1
|
Huang C, Wang X, Gao Y, Jiang X, Wang L, Ou X, Wang Y, Zhou T, Yuan QS. The comparative genomic analysis provides insight into the divergent inhibitory activity metabolites in pathogen-driven three Pseudomonas palleroniana strains against primary pathogens of Pseudostellaria heterophylla. BMC Genomics 2025; 26:332. [PMID: 40175895 PMCID: PMC11963402 DOI: 10.1186/s12864-025-11527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
Pseudostellaria heterophylla (Miq.) Pax ex Pax et Hoffm. is a member of the Caryophyllaceae family, in which dried tuberous root is the well-known traditional Chinese medicine (TCM) and a widespread food ingredient in Asia. In recent years, the large-scale cultivation of P. heterophylla has led to frequent infectious diseases caused by multiple pathogens. However, efficient and safe approaches for preventing and managing P. heterophylla diseases have become urgent for this high-quality industrial development. Herein, a culturable microbiome of diseased P. heterophylla rhizosphere soil was constructed, and the broad-spectrum antifungal activity of Pseudomonas was screened. Three P. palleroniana strains, B-BH16-1, B-JK4-1, and HP-YBB-1B, were isolated and identified with vigorous antifungal activity by confrontation method. We employed the PacBio RS II single-molecule real-time (SMRT) sequencing and Illumina sequencing methods to obtain the genome of these three isolates. Phylogenetic, synteny, and ANI analysis showed that the lineage between strain B-JK4-1 with B-BH16-1 or HY-YBB-1B was closer than that between strain B-BH16-1 with HP-YBB-1B. The comparative genome of strains B-BH16-1, B-JK4-1, and HP-YBB-1B showed marked differences in secondary metabolite biosynthesis genes among these three P. palleroniana strains. Strain B-BH16-1, B-JK4-1, and HP-YBB-1 produced tolaasin I/tolaasin F (23 genes), sessilin A (37 genes), and putisolvin (39 genes), respectively. CAZyme analysis showed that 126, 129, and 127 CAZymes were identified in strains B-BH16-1, B-JK4-1, and HP-YBB-1B genomes, which genes in auxiliary activities (AA), carbohydrate esterases (CE), and glycosyl transferases (GT) categories were different among these three strains. These results provide new insights into the divergent antifungal metabolites in pathogen-driven three P. palleroniana strains against primary pathogens of Pseudostellaria heterophylla.
Collapse
Affiliation(s)
- Chunfeng Huang
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoai Wang
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanping Gao
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xue Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Wang
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Zhou
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing-Song Yuan
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Petrásková L, Bojarová P. Recent trends in the separation and analysis of chitooligomers. Carbohydr Res 2025; 548:109337. [PMID: 39642757 DOI: 10.1016/j.carres.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Chitosan is a widely used linear biopolymer composed mainly of glucosamine and to a lesser extent of N-acetylglucosamine units. Many biological activities of chitosan are attributed to its shorter oligomeric chains, which consist of chitosan prepared either by enzyme activity (lysozyme, bacterial chitinase) or chemically by acid-catalyzed hydrolysis (e.g. in the stomach). However, these processes always result in a mixture of shorter chitooligosaccharides with varying degrees of acetylation whereas for relevant results of biological studies it is necessary to work with a precisely defined material. In this review, we provide an overview and comparison of analytical methods leading to the determination of the degree of polymerization (DP), the degree of acetylation (DA), the fraction of acetylation (FA) and the acetylation patterns (PA) of chitooligosaccharide chains and of the current state of knowledge on chitooligosaccharide separation. This review aims to present the most promising routes to well-defined low molecular weight chitosan with low dispersity.
Collapse
Affiliation(s)
- Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic.
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic
| |
Collapse
|
3
|
Shi J, Deng C, Zhang C, Quan S, Fan L, Zhao L. Combinatorial metabolic engineering of Escherichia coli for de novo production of structurally defined and homogeneous Amino oligosaccharides. Synth Syst Biotechnol 2024; 9:713-722. [PMID: 38868610 PMCID: PMC11167392 DOI: 10.1016/j.synbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.
Collapse
Affiliation(s)
- Jinqi Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| |
Collapse
|
4
|
Moran CL, Debowski A, Vrielink A, Stubbs K, Sarkar-Tyson M. N-acetyl-β-hexosaminidase activity is important for chitooligosaccharide metabolism and biofilm formation in Burkholderia pseudomallei. Environ Microbiol 2024; 26:e16571. [PMID: 38178319 DOI: 10.1111/1462-2920.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-β-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-β-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-β-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.
Collapse
Affiliation(s)
- Clare L Moran
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Aleksandra Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Keith Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
5
|
Doan CT, Tran TN, Tran TPH, Nguyen TT, Nguyen HK, Tran TKT, Vu BT, Trinh THT, Nguyen AD, Wang SL. Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii. Polymers (Basel) 2023; 15:3724. [PMID: 37765578 PMCID: PMC10537793 DOI: 10.3390/polym15183724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum chitosanase activity were determined: a squid pens powder amount of 5.278% (w/v), an initial pH value of 8.93, an incubation temperature of 38 °C, and an incubation duration of 5.73 days. The resulting chitosanase activity of the culture medium was 2.023 U/mL. A chitosanase with a molecular weight of 25 kDa was isolated from the culture medium of P. elgii TKU051 and was biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed that P. elgii TKU051 chitosanase exhibited a maximum amino acid identity of 43% with a chitosanase of Bacillus circulans belonging to the glycoside hydrolase (GH) family 46. P. elgii TKU051 chitosanase demonstrated optimal activity at pH 5.5 while displaying remarkable stability within the pH range of 5.0 to 9.0. The enzyme displayed maximum efficiency at 60 °C and demonstrated considerable stability at temperatures ≤40 °C. The presence of Mn2+ positively affected the activity of the enzyme, while the presence of Cu2+ had a negative effect. Thin-layer chromatography analysis demonstrated that P. elgii TKU051 chitosanase exhibited an endo-type cleavage pattern and hydrolyzed chitosan with 98% degree of deacetylation to yield (GlcN)2 and (GlcN)3. The enzymatic properties of P. elgii TKU051 chitosanase render it a promising candidate for application in the production of COS.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Huu Kien Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Kim Thi Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Bich Thuy Vu
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Huyen Trang Trinh
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
6
|
Lyagin I, Aslanli A, Domnin M, Stepanov N, Senko O, Maslova O, Efremenko E. Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations for Improved Antifungal Activity. Int J Mol Sci 2023; 24:11359. [PMID: 37511117 PMCID: PMC10379199 DOI: 10.3390/ijms241411359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Active research of metal-containing compounds and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS). Further action of ROS on various biomolecules is nonspecific. Various hydrolytic enzymes (glucanases and proteases), in turn, exhibit antifungal properties by affecting the structural elements of fungal cells (cell walls, membranes), fungal quorum sensing molecules, fungal own protective agents (mycotoxins and antibiotics), and proteins responsible for the adhesion and formation of stable, highly concentrated populations in the form of biofilms. A wide substrate range of enzymes allows the use of various mechanisms of their antifungal actions. In this review, we discuss the prospects of combining two different types of antifungal agents (metals and enzymes) against mycelial fungi and yeast cells. Special attention is paid to the possible influence of metals on the activity of the enzymes and the possible effects of proteins on the antifungal activity of metal-containing compounds.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Maksim Domnin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
7
|
Wei X, Sui Z, Guo M, Chen S, Zhang Z, Geng J, Xiao J, Huang D. The potential of degrading natural chitinous wastes to oligosaccharides by chitinolytic enzymes from two Talaromyces sp. isolated from rotten insects (Hermetia illucens) under solid state fermentation. Braz J Microbiol 2023; 54:223-238. [PMID: 36547866 PMCID: PMC9944152 DOI: 10.1007/s42770-022-00882-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
It is difficult to produce chitin oligosaccharides by hydrolyzing untreated natural chitinous waste directly. In this study, two fungi Talaromyces allahabadensis Hi-4 and Talaromyces funiculosus Hi-5 from rotten black soldier fly were isolated and identified through multigene phylogenetic and morphological analyses. The chitinolytic enzymes were produced by solid state fermentation, and the growth conditions were optimized by combining single-factor and central composite design. The best carbon sources were powder of molting of mealworms (MMP) and there was no need for additional nitrogen sources in two fungi, then the maximum chitinolytic enzyme production of 46.80 ± 3.30 (Hi-4) and 55.07 ± 2.48 (Hi-5) U/gds were achieved after analyzing the 3D response surface plots. Pure chitin (colloidal chitin) and natural chitinous substrates (represented by MMP) were used to optimize degradation abilities by crude enzymes obtained from the two fungi. The optimum temperature for hydrolyzing MMP (40 °C both in two fungi) were lower and closer to room temperature than colloidal chitin (55 °C for Hi-4 and 45 °C for Hi-5). Then colloidal chitin, MMP and the powder of shrimp shells (SSP) were used for analyzing the products after 5-day degradation. The amounts of chitin oligosaccharides from SSP and MMP were about 1/6 (Hi-4), 1/17 (Hi-5) and 1/8 (Hi-4), 1/10 (Hi-5), respectively, in comparison to colloidal chitin. The main components of the products were GlcNAc for colloidal chitin, (GlcNAc)2 for MMP, and oligosaccharides with higher degree of polymerization (4-6) were obtained when hydrolyzing SSP, which is significant for applications in medicine and health products.
Collapse
Affiliation(s)
- Xunfan Wei
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuoxiao Sui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengyuan Guo
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sicong Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zongqi Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Tao A, Wang T, Pang F, Zheng X, Ayra-Pardo C, Huang S, Xu R, Liu F, Li J, Wei Y, Wang Z, Niu Q, Li D. Characterization of a novel chitinolytic Serratia marcescens strain TC-1 with broad insecticidal spectrum. AMB Express 2022; 12:100. [PMID: 35907065 PMCID: PMC9339060 DOI: 10.1186/s13568-022-01442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The Gram-negative rod-shaped bacterium Serratia marcescens is an opportunistic pathogen of many organisms, including insects. We report the identification and optimal in vitro chitinase production conditions of a novel chitinolytic S. marcescens strain TC-1 isolated from a naturally infected white grub (Anomala corpulenta) collected from a peanut field at Nanyang city, Henan province, China. Strain identification was conducted by morphological, physiological, biochemical and molecular analyses. The amplified 16S rRNA gene of TC-1 showed a similarity greater than 99% with multiple strains of S. marcescens. Based on Neighbor-joining phylogenetic tree analysis of bacterial 16S rRNA gene sequences, TC-1 formed a clade with S. marcescens, clearly separated from other Serratia spp. The strain TC-1 showed larvicidal activities against five insect species (A. corpulenta, Plutella xylostella, Spodoptera exigua, Helicoverpa armigera, Bombyx mori) and the nematode Caenorhabditis elegans, but not against S. litura. The operating parameters of chitinase production by TC-1 were optimized by response surface methodology using a three-factor, three-level Box-Behnken experimental design. The effects of three independent variables i.e. colloidal chitin concentration (7–13 g l−1), incubation time (24–72 h) and incubation temperature (24–32 °C) on chitinase production by TC-1 were investigated. A regression model was proposed to correlate the independent variables for an optimal chitinase activity predicted as 20.946 U ml−1, using a combination of colloidal chitin concentration, incubation time and incubation temperature of 9.06 g l−1, 63.83 h and 28.12 °C, respectively. The latter agreed well with a mean chitinase activity of 20.761 ± 0.102 U ml−1 measured in the culture supernatants of TC-1 grown under similar conditions with a colloidal chitin concentration, incubation time and incubation temperature of 9 g l−1, 64 h and 28 °C, respectively. Our study revealed the S. marcescens strain TC-1 with potential as a biocontrol agent of insect pests and nematodes and demonstrated the proposed regression model's potential to guide chitinase production by this strain.
Collapse
Affiliation(s)
- Aili Tao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Tan Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Fahu Pang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xueling Zheng
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Camilo Ayra-Pardo
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Siliang Huang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ruxin Xu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Fengqin Liu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiakang Li
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yibin Wei
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Zhiqing Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Qiuhong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Dandan Li
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
9
|
Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genet Eng Biotechnol 2021; 19:149. [PMID: 34613510 PMCID: PMC8494867 DOI: 10.1186/s43141-021-00254-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
Background Soil pollution by heavy metals increases the bioavailability of metals like hexavalent chromium (Cr (VI)), subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting rhizobacteria (PGPR) have substantial potential to enhance plant growth as well as plant tolerance to metal stress. The aim of this research was to investigate Cr (VI) phytoremediation enhancement by PGPR. Results The results showed that the 27 rhizobacterial isolates studied were confirmed as Cr (VI)-resistant PGPR, by using classical biochemical tests (phosphate solubilization, nitrogen fixation, indole acetic acid, exopolysaccharides, hydrogen cyanide, siderophores, ammonia, cellulase, pectinase, and chitinase production) and showed variable levels of Cr (VI) resistance (300–600 mg/L). The best four selected Cr (VI)-resistant PGPR (NT15, NT19, NT20, and NT27) retained most of the PGP traits in the presence of 100–200 mg/L concentrations of Cr (VI). The inoculation of Medicago sativa with any of these four isolates improved the shoot and root dry weight. The NT27 isolate identified using 16S rDNA gene sequence analyses as a strain of Pseudomonas sp. was most effective in terms of plant growth promotion and stress level decrease. It increased shoot and root dry weights of M. sativa by 97.6 and 95.4%, respectively, in the presence of Cr (VI) when compared to non-inoculated control plants. It also greatly increased chlorophyll content and decreased the levels of stress markers, malondialdehyde, hydrogen peroxide, and proline. The results of the effect of Pseudomonas sp. on Cr content and bioaccumulation factor (BAF) of the shoots and roots of M. sativa plants showed the increase of plant biomass concomitantly with the increase of Cr root concentration in inoculated plants. This would lead to a higher potential of Cr (VI) phytostabilization. Conclusions This study demonstrates that the association M. sativa-Pseudomonas sp. may be an efficient biological system for the bioremediation of Cr (VI)-contaminated soils.
Collapse
Affiliation(s)
- Nabil Tirry
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Aziza Kouchou
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Bouchra El Omari
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Mohamed Ferioun
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco.
| |
Collapse
|
10
|
Phylogeny and Optimization of Trichoderma harzianum for Chitinase Production: Evaluation of Their Antifungal Behaviour against the Prominent Soil Borne Phyto-Pathogens of Temperate India. Microorganisms 2021; 9:microorganisms9091962. [PMID: 34576858 PMCID: PMC8471080 DOI: 10.3390/microorganisms9091962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Trichoderma is the most commonly used fungal biocontrol agent throughout the world. In the present study, various Trichoderma isolates were isolated from different vegetable fields. In the isolated microflora, the colony edges varied from wavy to smooth. The mycelial forms were predominantly floccose with hyaline color and conidiophores among all the strains were highly branched. Based on morphological attributes, all the isolates were identified as Trichoderma harzianum. The molecular identification using multilocus sequencing ITS, rpb2 and tef1α, genes further confirmed the morphological identification. The average chitinase activity varied from 1.13 units/mL to 3.38 units/mL among the various isolates, which increased linearly with temperature from 15 to 30 °C. There was an amplified production in the chitinase production in the presence of Mg+ and Ca2+ and Na+ metal ions, but the presence of certain ions was found to cause the down-regulated chitinase activity, i.e., Zn2+, Hg2+, Fe2+, Ag+ and K+. All the chitinase producing Trichoderma isolates inhibited the growth of tested pathogens viz., Dematophora necatrix, Fusarium solani, Fusarium oxysporum and Pythium aphanidermatum at 25% culture-free filtrate concentration under in vitro conditions. Also, under in vivo conditions, the lowest wilt incidence and highest disease control on Fusarium oxysporum was observed in isolate BT4 with mean wilt incidence and disease control of 21% and 48%, respectively. The Trichoderma harzianum identified in this study will be further used in formulation development for the management of diseases under field conditions.
Collapse
|
11
|
Xie XH, Fu X, Yan XY, Peng WF, Kang LX. A Broad-Specificity Chitinase from Penicillium oxalicum k10 Exhibits Antifungal Activity and Biodegradation Properties of Chitin. Mar Drugs 2021; 19:md19070356. [PMID: 34201595 PMCID: PMC8307900 DOI: 10.3390/md19070356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Penicillium oxalicum k10 isolated from soil revealed the hydrolyzing ability of shrimp chitin and antifungal activity against Sclerotinia sclerotiorum. The k10 chitinase was produced from a powder chitin-containing medium and purified by ammonium sulfate precipitation and column chromatography. The purified chitinase showed maximal activity toward colloidal chitin at pH 5 and 40 °C. The enzymatic activity was enhanced by potassium and zinc, and it was inhibited by silver, iron, and copper. The chitinase could convert colloidal chitin to N-acetylglucosamine (GlcNAc), (GlcNAc)2, and (GlcNAc)3, showing that this enzyme had endocleavage and exocleavage activities. In addition, the chitinase prevented the mycelial growth of the phytopathogenic fungi S. sclerotiorum and Mucor circinelloides. These results indicate that k10 is a potential candidate for producing chitinase that could be useful for generating chitooligosaccharides from chitinous waste and functions as a fungicide.
Collapse
Affiliation(s)
| | | | | | | | - Li-Xin Kang
- Correspondence: ; Tel.: +86-27-88661237-8024
| |
Collapse
|
12
|
Zhang W, Ma J, Yan Q, Jiang Z, Yang S. Biochemical characterization of a novel acidic chitinase with antifungal activity from Paenibacillus xylanexedens Z2-4. Int J Biol Macromol 2021; 182:1528-1536. [PMID: 34022308 DOI: 10.1016/j.ijbiomac.2021.05.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
A chitinase gene (PxChi52) from Paenibacillus xylanexedens Z2-4 was cloned and heterologously expressed in Escherichia coli BL21 (DE3). PxChi52 shared the highest identity of 91% with a glycoside hydrolase family 18 chitinase (ChiD) from Bacillus circulans. The recombinant enzyme (PxChi52) was purified and biochemically characterized. PxChi52 had a molecular mass of 52.8 kDa. It was most active at pH 4.5 and 65 °C, respectively, and stable in a wide pH range of 4.0-13.0 and up to 50 °C. The enzyme exhibited the highest specific activity of 16.0 U/mg towards colloidal chitin, followed by ethylene glycol chitin (5.4 U/mg) and ball milled chitin (0.4 U/mg). The Km and Vmax values of PxChi52 towards colloidal chitin were determined to be 3.06 mg/mL and 71.38 U/mg, respectively, PxChi52 hydrolyzed colloidal chitin and chitooligosaccharides with degree of polymerization 2-5 to release mainly N-acetyl chitobiose. In addition, PxChi52 displayed inhibition effects on the growth of some phytopathogenic fungi, including Alternaria alstroemeriae, Botrytis cinerea, Rhizoctonia solani, Sclerotinia sclerotiorum and Valsa mali. The unique properties of PxChi52 may enable it potential application in agriculture field as a biocontrol agent.
Collapse
Affiliation(s)
- Wenjiao Zhang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junwen Ma
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.
Collapse
|
14
|
Tirry N, Kouchou A, Laghmari G, Lemjereb M, Hnadi H, Amrani K, Bahafid W, El Ghachtouli N. Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Zhang A, Mo X, Wei G, Zhou N, Yang S, Chen J, Wang Y, Chen K, Ouyang P. The Draft Genome Sequence and Analysis of an Efficiently Chitinolytic Bacterium Chitinibacter sp. Strain GC72. Curr Microbiol 2020; 77:3903-3908. [PMID: 32980915 DOI: 10.1007/s00284-020-02215-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
A novel chitinolytic bacterium Chitinibacter sp. GC72, which produces an enzyme capable of efficiently converting chitin only into N-acetyl-D-glucosamine (GlcNAc), was successfully sequenced and analyzed. The assembled draft genome of strain GC72 is 3,455,373 bp, containing 3346 encoded protein sequences with G + C content of 53.90%. Among these annotated genes, 17 chitinolytic enzymes including 12 glycoside hydrolase family 18 chitinases, three family 19 chitinases, one family 20 β-hexosaminidase, and one auxiliary activity family 10 lytic polysaccharide monooxygenase, were found to be essential in the production of GlcNAc from chitin. The genomic information of strain GC72 provides a reference genome for Chitinibacter bacteria and abundant novel chitinolytic enzyme resources, and allows researchers to explore potential applications in GlcNAc enzymatic production.
Collapse
Affiliation(s)
- Alei Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Xiaofang Mo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Guoguang Wei
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Ning Zhou
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Sai Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yingying Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
16
|
Méndez-Santiago EW, Gómez-Rodríguez O, Sánchez-Cruz R, Folch-Mallol JL, Hernández-Velázquez VM, Villar-Luna E, Aguilar-Marcelino L, Wong-Villarreal A. Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics. Arch Microbiol 2020; 203:549-559. [PMID: 32980917 DOI: 10.1007/s00203-020-02051-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.
Collapse
Affiliation(s)
- Erick Williams Méndez-Santiago
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México.,Laboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla No. 8534 Col. Progreso, C. P. 62550, Jiutepec, Morelos, México
| | - Olga Gómez-Rodríguez
- Colegio de Postgraduados, Carretera México-Texcoco, Km. 36.5, Moncecillo, Texcoco, México
| | - Ricardo Sánchez-Cruz
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México
| | - Jorge Luis Folch-Mallol
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México
| | - Victor M Hernández-Velázquez
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México
| | - Edgar Villar-Luna
- CONACYT-Instituto Politécnico Nacional, CIIDIR-IPN. Unidad Michoacán, Justo Sierra 28, 59510, Jiquilpan, Michoacán, México
| | - Liliana Aguilar-Marcelino
- Laboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla No. 8534 Col. Progreso, C. P. 62550, Jiutepec, Morelos, México.
| | | |
Collapse
|
17
|
Xu T, Qi M, Liu H, Cao D, Xu C, Wang L, Qi B. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 2020; 10:29. [PMID: 32036475 PMCID: PMC7007918 DOI: 10.1186/s13568-020-0963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801, which had been screened out in our previous work. The results of fermentation revealed that CS1801 can convert the chitin derived from crab shells, colloidal chitin and N-acetylglucosamine to chitooligosaccharide. Additional genome-wide analysis of CS1801 was also performed to explore the genomic basis for chitin degradation. The results showed that CS1801 possesses a chromosome with 5,611,479 bp (73% GC) and a plasmid with 1,388,284 bp (73% GC). The CS1801 genome consists of 7584 protein-coding genes, 90 tRNA and 21 rRNA operons. In addition, the results of genomic CAZyme analysis indicated that CS1801 comprises 103 glycoside hydrolase family genes, which could regulate the glycoside hydrolases that contribute to chitin degradation. The whole-genome information of CS1801 could highlight the mechanism underlying the chitin degradation activity of CS1801, strongly indicating that CS1801 is characterized by a substantial number of genes encoding chitinases and the complete metabolic pathway of chitin, conferring CS1801 with promising potential applicability in chitooligosaccharide production.
Collapse
|
18
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
19
|
A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.). RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03971-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Tailored Enzymatic Synthesis of Chitooligosaccharides with Different Deacetylation Degrees and Their Anti-Inflammatory Activity. Catalysts 2019. [DOI: 10.3390/catal9050405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By controlled hydrolysis of chitosan or chitin with different enzymes, three types of chitooligosaccharides (COS) with MW between 0.2 and 1.2 kDa were obtained: fully deacetylated (fdCOS), partially acetylated (paCOS), and fully acetylated (faCOS). The chemical composition of the samples was analyzed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry. The synthesized fdCOS was basically formed by GlcN, (GlcN)2, (GlcN)3, and (GlcN)4. On the contrary, faCOS contained mostly GlcNAc, (GlcNAc)2 and (GlcNAc)3, while paCOS corresponded to a mixture of at least 11 oligosaccharides with different proportions of GlcNAc and GlcN. The anti-inflammatory activity of the three COS mixtures was studied by measuring their ability to reduce the level of TNF-α (tumor necrosis factor) in murine macrophages (RAW 264.7) after stimulation with a mixture of lipopolysaccharides (LPS). Only fdCOS and faCOS were able to significantly reduce the production of tumor necrosis factor (TNF)-α at 6 h after stimulation with lipopolysaccharides.
Collapse
|
21
|
Sherma J, Rabel F. Review of thin layer chromatography in pesticide analysis: 2016-2018. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1557055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
22
|
da Mota FF, Castro DP, Vieira CS, Gumiel M, de Albuquerque JP, Carels N, Azambuja P. In vitro Trypanocidal Activity, Genomic Analysis of Isolates, and in vivo Transcription of Type VI Secretion System of Serratia marcescens Belonging to the Microbiota of Rhodnius prolixus Digestive Tract. Front Microbiol 2019; 9:3205. [PMID: 30733713 PMCID: PMC6353840 DOI: 10.3389/fmicb.2018.03205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Serratia marcescens is a bacterium with the ability to colonize several niches, including some eukaryotic hosts. S. marcescens have been recently found in the gut of hematophagous insects that act as parasite vectors, such as Anopheles, Rhodnius, and Triatoma. While some S. marcescens strains have been reported as symbiotic or pathogenic to other insects, the role of S. marcescens populations from the gut microbiota of Rhodnius prolixus, a vector of Chagas’ disease, remains unknown. Bacterial colonies from R. prolixus gut were isolated on BHI agar. After BOX-PCR fingerprinting, the genomic sequences of two isolates RPA1 and RPH1 were compared to others S. marcescens from the NCBI database in other to estimate their evolutionary divergence. The in vitro trypanolytic activity of these two bacterial isolates against Trypanosoma cruzi (DM28c clone and Y strain) was assessed by microscopy. In addition, the gene expression of type VI secretion system (T6SS) was detected in vivo by RT-PCR. Comparative genomics of RPA1 and RPH1 revealed, besides plasmid presence and genomic islands, genes related to motility, attachment, and quorum sensing in both genomes while genes for urea hydrolysis and type II secretion system (T2SS) were found only in the RPA1 genome. The in vitro trypanolytic activity of both S. marcescens strains was stronger in their stationary phases of growth than in their exponential ones, with 65–70 and 85–90% of epimastigotes (Dm28c clone and Y strain, respectively) being lysed after incubation with RPA1 or RPH1 in stationary phase. Although T6SS transcripts were detected in guts up to 40 days after feeding (DAF), R. prolixus morbidity or mortality did not appear to be affected. In this report, we made available two trypanolytic S. marcescens strains from R. prolixus gut to the scientific community together with their genomic sequences. Here, we describe their genomic features with the purpose of bringing new insights into the S. marcescens adaptations for colonization of the specific niche of triatomine guts. This study provides the basis for a better understanding of the role of S. marcescens in the microbiota of R. prolixus gut as a potential antagonist of T. cruzi in this complex system.
Collapse
Affiliation(s)
- Fabio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Daniele Pereira Castro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.,Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Cecilia Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Julia Peixoto de Albuquerque
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense (MIP/UFF), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz (CDTS/FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.,Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|