstrated by using the <em>Galleria mellonella </em>model.
Collapse
|
16
|
Kaaniche F, Hamed A, Elleuch L, Chakchouk-Mtibaa A, Smaoui S, Karray-Rebai I, Koubaa I, Arcile G, Allouche N, Mellouli L. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation. Microb Pathog 2020; 142:104106. [PMID: 32109569 DOI: 10.1016/j.micpath.2020.104106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
The strain TN638 was isolated from Tunisian soil contaminated with industrial wastewater and selected for its potent antimicrobial activity against the tested Gram positive bacteria: Staphylococcus aureus (S. aureus) ATCC 6538 and Listeria monocytogenes (L. monocytogenes) ATCCC 19117, and Gram negative bacteria: Agrobacterium tumefaciens (A. tumefaciens) ATCC 23308 and Salmonella typhimurium (S. typhimurium) ATCC 14028 and fungi: Candida albicans (C. albicans) ATCC 10231, Rhizoctonia solani (R. solani) ATCC 58938 and Fusarium sp. Solide-state fermentation (SSF) dry crude extract of the TN638 strain presents a strong inhibitory activity notably against the phytopathogenic microorganism A. tumefaciens ATCC 23308 and the two pathogenic bacteria S. aureus ATCC 6538 and L. monocytogenes ATCCC 19117 with a zone of inhibition of 48, 34 and 34 mm respectively. According to the morphological characteristic, the complete 16S rRNA gene nucleotide sequence determination [1492 bp deposited in National Center of Biotechnology Information (NCBI) database under the accession no. LN854629.1; https://www.ncbi.nlm.nih.gov/nuccore/LN854629.1/], and the phylogenetic analysis, we can deduce that our isolate is an actinomycete bacterium belonging to the genus Streptomyces and the most closely related strain was Streptomyces cavourensis (S. cavourensis) NRRL 2740T (99.9%). We propose the assignment of our strain as Streptomyces cavourensis (S. cavourensis) TN638 strain. Work-up and purification of the strain extract using different chromatographic techniques afforded seven bio-compounds namely: Cyclo-(Leu-Pro) (1), Cyclo-(Val-Pro) (2), Cyclo-(Phe-Pro) (3), nonactin (4), monactin (5), dinactin (6) and trinactin (7). The chemical structures of compounds 1-7 were confirmed by nuclear magnetic resonance (NMR) 1D and 2D spectroscopy, mass spectrometry, and comparison with literature data. The three purified diketopiperazine (DKP) derivatives (1-3), demonstrated significant antibacterial activity against A. tumefaciens ATCC 23308 and S. typhimurium ATCC 14028. The four pure macrotetrolides (4-7), exhibited strong inhibitory effect against all tested Gram positive and Gram negative bacteria notably against A. tumefaciens ATCC 23308 and S. typhimurium ATCC 14028 with a minimum inhibitory concentration (MIC) around 8 μg/mL quite similar to that of ampicillin. Thus, we propose the use of the (SSF) active extract of the S. cavourensis TN638 strain as safe biological product to control disease caused by plant pathogen A. tumefaciens. Also, the purified active molecules produced by this strain could be used in pharmaceutical field.
Collapse
Affiliation(s)
- Fatma Kaaniche
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, B.P. 1177, 3018, Sfax, Tunisia; Laboratory of Organic Chemistry, Natural Substances Team (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, PB.1171, 3000, Sfax, Tunisia
| | - Abdelaaty Hamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Lobna Elleuch
- CRTE Technopole of Borj-Cedria, Road of Soliman, B.P. 273, 8020, Soliman, Tunisia
| | - Ahlem Chakchouk-Mtibaa
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, B.P. 1177, 3018, Sfax, Tunisia
| | - Slim Smaoui
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, B.P. 1177, 3018, Sfax, Tunisia
| | - Ines Karray-Rebai
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, B.P. 1177, 3018, Sfax, Tunisia
| | - Imed Koubaa
- Laboratory of Organic Chemistry, Natural Substances Team (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, PB.1171, 3000, Sfax, Tunisia
| | - Guillaume Arcile
- National Center for Scientific Research, Institute of Chemistry of Natural Substances ICSN, Avenue of the Terrasse 91198, Gif-sur-Yvette, cedex, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry, Natural Substances Team (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, PB.1171, 3000, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, B.P. 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
17
|
Harwoko H, Daletos G, Stuhldreier F, Lee J, Wesselborg S, Feldbrügge M, Müller WEG, Kalscheuer R, Ancheeva E, Proksch P. Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Nat Prod Res 2019; 35:257-265. [PMID: 31210064 DOI: 10.1080/14786419.2019.1627348] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new epidithiodiketopiperazine (ETP), pretrichodermamide G (1), along with three known (epi)dithiodiketopiparazines (2-4) were isolated from cultures of Trichoderma harzianum and Epicoccum nigrum, endophytic fungi associated with medicinal plants Zingiber officinale and Salix sp., respectively. The structure of the new compound (1) was established on the basis of spectroscopic data, including 1D/2D NMR and HRESIMS. The isolated compounds were investigated for their antifungal, antibacterial and cytotoxic potential against a panel of microorganisms and cell lines. Pretrichodermamide A (2) displayed antimicrobial activity towards the plant pathogenic fungus Ustilago maydis and the human pathogenic bacterium Mycobacterium tuberculosis with MIC values of 1 mg/mL (2 mM) and 25 µg/mL (50 µM), respectively. Meanwhile, epicorazine A (3) exhibited strong to moderate cytotoxicity against L5178Y, Ramos, and Jurkat J16 cell lines with IC50 values ranging from 1.3 to 28 µM. Further mechanistic studies indicated that 3 induces apoptotic cell death.
Collapse
Affiliation(s)
- Harwoko Harwoko
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, Germany.,Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Jalan dr. Soeparno Karangwangkal, Purwokerto, Indonesia
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitaetsstraße 1, Geb. 23.12, Duesseldorf, Germany
| | - Jungho Lee
- Institute for Microbiology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.12, Duesseldorf, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Juelich, Juelich, Germany
| | - Sebastian Wesselborg
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitaetsstraße 1, Geb. 23.12, Duesseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.12, Duesseldorf, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Juelich, Juelich, Germany
| | - Werner E G Müller
- Institute of Physiological Chemistry, Universitaetsmedizin der Johannes Gutenberg-Universitaet Mainz, Mainz, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, Germany
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, Germany
| |
Collapse
|
18
|
F Abdallah M, De Boevre M, Landschoot S, De Saeger S, Haesaert G, Audenaert K. Fungal Endophytes Control Fusarium graminearum and Reduce Trichothecenes and Zearalenone in Maize. Toxins (Basel) 2018; 10:toxins10120493. [PMID: 30477214 PMCID: PMC6316275 DOI: 10.3390/toxins10120493] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Fusarium graminearum can cause Giberella Ear Rot (GER) and seedling blight in maize, resulting in major yield losses. Besides GER, the infected grains are consequently contaminated with multiple mycotoxins of F. graminearum. Zearalenone and trichothecenes, such as deoxynivalenol and its acetylated forms, are among the major mycotoxins associated with F. graminearum infection in maize. In the current work, we explored the effect of the endophytic fungal genera of Epicoccum and Sordaria, to control F. graminearum infection in comparative trials with Piriformospora spp., an elusive endophytic genus. Furthermore, we investigated the effect of these endophytes on zearalenone, deoxynivalenol, and 15-acetyldeoxynivalenol levels using in vitro and in planta assays. As plants are endowed with several detoxification mechanisms comprising e.g., glucosylation of trichothecenes, the effect of the isolated fungal endophytes on the deoxynivalenol-3-glucoside level was also assessed. In general, results showed a considerable variability in the antifungal activity, both among species and among isolates within one species. Additionally, the effect on mycotoxin levels was variable, and not necessarily related to the antifungal activity except for zearalenone levels which were consistently reduced by the endophytes. These results highlight the great potential of certain endophytic fungal strains as new biocontrol agents in agricultural science.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Sofie Landschoot
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Fang YL, Xia LM, Wang P, Zhu LH, Ye JR, Huang L. The MAPKKK CgMck1 Is Required for Cell Wall Integrity, Appressorium Development, and Pathogenicity in Colletotrichum gloeosporioides. Genes (Basel) 2018; 9:E543. [PMID: 30413120 PMCID: PMC6267176 DOI: 10.3390/genes9110543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway plays key roles in sensing extracellular signals and transmitting them from the cell membrane to the nucleus in response to various environmental stimuli. A MAPKKK protein CgMck1 in Colletotrichum gloeosporioides was characterized. Phenotypic analyses of the ∆Cgmck1 mutant showed that the CgMck1 was required for vegetative growth, fruiting body development, and sporulation. Additionally, the CgMCK1 deletion mutant showed significant defects in cell wall integrity, and responses to osmotic stresses. The mutant abolished the ability to develop appressorium, and lost pathogenicity to host plants. The ∆Cgmck1 mutant also exhibited a higher sensitivity to antifungal bacterium agent Bacillus velezensis. The deletion mutants of downstream MAPK cascades components CgMkk1 and CgMps1 showed similar defects to the ∆Cgmck1 mutant. In conclusion, CgMck1 is involved in the regulation of vegetative growth, asexual development, cell wall integrity, stresses resistance, and infection morphogenesis in C. gloeosporioides.
Collapse
Affiliation(s)
- Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li-Ming Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li-Hua Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
20
|
Production of di-(2-ethylhexyl) phthalate by Bacillus subtilis AD35: Isolation, purification, characterization and biological activities. Microb Pathog 2018; 124:89-100. [DOI: 10.1016/j.micpath.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022]
|
21
|
Braga RM, Padilla G, Araújo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol 2018; 44:759-778. [PMID: 30369284 DOI: 10.1080/1040841x.2018.1514364] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epicoccum is a genus of ubiquitous fungi typically found in air, in soil, and on decaying vegetation. They also commonly display an endophytic lifestyle and are isolated from diverse plant tissues. The fungi from the genus Epicoccum are mainly known for their use as biocontrol agents against phytopathogens and for their ability to produce many secondary metabolites with potential biotechnological applications, such as antioxidant, anticancer,r and antimicrobial compounds. Among the bioactive compounds produced by Epicoccum spp., epicocconone is a commercially available fluorophore, D8646-2-6 is a patented telomerase inhibitor, and taxol is an anticancer drug originally isolated from Taxus brevifolia. Epicoccum spp. also produces epicolactone, an antimicrobial compound with a unique and complex structure that has aroused considerable interest in the chemical-synthesis community. The main goal of the present review is to discuss the diversity of secondary metabolites produced by Epicoccum spp., their biotechnological applications, and proposed hypothetical biosynthesis. In addition, the use of Epicoccum spp. as biocontrol agents and the pigments produced by these fungi are also discussed.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Gabriel Padilla
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Welington Luiz Araújo
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
22
|
Abstract
Herbal remedies are used throughout the world, either in earlier or in recent times. The number of studies on this alternative therapeutic system increased in the last decades. In this paper, the relevant literature on the use of natural products in root canal therapy is revised from a MEDLINE database search. The uses of medicinal plants in endodontics include cleaning and disinfection of root canals, intracanal medicaments between appointments, sealer cements, and for removal of obturation material. Other studies showed the effect of natural products in pulpal and dentin repair. Their use is anecdotal, and their effectiveness showed to be variable and is always compared to the chemical standards currently being used. Alkaloids, coumarins, saponins, and flavonoids are aromatic substances that are produced by plants and evaluated for their therapeutic potential. Further investigation into benefits of natural products is warranted.
Collapse
Affiliation(s)
- Ebtissam M Almadi
- Department of Restorative Sciences, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|