1
|
Afreen A, Hameed H, Tariq M, Sharif MS, Ahmed R, Waheed A, Kousar MB, Akram Z. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa-mediated gold nanoparticles with advanced microscopy techniques. Microsc Res Tech 2024; 87:1984-1996. [PMID: 38619301 DOI: 10.1002/jemt.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.
Collapse
Affiliation(s)
- Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Clinical and Translational Oncology, Scuola Superiore Meridionale Via Mezzocannone, Naples, Italy
| | - Rashid Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Momina Bint Kousar
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zeeshan Akram
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| |
Collapse
|
2
|
Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, Alarfaj AA, Wang S. Morinda citrifolia leaf assisted synthesis of ZnO decorated Ag bio-nanocomposites for in-vitro cytotoxicity, antimicrobial and anticancer applications. Bioprocess Biosyst Eng 2024; 47:1213-1226. [PMID: 38509421 DOI: 10.1007/s00449-024-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.
Collapse
Affiliation(s)
- Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Deputy Vice-Chancellors Research and Innovation, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Priyadarshini Sakthi Mohan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Faridah Sonsudin
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, 404000, Wanzhou, China
| |
Collapse
|
3
|
Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. RESULTS IN CHEMISTRY 2024; 7:101368. [DOI: 10.1016/j.rechem.2024.101368] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
4
|
Rose GK, Thakur B, Soni R, Soni SK. Biosynthesis of silver nanoparticles using nitrate reductase from Aspergillus terreus N4 and their potential use as a non-alcoholic disinfectant. J Biotechnol 2023; 373:49-62. [PMID: 37423523 DOI: 10.1016/j.jbiotec.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Green technology has been developed for the quick production of stabilized silver nanoparticles (AgNPs), with the assistance of nitrate reductase from an isolated culture of Aspergillus terreus N4. The organism's intracellular and periplasmic fractions contained nitrate reductase, with the former demonstrating the highest activity of 0.20 IU/g of mycelium. When the fungus was cultivated in a medium comprising 1.056% glucose, 1.836% peptone, 0.3386% yeast extract, and 0.025% KNO3, the greatest nitrate reductase productivity of 0.3268 IU/g was achieved. Statistical modeling via response surface methodology was used to optimize the enzyme production. The periplasmic and intracellular enzyme fractions were found to convert Ag+ to Ag0, initiating synthesis within 20 min, with predominant nanoparticle sizes between 25 and 30 nm. By normalizing the effects of temperature, pH, AgNO3 concentration, and mycelium age with a variable shaking period for enzyme release, the production of AgNPs with the periplasmic fraction was optimized. The synthesis of nanoparticles occurred at temperatures of 30, 40, and 50 °C, with the highest yield observed at 40 and 50 °C during shorter incubation periods. Similarly, the nanoparticles were synthesized at pH levels of 7.0, 8.0, and 9.0, with the greatest production observed at pH 8.0 and 9.0 at lower incubation periods. The antimicrobial activity of AgNPs was demonstrated against common foodborne pathogens, including Staphylococcus aureus and Salmonella typhimurium, indicating their potential as non-alcoholic disinfectants.
Collapse
Affiliation(s)
- Gaurav Kumar Rose
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Bhishem Thakur
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Raman Soni
- Department of Biotechnology, D.A.V. College, Chandigarh 160011, India
| | - Sanjeev Kumar Soni
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Kermani M, Mostafapour A, Sabouri Z, Gheibihayat SM, Darroudi M. The photocatalytic, cytotoxicity, and antibacterial properties of zinc oxide nanoparticles synthesized using Trigonella foenum-graecum L extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19313-19325. [PMID: 36229728 DOI: 10.1007/s11356-022-23518-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In this study, the manufacture of zinc oxide nanoparticles (ZnO-NPs) was completed via the sol-gel method with Trigonella foenum-graecum L extract for the first time to function as the stabilizing and reducing agent. The obtained product was investigated by various analyzing procedures such as TGA/DTG, FT-IR, UV-Vis, XRD, and EDX/FESEM. The calcination of our product was conducted at temperatures of 400, 500, and 600 °C. In conformity to the XRD pattern, heightening the temperature of calcination caused an enlargement in the size of nanoparticles. The photocatalytic performance of ZnO-NPs was evaluated to degrade methylene blue and Eriochrome black T (EBT) dyes under UV light, which resulted in a degradation percentage of about 96% and 94%, after 90 min, respectively. There has been some evidence suggesting that the green synthesis of ZnO-NPs has increased their use in medicine. The outcomes of examining the cytotoxicity effect of this product against the Huh-7 cell line by the performance of the MTT assay were indicative of an IC50 of around 62.5 µg/mL. Finally, according to the results of the broth microdilution method, which was performed to assess the antibacterial activity of ZnO-NPs towards gram-positive and gram-negative bacteria, the value of MIC was in the range of 31 to 125 µg/mL. The obtained results from biological studies confirm the antibacterial and anticancer properties of ZnO-NPs, which are promising for applying NPs in medical fields.
Collapse
Affiliation(s)
- Mahmood Kermani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mostafapour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabouri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Darroudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Green Synthesis of CuO-TiO2 Nanoparticles for the Degradation of Organic Pollutants: Physical, Optical and Electrochemical Properties. Catalysts 2023. [DOI: 10.3390/catal13010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CuO-TiO2 nanocomposites were successfully synthesized using the C. benghalensis plant extracts. The effect of the composition of CuO to TiO2 on the morphological, optical, electrochemical, and photodegradation efficiency in the composites was studied. SEM, XRD, UV-vis, FTIR, TGA, BET, and CV were used to characterize these materials. The XRD data reported the tenorite structure of the CuO and the anatase phase of the TiO2. SEM showed the spherical morphologies for all the CuO-TiO2 NPs, and these were also mesoporous in nature, as depicted by BET. The voltammogram of the CuO-TiO2 30/70 electrode showed a higher response current density compared to the other two samples, suggesting a higher specific capacitance. Upon testing the photocatalytic efficiencies of the CuO-TiO2 nanocomposites against methylene blue (MB), ciprofloxacin (CIP), and sulfisoxazole (SSX), the highest degradation of 94% was recorded for SSX using the CuO-TiO2 30/70 nanocomposites. Hydroxyl radicals were the primary species responsible for the photodegradation of SSX, and the material could be reused once. The most active species in the photodegradation of SSX has been identified as OH•. From this study, it can be noted that the CuO-TiO2 nanocomposites were more selective toward the degradation of antibiotics (sulfisoxazole and ciproflaxin) as compared to dyes (methylene blue).
Collapse
|
7
|
Patel A. Metal nanoparticles produced by plants with antibacterial properties against Staphylococcus aureus. BRAZ J BIOL 2023; 82:e268052. [PMID: 36888798 DOI: 10.1590/1519-6984.268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic bacteria that causes a variety of potentially fatal infections. The emergence of antibiotic-resistant strains of S. aureus has made treatment even more difficult. In recent years, nanoparticles have been used as an alternative therapeutic agent for S. aureus infections. Among various methods for the synthesis of nanoparticles, the method utilizing plant extracts from different parts of a plant, such as root, stem, leaf, flower, seeds, etc. is gaining widespread usage. Phytochemicals present in plant extract are an inexpensive, eco-friendly, natural material that act as reducing and stabilization agent for the nanoparticle synthesis. The utilization of plant-fabricated nanoparticles against S. aureus is currently in trend. The current review discusses recent findings in the therapeutic application of phytofabricated metal-based nanoparticles against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Alamdari S, Mirzaee O, Nasiri Jahroodi F, Tafreshi MJ, Ghamsari MS, Shik SS, Ara MHM, Lee KY, Park HH. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. SURFACES AND INTERFACES 2022; 34:102349. [PMID: 36160476 PMCID: PMC9490491 DOI: 10.1016/j.surfin.2022.102349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 05/16/2023]
Abstract
Following the global corona virus pandemic and environmental contamination caused by chemical plastic packaging, awareness of the need for environmentally friendly biofilms and antibacterial coatings is increasing. In this study, a biodegradable hybrid film, comprising of green-synthesized zinc oxide nanoparticles (ZnO NPs) with a chitosan (CS) matrix, was fabricated using a simple casting procedure. The ZnO NPs were synthesized using wild Mentha pulegium extract, and the synthesized NPs and films were characterized using different approaches. The structural, morphological, mechanical, antibacterial, and optical properties, as well as the hydrophilicity, of the prepared samples were investigated using various techniques. Gas chromatography-mass spectrometry measurements revealed the presence of phenolic compounds in the M. pulegium extract. In addition, a strong coordination connection between Zn2+ and the chitosan matrix was confirmed, which resulted in a good dispersion of ZnO in the chitosan film. The surface of the composite films was transparent, smooth, and uniform, and the flexible bio-based hybrid films exhibited significant antibacterial and antioxidant characteristics, strong visible emission in the 480 nm region, and UV-blocking properties. The ZnO/CS films displayed a potential to extend the shelf life of fruits by up to eight days when stored at 23°C, and also acted as an acceptable barrier against oxygen and water. The biodegradable ZnO/CS film is expected to keep fruit fresher than general chemical plastic films and be used for the packaging of active ingredients.
Collapse
Affiliation(s)
- Sanaz Alamdari
- Faculty of Physics, Semnan University, P.O. Box:35195‑363, Semnan, Iran
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Omid Mirzaee
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | | | - Morteza Sasani Ghamsari
- Photonics & Quantum Technologies Research School, Nuclear Science, and Technology Research Institute, Tehran, 11155-3486, Iran
| | | | - Mohammad Hossein Majles Ara
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Kyu-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
9
|
Muiz LJ, Juwono AL, Krisnandi YK. A review: Silver–zinc oxide nanoparticles – organoclay-reinforced chitosan bionanocomposites for food packaging. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Research on bionanocomposites has been developed, while its application as food packaging is still being explored. They are usually made from natural polymers such as cellulose acetate, chitosan (CS), and polyvinyl alcohol. Bionanocomposite materials can replace traditional non-biodegradable plastic packaging materials, enabling them to use new, high-performance, lightweight, and environmentally friendly composite materials. However, this natural polymer has a weakness in mechanical properties. Therefore, a composite system is needed that will improve the properties of the biodegradable food packaging. The aim of this mini-review is to demonstrate recent progress in the synthesis, modification, characterization, and application of bionanocomposites reported by previous researchers. The focus is on the preparation and characterization of CS-based bionanocomposites. The mechanical properties of CS-based food packaging can be improved by adding reinforcement from inorganic materials such as organoclay. Meanwhile, the anti-bacterial properties of CS-based food packaging can be improved by adding nanoparticles such as Ag and ZnO.
Collapse
Affiliation(s)
- Lisna Junaeni Muiz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Ariadne Lakshmidevi Juwono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Yuni Krisyuningsih Krisnandi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
- Department of Chemistry, Solid Inorganic Framework Laboratory, Faculty of Mathematics and Natural Science, Universitas Indonesia , Depok , 16424 , Indonesia
| |
Collapse
|
10
|
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173066. [PMID: 36080103 PMCID: PMC9459703 DOI: 10.3390/nano12173066] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.
Collapse
Affiliation(s)
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Felix Tettey
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aakash Gupta
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Shankar Jaisi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Devi Prasad Bhandari
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Ajay Kumar Shah
- Faculty of Health Sciences, School of Health and Allied Sciences, Pokhara University, Lekhnath 33700, Nepal
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence: (N.B.); (N.P.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
- Correspondence: (N.B.); (N.P.)
| |
Collapse
|
11
|
Nxumalo KA, Fawole OA, Oluwafemi OS. Evaluating the Efficacy of Gum Arabic-Zinc Oxide Nanoparticles Composite Coating on Shelf-Life Extension of Mandarins (cv. Kinnow). FRONTIERS IN PLANT SCIENCE 2022; 13:953861. [PMID: 35937367 PMCID: PMC9354938 DOI: 10.3389/fpls.2022.953861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Restricted postharvest application of synthetic fungicides in maintaining the quality of citrus fruits has led to a search for alternative postharvest treatments. This study evaluated the efficacy of gum arabic (GA) enriched with green synthesized zinc oxide nanoparticles (ZnO-NPs) in maintaining the postharvest quality of mandarin (cv. Kinnow). ZnO-NPs were synthesized using Bidens pilosa leaf extract and incorporated into GA (2% w/v) at 0, 0.25, 0.5, and 1% to form composite coatings: GA, GA + ZnO-NP 0.25%, GA + ZnO-NP 0.5% and GA + ZnO-NP 1%, respectively. Fruit were dipped for 3 min in the respective coatings, with untreated fruit used as control. Fruit were air-dried, packed in commercial cartons, and stored at 5 ± 1°C and 90 ± 5% relative humidity (RH) for 40 days and observed at 10 days intervals, plus 5 days at 20 ± 5°C and 65 ± 5% RH to determine the incidence of physiological disorders. GA + ZnO-NP showed promise as an alternative postharvest treatment for controlling postharvest physiological disorders associated with 'Kinnow' mandarin. For instance, GA + ZnO-NP 0.5% markedly minimized weight loss (9.2%), electrolyte leakage (43.8%) and chilling injury incidence (5.4%) compared to control (weight loss; 33.3%, electrolyte leakage; 90.3% and chilling injury incidence; 41.5%) at the end of the storage. GA + ZnO-NP 1% significantly alleviated rind pitting, with 13.2% incidence compared to 45.2% rind pitting incidence in the control fruit. This was due to significantly higher phytochemical and antioxidant capacity and reduced antioxidant enzyme degradation in coated fruit than in control. In conclusion, gum arabic coating enriched with ZnO-NPs at concentrations between 0.5 and 1% is recommended as a viable option to maintain the quality of 'Kinnow' mandarin fruit during cold storage.
Collapse
Affiliation(s)
- Kwanele Andy Nxumalo
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Johannesburg, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
12
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
13
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
14
|
Şahin B, Aydin R, Soylu S, Türkmen M, Kara M, Akkaya A, Çetin H, Ayyıldız E. The effect of thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR method. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Harandi FN, Khorasani AC, Shojaosadati SA, Hashemi-Najafabadi S. Living Lactobacillus-ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112457. [PMID: 34702533 DOI: 10.1016/j.msec.2021.112457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
Probiotic bacteria are able to produce antimicrobial substances as well as to synthesize green metal nanoparticles (NPs). New antimicrobial and antibiofilm coatings (LAB-ZnO NPs), composed of Lactobacillus strains and green ZnO NPs, were employed for the modification of gum Arabic-polyvinyl alcohol-polycaprolactone nanofibers matrix (GA-PVA-PCL) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The physicochemical properties of ZnO NPs biologically synthesized by L. plantarum and L. acidophilus, LAB-ZnO NPs hybrids and LAB-ZnO NPs@GA-PVA-PCL were studied using FE-SEM, EDX, EM, FTIR, XRD and ICP-OES. The morphology of LAB-ZnO NPs hybrids was spherical in range of 4.56-91.61 nm with an average diameter about 34 nm. The electrospun GA-PVA-PCL had regular, continuous and without beads morphology in the scale of nanometer and micrometer with an average diameter of 565 nm. Interestingly, the LAB not only acted as a biosynthesizer in the green synthesis of ZnO NPs but also synergistically enhanced the antimicrobial and antibiofilm efficacy of LAB-ZnO NPs@GA-PVA-PCL. Moreover, the low cytotoxicity of ZnO NPs and ZnO NPs@GA-PVA-PCL on the mouse embryonic fibroblasts cell line led to make them biocompatible. These results suggest that LAB-ZnO NPs@GA-PVA-PCL has potential as a safe promising antimicrobial and antibiofilm dressing in wound healing against pathogens.
Collapse
Affiliation(s)
- Fereshte Nazemi Harandi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Antibacterial and Photocatalytic Properties of ZnO Nanoparticles Obtained from Chemical versus Saponaria officinalis Extract-Mediated Synthesis. Molecules 2021; 26:molecules26072072. [PMID: 33916520 PMCID: PMC8038507 DOI: 10.3390/molecules26072072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/30/2023] Open
Abstract
In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders' antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.
Collapse
|
17
|
Tsegaye MM, Chouhan G, Fentie M, Tyagi P, Nand P. Therapeutic Potential of Green Synthesized Metallic Nanoparticles against Staphylococcus aureus. Curr Drug Res Rev 2021; 13:172-183. [PMID: 33634763 DOI: 10.2174/2589977513666210226123920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The recent treatment challenges posed by the widespread emergence of pathogenic Multidrug-Resistant (MDR) bacterial strains are a cause of huge health troubles worldwide. Infections caused by MDR organisms are associated with longer period of hospitalization, increased mortality, and inflated healthcare costs. Staphylococcus aureus is one of these MDR organisms identified as an urgent threat to human health by the World Health Organization. Infections caused by S. aureus may range from simple cutaneous infestations to life threatening bacteremia. S. aureus infections get easily escalated in severely ill, hospitalized and or immunocompromised patients with incapacitated immune system. Also, in HIV-positive patients S. aureus ranks amongst one of the most common comorbidities where it can further worsen a patient's health condition. At present anti-staphylococcal therapy is reliant typically on chemotherapeutics that are gathering resistance and pose unfavorable side-effects. Thus, newer drugs are required that can bridge these shortcomings and aid effective control against S. aureus. OBJECTIVE In this review, we summarize drug resistance exhibited by S. aureus and lacunae in current anti-staphylococcal therapy, nanoparticles as an alternative therapeutic modality. The focus lays on various green synthesized nanoparticles, their mode of action and application as potent antibacterial compounds against S. aureus. CONCLUSION Use of nanoparticles as anti-bacterial drugs has gained momentum in recent past and green synthesized nanoparticles, which involves microorganisms and plants or their byproducts for synthesis of nanoparticles offer a potent, as well as environment friendly solution in warfare against MDR bacte.
Collapse
Affiliation(s)
- Meron Moges Tsegaye
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Garima Chouhan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Molla Fentie
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Priya Tyagi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Parma Nand
- School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| |
Collapse
|
18
|
Evaluation cytotoxicity effects of biosynthesized zinc oxide nanoparticles using aqueous Linum Usitatissimum extract and investigation of their photocatalytic activityackn. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Green Synthesis of ZnO Nanostructures Using Salvadora Persica Leaf Extract: Applications for Photocatalytic Degradation of Methylene Blue Dye. CRYSTALS 2020. [DOI: 10.3390/cryst10060441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Various ZnO nanomaterials such as nanorods, nanoparticles, and nanosheets were synthesized using Salvadora persica leaf extract via the sol–gel method. The prepared nanomaterials possess a large number of nanocavities. The synthesized nanomaterials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance studies (UV-DRS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HT-TEM), and these nanomaterials were used to test photocatalytic applications for the degradation of highly hazardous methylene blue dye. The degradation efficiency was higher for materials with nanorods and nanosheets with nanocavities; this was due to the presence of the nanocavities, which made the catalyst more sensitive to light absorption. This method offers a green synthesis of different nanomaterials in bulk quantity at low cost.
Collapse
|
20
|
Rajith Kumar CR, Betageri VS, Nagaraju G, Pujar GH, Onkarappa HS, Latha MS. Synthesis of Core/Shell (ZnO/Ag) Nanoparticles Using Calotropis gigantea and Their Applications in Photocatalytic and Antibacterial Studies. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01507-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Aminul Haque M, Shamim Hossain M, Akanda MR, Haque MA, Naher S. Procedure Optimization ofLimonia acidissimaLeaf Extraction and Silver Nanoparticle Synthesis for Prominent Antibacterial Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201904019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Aminul Haque
- Department of ChemistryJagannath University Dhaka- 1100 Bangladesh
| | | | | | - Md. Aminul Haque
- Department of ChemistryJagannath University Dhaka- 1100 Bangladesh
| | - Shamsun Naher
- Department of ChemistryJagannath University Dhaka- 1100 Bangladesh
| |
Collapse
|
22
|
Das P, Karankar VS. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. J Microbiol Methods 2019; 167:105766. [PMID: 31706910 DOI: 10.1016/j.mimet.2019.105766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these 'green nanoparticles'. Biological wastes have also been focused in this direction thereby promoting the value of waste. Reports indicate that green nanoparticles exhibit remarkable antimicrobial activitiesboth singly as well as in combination with standard antibiotics. The current phenomenon of multi-drug resistance has resulted due to indiscriminate administration of high-doses of antibiotics followed by significant toxicity. In the face of this emergence of drug-resistant microbesthe efficacy of green nanoparticles might prove greatly beneficial. Microbial biofilm is another hurdle in the effective treatment of diseases as the microorganismsbeing embedded in the meshwork of the biofilmevade the antimicrobial agents. Nanoparticles may act as a ray of hope on the face of this challenge tooas they not only destroy the biofilms but also lessen the doses of antibiotics requiredwhen administered in combination with the nanoparticles. It should be further noted that the resistance mechanisms exhibited by the microorganisms seem not that relevant for nanoparticles. The current review, to the best of our knowledgefocuses on the structures of these green nanoparticles along with their biomedical potentials. It is interesting to note how a variety of structures are generated by using resources like microbes or plants or plant products and how the structure affects their activities. This study might pave the way for further development in this arena and future work may be taken up in identifying the detailed mechanism by which 'green' synthesis empowers nanoparticles to kill pathogenic microbes.
Collapse
Affiliation(s)
- Palashpriya Das
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India.
| | - Vijayshree S Karankar
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
23
|
Bao Z, Lan CQ. Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms-A review. Colloids Surf B Biointerfaces 2019; 184:110519. [PMID: 31569003 DOI: 10.1016/j.colsurfb.2019.110519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
The last decade has witnessed significant developments in the biosynthesis of noble metal nanoparticles (NMNPs) due to their distinct advantages in various practical applications. Many photosynthetic organisms, including plants, microalgae, and photosynthetic bacteria, have been explored for NMNP synthesis in an eco-friendly and cost-effective manner. These biomasses were used for NMNP biosynthesis as growing cells, non-growing cells, whole cells extract, disrupted cell extract, residual biomasses, gum solutions, etc. Different mechanisms might be involved to reduce noble metal ions to NMNP. These mechanisms include reduction of metal ions catalysed by reductases using NADH as electron donors, reduction of metal ions using biochemical molecules such as polysaccharides and proteins as electron donators, and light-dependant biosynthesis of NMNP involving pigments for light capture and water-splitting for electron supplementation. NMNP may be applied as catalyst, antibacterial, anticancer, and drug delivery vehicle.
Collapse
Affiliation(s)
- Zeqing Bao
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| |
Collapse
|
24
|
Hozyen HF, Ibrahim ES, Khairy EA, El-Dek SI. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Vet World 2019; 12:1225-1232. [PMID: 31641301 PMCID: PMC6755405 DOI: 10.14202/vetworld.2019.1225-1232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/25/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND AIM Bovine mastitis is the costliest prevalent disease in the dairy sector due to the limitations of conventional treatments. Zinc oxide nanoparticles (ZnO-NPs) have been regarded as safe and economical antibacterial candidates against several microorganisms, but the tendency of these particles to aggregate is a major barrier to their application. This study aimed to enhance the antibacterial efficiency of ZnO-NPs against some bacterial agents, causing bovine mastitis. MATERIALS AND METHODS A total of 24 milk samples out of 300 cases from Nubaria farm, Beheira Governorate, Egypt, were collected from cows with clinical mastitis. ZnO-NPs were fabricated by a sonochemical method using starch as a capping agent and by an auto-combustion reaction using glycine as a fuel. The two preparations of synthesized ZnO-NPs at different concentrations were assessed for their antimicrobial activities in vitro against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae isolated from milk of affected cows. RESULTS Sonochemically synthesized capped ZnO-NPs were dispersed and non-agglomerated in comparison with aggregated uncapped ZnO-NPs prepared by an auto-combustion reaction. Capped dispersed ZnO-NPs showed higher antibacterial activity against S. aureus, E. coli, and K. pneumoniae than particles synthesized by the auto-combustion reaction at same concentrations. However, the zone of inhibition for dispersed and agglomerated ZnO-NPs was concentration-dependent. In addition, Gram-positive S. aureus exhibited higher resistance to ZnO-NPs synthesized by both methods than Gram-negative E. coli and K. pneumoniae. CONCLUSION Dispersed, non-agglomerated ZnO-NPs fabricated using starch as a capping agent under sonochemical irradiation could potentially be regarded as highly effective and inexpensive antimicrobial agents against S. aureus, E. coli, and K. pneumoniae for the management of bovine mastitis.
Collapse
Affiliation(s)
- H. F. Hozyen
- Department of Animal Reproduction and AI, National Research Centre, Dokki, Giza, Egypt
| | - E. S. Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - E. A. Khairy
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - S. I. El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
25
|
Pallela PNVK, Ummey S, Ruddaraju LK, Pammi SVN, Yoon SG. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microb Pathog 2018; 124:63-69. [PMID: 30121359 DOI: 10.1016/j.micpath.2018.08.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/07/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
Abstract
The present study is focused on the synthesis of silver nano particles (Ag NPs) using an aqueous extract of the whole plant of Sida cordifolia as a potential bio-reducing agent and assessment of their antibacterial activity. UV-Vis spectroscopy of composed silver colloidal solution displayed surface Plasmon resonance peak at 420 nm. XRD and TEM analysis revealed the morphology as ultra-small, monodispersed spherical nanoparticles with face-centered cubic structure and mean particle size of 3-6 nm. This ultra-small nano size might owe to the slow reaction time and phytochemicals existing in the S. cordifolia extract. The Ag NPs are trailed for antibacterial activity against 5 fish (Aeromonas hydrophila, Pseudomonas fluorescence, Flavobacterium branchiophilum, Edwardsiella tarda and Yersinia rukeri) and 4 human (Escherichia coli, Klebsiella pneumonia, Bacillus subtilis and Staphyloccocus aureus) bacterial pathogens. In all the cases, Ag NPs from Sida cordifolia plant extract manifested noteworthy antibacterial effects on par with positive control i.e.; Gentamicin.
Collapse
Affiliation(s)
| | - Shameem Ummey
- Advanced Analytical Laboratory, Andhra University, Visakhapatnam, 530003, India; Department of Zoology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| | | | - S V N Pammi
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon, South Korea.
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon, South Korea.
| |
Collapse
|