1
|
Gaur SK, Jain J, Chaudhary Y, Kaul R. Insights into the mechanism of Morbillivirus induced immune suppression. Virology 2024; 600:110212. [PMID: 39232265 DOI: 10.1016/j.virol.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Viruses enter the host cell, and various strategies are employed to evade the host immune system. These include overcoming the various components of the immune system, including modulation of the physical and chemical barriers, non-specific innate response and specific adaptive immune response. Morbilliviruses impose immune modulation by utilizing various approaches including hindering antigen presentation to T-Helper (TH) cells, hematopoiesis and suppression of effector molecule activities. These viruses can also impede the early stages of T cell activation. Despite the availability of effective vaccines, morbilliviruses are still a significant threat to mankind. After infection, they also induce a state of immune suppression in the host. The molecular mechanisms employed by morbilliviruses to induce the state of immune suppression in the infected host are still being investigated. This review is an attempt to summarize insights into some of the strategies adopted by morbilliviruses to mediate immune modulation in the host.
Collapse
Affiliation(s)
- Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Juhi Jain
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
2
|
Zhang R, Hu Z, Wei D, Li R, Li Y, Zhang Z. Carboplatin restricts peste des petits ruminants virus replication by suppressing the STING-mediated autophagy. Front Vet Sci 2024; 11:1383927. [PMID: 38812563 PMCID: PMC11133560 DOI: 10.3389/fvets.2024.1383927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Crofts F, Al-Majali A, Gerring D, Gubbins S, Hicks H, Campbell D, Wilson S, Chesang L, Stuke K, Cordel C, Parida S, Batten C. Evaluation of a novel liquid stabilised peste des petits ruminants vaccine: Safety and immunogenic efficacy in sheep and goats in the field in Jordan. Vaccine X 2023; 15:100363. [PMID: 37583870 PMCID: PMC10423892 DOI: 10.1016/j.jvacx.2023.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
A novel liquid stabiliser was tested with the Nigeria 75/1 Peste des Petit Ruminants (PPR) vaccine over two field studies carried out in sheep and goats. PPR seronegative sheep and goats were selected from farms surrounding Amman, Jordan and were vaccinated with either a stabilised liquid PPR vaccine that had been formulated 3 months prior to use and stored at 2-8 °C or a reconstituted lyophilised PPRV vaccine reconstituted on the day of vaccination. Sera were taken immediately before vaccination and at approximately 1.5, 3 and 6 months following vaccination, then subsequently tested using IDVet ID Screen® PPR competition ELISA and Serum Neutralisation tests to determine the presence of PPRV anti-N antibodies and neutralising antibodies, respectively. It was observed that the liquid-stabilised vaccine was able to provide comparable antibody responses in both species to those induced by the lyophilized vaccine. The ability to store liquid stabilised PPRV vaccine for field use would positively impact PPRV eradication efforts.
Collapse
Affiliation(s)
- Fraser Crofts
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Ahmad Al-Majali
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
- Subregional Office for the Gulf Cooperation Council States and Yemen, Food and Agriculture Organization of the United Nations (FAO), Abu Dhabi 62072, United Arab Emirates
| | - David Gerring
- Arecor Therapeutics PLC, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Hayley Hicks
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Dana Campbell
- Dana Campbell Consultants Ltd, 15 Justice Park, Oxton, Lauderdale TD2 6NZ, United Kingdom
| | - Steve Wilson
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
- GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, United Kingdom
| | - Lizzie Chesang
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Kristin Stuke
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Claudia Cordel
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
4
|
Astuti PK, Bagi Z, Bodrogi L, Pintér T, Skoda G, Fajardo R, Kusza S. Hungarian indigenous Tsigai, a promising breed for excellent heat tolerance and immunity. Saudi J Biol Sci 2023; 30:103747. [PMID: 37601567 PMCID: PMC10432802 DOI: 10.1016/j.sjbs.2023.103747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023] Open
Abstract
The adverse effects of climate change on sheep farming have become more noticeable in recent decades. Extensive efforts have been made to untangle the complex relationship between heat tolerance, animal health, and productivity, also to identify a resilient and economically suitable breed for selection that can be resilient to future climate change conditions. Using quantitative real-time polymerase chain reaction (qRT-PCR), we observed the seasonal variations in the expression of several important genes related to heat stress and immunity (HSP70, IL10, TLR2, TLR4, and TLR8) in three of the most widely kept sheep breeds in Hungary: The indigenous Tsigai, Hungarian Merino, and White Dorper. We found that the seasonal stressor affected the relative gene expression of all genes in this study. Notably, The Hungarian indigenous Tsigai was the most robust breed adapted to the Hungarian continental (hot summer, cold winter) environment, with excellent thermotolerance and immunity. Furthermore, despite suffering from heat stress in the summer, Hungarian Merino maintained their robust immune system well throughout the year.
Collapse
Affiliation(s)
- Putri Kusuma Astuti
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen 4032, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen 4032, Hungary
| | - Lilla Bodrogi
- Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Tímea Pintér
- Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Gabriella Skoda
- Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Roland Fajardo
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen 4032, Hungary
- Department of Agriculture - Bureau of Animal Industry, 1100, Diliman, Quezon City, Philippines
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
5
|
Nabi Khan RI, Praharaj MR, Malla WA, Hosamani N, Saxena S, Mishra B, Rajak KK, Dhanavelu M, Tiwari AK, Sajjanar B, Gandham RK, Mishra B. Changes in m 6A RNA methylation of goat lung following PPRV infection. Heliyon 2023; 9:e19358. [PMID: 37681172 PMCID: PMC10480600 DOI: 10.1016/j.heliyon.2023.e19358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Peste des petits ruminants (PPR) is an acute, highly contagious viral disease of goats and sheep, caused by the Peste des petits ruminants virus (PPRV). Earlier studies suggest the involvement of diverse regulatory mechanisms in PPRV infection. Methylation at N6 of Adenosine called m6A is a type RNA modification that influences various physiological and pathological phenomena. As the lung tissue represents the primary target organ of PPRV, the present study explored the m6A changes and their functional significance in PPRV disease pathogenesis. m6A-seq analysis revealed 1289 m6A peaks to be significantly altered in PPRV infected lung in comparison to normal lung, out of which 975 m6A peaks were hypomethylated and 314 peaks were hypermethylated. Importantly, hypomethylated genes were enriched in Interleukin-4 and Interleukin-13 signaling and various processes associated with extracellular matrix organization. Further, of the 843 differentially m6A-containing cellular transcripts, 282 transcripts were also found to be differentially expressed. Functional analysis revealed that these 282 transcripts are significantly enriched in signaling by Interleukins, extracellular matrix organization, cytokine signaling in the immune system, signaling by receptor tyrosine kinases, and Toll-like Receptor Cascades. We also found m6A reader HNRNPC and the core component of methyltransferase complex METTL14 to be highly upregulated than the m6A readers - HNRNPA2B1 and YTHDF1 at the transcriptome level. These findings suggest that alteration in the m6A landscape following PPRV is implicated in diverse processes including Interleukin signaling.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- Center for Advanced Biotechnology and Medicine, Rutgers University, 08854-8021, New Jersey, USA
| | - Manas Ranjan Praharaj
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Neelima Hosamani
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Bina Mishra
- Division of Biological Products, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | | | - Ashok Kumar Tiwari
- ICAR – Central Avian Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - B.P. Mishra
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| |
Collapse
|
6
|
De la Rosa-Ramos MA, Arellano-Reynoso B, Hernández-Badillo E, Guerra-Infante FM, Mancilla-Herrera I, Chaki SP, Ficht TA, Suárez-Güemes F. Evaluation of the goat cellular immune response to rBtuB-Hia-FlgK peptides from Brucella melitensis. Comp Immunol Microbiol Infect Dis 2023; 94:101944. [PMID: 36638645 DOI: 10.1016/j.cimid.2023.101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Brucellosis is a zoonosis caused by Brucella; B. melitensis is the most prevalent species in goats and humans. Previously, three B. melitensis peptides, rBtuB-Hia-FlgK showed antigen-specific immune responses in rodent models. The goal of this study was to evaluate the goat Th1/Th2 immune response to B. melitensis peptides. Twenty-eight animals were separated into four groups and were immunized with the rBtuB-Hia-FlgK peptides cocktail, adjuvant, PBS and Rev-1 vaccine, respectively. Peripheral blood samples were collected on days 0, 15, and 80 post-inoculation. The CD4+ and CD8+ T cells proliferation, and cytokine production of the Th-1 (IL-2, IL-12, TNF-α, and IFN-γ) and Th-2 profiles (IL-4, IL-5, and IL-10) were evaluated. An increase of CD4+/CD8+ at 15 days post-vaccination was observed and continued until the 80th. In addition, the IFN-γ, TNF-α, and IL-2 mRNA expression were typically induced by the 15th day, but only IFN-γ levels were observed at day 80 post-immunization. Brucella pathogenesis is distinguished by the presence of a large amount of Th-1 cytokines. Although a reduced amount of IFN-γ in the culture supernatant was accurately detected compared with Rev-1 after 15 days, it could be influenced by the sampling schedule, as a higher cytokine production might be induced as early as the first-week post-vaccination. The results indicate that rBtuB-Hia-FlgK induced an immune response similar to the Rev-1 vaccine. The possible use of inert molecules with the unique ability to typically induce cellular response similar to attenuated vaccine represents an attractive option that should not be ruled out.
Collapse
Affiliation(s)
- Miguel A De la Rosa-Ramos
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - B Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Hernández-Badillo
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Fernando M Guerra-Infante
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPerIER), Ciudad de México 11000, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPerIER), Ciudad de México 11000, Mexico
| | - S P Chaki
- Texas A&M University, Veterinary Pathobiology, TAMUs 4467, College Station, TX 77843, USA
| | - T A Ficht
- Texas A&M University, Veterinary Pathobiology, TAMUs 4467, College Station, TX 77843, USA
| | - F Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
7
|
Nguyen HM, Gaikwad S, Oladejo M, Agrawal MY, Srivastava SK, Wood LM. Interferon stimulated gene 15 (ISG15) in cancer: An update. Cancer Lett 2023; 556:216080. [PMID: 36736853 DOI: 10.1016/j.canlet.2023.216080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Among the plethora of defense mechanisms which a host elicits after pathogen invasion, type 1 interferons play a central role in regulating the immune system's response. They induce several interferon-stimulated genes (ISGs) which play a diverse role once activated. Over the past few decades, there have been several studies exploring the role of ISGs in cancer and ISG15 is among the most studied for its pro and anti-tumorigenic role. In this review, we aim to provide an update on the recent observations and findings related to ISG15 in cancer. We provide a brief overview about the initial observations and important historical findings which helped scientists understand structure and function of ISG15. We aim to provide an overview of ISG15 in cancer with an emphasis on studies which delve into the molecular mechanism of ISG15 in modulating the tumor microenvironment. Further, the dysregulation of ISG15 in cancer and the molecular mechanisms associated with its pro and anti-tumor roles are discussed in respective cancer types. Finally, we discuss multiple therapeutic applications of ISG15 in current cancer therapy.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
8
|
Free ISG15 Inhibits the Replication of Peste des Petits Ruminants Virus by Breaking the Interaction of Nucleoprotein and Phosphoprotein. Microbiol Spectr 2022; 10:e0103122. [PMID: 36036587 PMCID: PMC9603952 DOI: 10.1128/spectrum.01031-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.
Collapse
|
9
|
Chen Y, Wang T, Yang Y, Fang Y, Zhao B, Zeng W, Lv D, Zhang L, Zhang Y, Xue Q, Chen X, Wang J, Qi X. Extracellular vesicles derived from PPRV-infected cells enhance signaling lymphocyte activation molecular (SLAM) receptor expression and facilitate virus infection. PLoS Pathog 2022; 18:e1010759. [PMID: 36084159 PMCID: PMC9491601 DOI: 10.1371/journal.ppat.1010759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV is lymphotropic in nature and SLAM was identified as the primary receptor for PPRV and other Morbilliviruses. Many viruses have been demonstrated to engage extracellular vesicles (EVs) to facilitate their replication and pathogenesis. Here, we provide evidence that PPRV infection significantly induced the secretion levels of EVs from goat PBMC, and that PPRV-H protein carried in EVs can enhance SLAM receptor expression in the recipient cells via suppressing miR-218, a negative miRNA directly targeting SLAM gene. Importantly, EVs-mediated increased SLAM expression enhances PPRV infectivity as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Moreover, our data reveal that PPRV associate EVs rapidly entry into the recipient cells mainly through macropinocytosis pathway and cooperated with caveolin- and clathrin-mediated endocytosis. Taken together, our findings identify a new strategy by PPRV to enhance virus infection and escape innate immunity by engaging EVs pathway. Peste des petitsruminants virus (PPRV) infection induces a transient but severe immunosuppression in the host, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research, the mechanism underlying pathogenesis of PPRV infection remains elusive. Our data provide the first direct evidence that the EVs derived from PPRV-infected cells are involved in PPRV replication. In this study, the EVs derived from PPRV-infected goat PBMCs can enhance SLAM expression in the recipient cells, and more importantly, EVs-mediated increased SLAM expression enhances PPRV replication as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Taken together, our research has provided new insight into understanding the effect of EVs on PPRV replication and pathogenesis, and revealed a potential therapeutic target for antiviral intervention.
Collapse
Affiliation(s)
- Yan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi’an, China
| | - Wei Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Leyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| |
Collapse
|
10
|
Tang J, Tang A, Du H, Jia N, Zhu J, Li C, Meng C, Liu G. Peste des Petits Ruminants Virus Exhibits Cell-Dependent Interferon Active Response. Front Cell Infect Microbiol 2022; 12:874936. [PMID: 35711660 PMCID: PMC9195304 DOI: 10.3389/fcimb.2022.874936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute and highly pathogenic infectious disease caused by peste des petits ruminants virus (PPRV), which can infect goats and sheep and poses a major threat to the small ruminants industry. The innate immune response plays an important role as a line of defense against the virus. The effect of PPRV on the active innate immune response has been described in several studies, with different conclusions. We infected three goat-derived cell lines with PPRV and tested their innate immune response. PPRV proliferated in caprine endometrial epithelial cells (EECs), caprine skin fibroblasts cells (GSFs), and goat fibroblast cells (GFs), and all cells expressed interferon (IFN) by poly (I: C) stimulation. PPRV infection stimulated expression of type I and type III IFN on EECs, and expression of the latter was significantly stronger, but IFN was not stimulated in fibroblasts (GSFs and GFs). Our results suggested that the effect of PPRV on IFN was cell-type specific. Nine IFN-stimulated genes (ISGs) were detected in EECs, but only ISG15 and RSAD2 were significantly upregulated. The effects of PPRV on IFN and IFN-induced ISGs were cell-type specific, which advances our understanding of the innate immune response induced by PPRV and creates new possibilities for the control of PPRV infection.
Collapse
|
11
|
Detection and immune cell response of natural maedi visna virus (MVV) infection in Indian sheep and goats. Microb Pathog 2022; 165:105467. [DOI: 10.1016/j.micpath.2022.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
12
|
Wani SA, Sahu AR, Khan RIN, Praharaj MR, Saxena S, Rajak KK, Muthuchelvan D, Sahoo A, Mishra B, Singh RK, Mishra BP, Gandham RK. Proteome Modulation in Peripheral Blood Mononuclear Cells of Peste des Petits Ruminants Vaccinated Goats and Sheep. Front Vet Sci 2021; 8:670968. [PMID: 34631844 PMCID: PMC8493254 DOI: 10.3389/fvets.2021.670968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
In the present study, healthy goats and sheep (n = 5) that were confirmed negative for peste des petits ruminants virus (PPRV) antibodies by monoclonal antibody-based competitive ELISA and by serum neutralization test and for PPRV antigen by s-ELISA were vaccinated with Sungri/96. A quantitative study was carried out to compare the proteome of peripheral blood mononuclear cells (PBMCs) of vaccinated goat and sheep [5 days post-vaccination (dpv) and 14 dpv] vs. unvaccinated (0 day) to divulge the alteration in protein expression following vaccination. A total of 232 and 915 proteins were differentially expressed at 5 and 14 dpv, respectively, in goats. Similarly, 167 and 207 proteins were differentially expressed at 5 and 14 dpv, respectively, in sheep. Network generated by Ingenuity Pathway Analysis was “infectious diseases, antimicrobial response, and inflammatory response,” which includes the highest number of focus molecules. The bio functions, cell-mediated immune response, and humoral immune response were highly enriched in goats at 5 dpv and at 14 dpv. At the molecular level, the immune response produced by the PPRV vaccine virus in goats is effectively coordinated and stronger than that in sheep, though the vaccine provides protection from virulent virus challenge in both. The altered expression of certain PBMC proteins especially ISG15 and IRF7 induces marked changes in cellular signaling pathways to coordinate host immune responses.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India.,College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, United States
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Systems Biology Lab, Department of Biotechnology -National Institute of Animal Biotechnology, Hyderabad, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Mukteswar, India
| | - Aditya Sahoo
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Bina Mishra
- Division of Biological Products, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - R K Singh
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India.,Systems Biology Lab, Department of Biotechnology -National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
13
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Gubbins S, Libeau G, Broglia A, Aznar I, Van der Stede Y. Assessment of the control measures of the category A diseases of Animal Health Law: peste des petits ruminants. EFSA J 2021; 19:e06708. [PMID: 34354766 PMCID: PMC8323035 DOI: 10.2903/j.efsa.2021.6708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for peste des petits ruminants (PPR). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radii of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, except for the first affected establishments detected, where 33 days is recommended. It was concluded that beyond the protection (3 km) and the surveillance zones (10 km) only 9.6% (95% CI: 3.1-25.8%) and 2.3% (95% CI: 1-5.5%) of the infections from an affected establishment may occur, respectively. This may be considered sufficient to contain the disease spread (95% probability of containing transmission corresponds to 5.3 km). Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad-hoc requests in relation to PPR.
Collapse
|
14
|
Zhang D, Yang B, Zhang T, Shi X, Shen C, Zheng H, Liu X, Zhang K. In vitro and in vivo analyses of co-infections with peste des petits ruminants and capripox vaccine strains. Virol J 2021; 18:69. [PMID: 33827620 PMCID: PMC8025577 DOI: 10.1186/s12985-021-01539-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) and goat pox (GTP) are two devastating animal epidemic diseases that affect small ruminants. Vaccination is one of the most important measures to prevent and control these two severe infectious diseases. METHODS In this study, we vaccinated sheep with PPR and POX vaccines to compare the changes in the antibody levels between animals vaccinated with PPRV and POX vaccines alone and those co-infected with both vaccines simultaneously. The cell infection model was used to explore the interference mechanism between the vaccines in vitro. The antibody levels were detected with the commercial ELISA kit. The Real-time Quantitative PCR fluorescent quantitative PCR method was employed to detect the viral load changes and cytokines expression after the infection. RESULTS The concurrent immunization of GTP and PPR vaccine enhanced the PPR vaccine's immune effect but inhibited the immune effect of the GTP vaccine. After the infection, GTP and PPR vaccine strains caused cytopathic effect; co-infection with GTP and PPR vaccine strains inhibited the replication of PPR vaccine strains; co-infection with GTP and PPR vaccine strains enhanced the replication of GTP vaccine strains. Moreover, virus mixed infection enhanced the mRNA expressions of TNF-α, IL-1β, IL-6, IL-10, IFN-α, and IFN-β by 2-170 times. GTP vaccine strains infection alone can enhanced the mRNA expression of IL-1β, TNF-α, IL-6, IL-10, while the expression of IFN-α mRNA is inhibited. PPR vaccine strains alone can enhanced the mRNA expression of IFN-α, IFN-β, TNF-α, and has little effect the mRNA expression of IL-1β, IL-6 and IL-10. The results showed that GTP and PPR vaccine used simultaneously in sheep enhanced the PPR vaccine's immune effect but inhibited the immune effect of the GTP vaccine in vivo. Furthermore, an infection of GTP and PPR vaccine strains caused significant cell lesions in vitro; co-infection with GTP + PPR vaccine strains inhibited the replication of PPR vaccine strains, while the co-infection of GTP followed by PPR infection enhanced the replication of GTP vaccine strains. Moreover, virus infection enhanced the expressions of TNF-α, IL-1β, IL-6, IL-10, IFN-α, and IFN-β. CONCLUSIONS Peste des petits ruminants and capripox vaccine strains interfere with each other in vivo and vitro.
Collapse
Affiliation(s)
- Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Immune response is a highly coordinated cascade involving all the subsets of peripheral blood mononuclear cells (PBMCs). In this study, RNA sequencing (RNA-Seq) analysis of PBMC subsets was done to delineate the systems biology behind immune protection of the vaccine in sheep and goats. The PBMC subsets studied were CD4+, CD8+, CD14+, CD21+, and CD335+ cells from day 0 and day 5 of sheep and goats vaccinated with Sungri/96 peste des petits ruminants virus. Assessment of the immune response processes enriched by the differentially expressed genes (DEGs) in all the subsets suggested a strong dysregulation toward the development of early inflammatory microenvironment, which is very much required for differentiation of monocytes to macrophages, and activation as well as the migration of dendritic cells into the draining lymph nodes. The protein-protein interaction networks among the antiviral molecules (IFIT3, ISG15, MX1, MX2, RSAD2, ISG20, IFIT5, and IFIT1) and common DEGs across PBMC subsets in both species identified ISG15 to be a ubiquitous hub that helps in orchestrating antiviral host response against peste des petits ruminants virus (PPRV). IRF7 was found to be the key master regulator activated in most of the subsets in sheep and goats. Most of the pathways were found to be inactivated in B lymphocytes of both the species, indicating that 5 days postvaccination (dpv) is too early a time point for the B lymphocytes to react. The cell-mediated immune response and humoral immune response pathways were found more enriched in goats than in sheep. Although animals from both species survived the challenge, a contrast in pathway activation was observed in CD335+ cells. IMPORTANCE Peste des petits ruminants (PPR) by PPR virus (PPRV) is an World Organisation for Animal Health (OIE)-listed acute, contagious transboundary viral disease of small ruminants. The attenuated Sungri/96 PPRV vaccine used all over India against this PPR provides long-lasting robust innate and adaptive immune response. The early antiviral response was found mediated through type I interferon-independent interferon-stimulated gene (ISG) expression. However, systems biology behind this immune response is unknown. In this study, in vivo transcriptome profiling of PBMC subsets (CD4+, CD8+, CD14+, CD21+, and CD335+) in vaccinated goats and sheep (at 5 days postvaccination) was done to understand this systems biology. Though there are a few differences in the systems biology across cells (specially the NK cells) between sheep and goats, the coordinated response that is inclusive of all the cell subsets was found to be toward the induction of a strong innate immune response, which is needed for an appropriate adaptive immune response.
Collapse
|
16
|
PPRV-induced novel miR-3 contributes to inhibit type I IFN production by targeting IRAK1. J Virol 2021; 95:JVI.02045-20. [PMID: 33504605 PMCID: PMC8103702 DOI: 10.1128/jvi.02045-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV has evolved several mechanisms to evade IFN-I responses. We report that a novel microRNA in goat PBMCs, novel miR-3, was upregulated by PPRV to facilitate virus infection. Furthermore, PPRV V protein alone was sufficient to induce novel miR-3 expression, and NF-κB and p38 pathway may involved in the induction of novel miR-3 during PPRV infection. Importantly, we demonstrated that novel miR-3 was a potent negative regulator of IFN-α production by targeting IRAK1, which resulted in the enhancement of PPRV infection. In addition, we found that PPRV infection can activated ISGs through IFN independent and IRF3 dependent pathway. Moreover, our data revealed that novel miR-3 mediated regulation of IFN-α production may involve in the differential susceptibility between goat and sheep to PPRV. Taken together, our findings identified a new strategy taken by PPRV to escape IFN-I-mediated antiviral immune responses by engaging cellular microRNA and, thus, improve our understanding of its pathogenesis.IMPORTANCE: Peste des petits ruminants virus (PPRV) induce in the hosts a transient but severe immunosuppression, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research has been explored, the mechanism underlying PPRV immune system evasion remains elusive. Our data provided the first direct evidence that novel microRNA-3 (novel miR-3) feedback inhibits type I IFN signaling when goat PBMCs are infected with PPRV vaccine strain N75/1, thus promoting the infection. In this study, the target of novel miR-3, IRAK1, which are important for PPRV-induced type I IFN production, have also been found. Moreover, we identified NF-κB and p38 pathways may involve in novel miR-3 induction in response to PPRV infection. Taken together, our research has provided new insight into understanding the effects of miRNA on host-virus interactions, and revealed a potential therapeutic target for antiviral intervention.
Collapse
|
17
|
Jelsma T, Wijnker JJ, van der Poel WHM, Wisselink HJ. Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: a Systematic Review and Meta-Analysis. Pathogens 2021; 10:pathogens10020173. [PMID: 33557372 PMCID: PMC7915499 DOI: 10.3390/pathogens10020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 01/26/2023] Open
Abstract
Animal intestines are the source of edible sausage casings, which are traded worldwide and may come from areas where notifiable infectious animal diseases are prevalent. To estimate the risks of virus contamination, knowledge about the quantity of virus and decimal reduction values of the standard preservation method by salting is of great importance. A literature search, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed in search engine CAB Abstracts to determine the viral load of 14 relevant animal viruses in natural casings or intestines. Only a very limited number of scientific publications per virus were found and viral loads in the intestines varied from high for ASFV (five publications), BVDV (3), CSFV (6), PPRV (3), RPV (2) and TGEV (3) to moderate for PEDV (2) and SVDV (3), low for HEV (2) and FMDV (5), very low for VESV (1) and negative for PrV (2) and VSV (1). PRRSV was found in intestines, however, viral titers were not published. Three viruses (BVDV, CSFV and PPRV) with high viral loads were selected to search for their inactivation kinetics. For casings, no inactivation data were found, however, thermal inactivation data of these viruses were available, but differed in quantity, quality and matrices. In conclusion, important data gaps still exist when it comes to the quantitative inactivation of viruses in sausage casings or livestock intestines.
Collapse
Affiliation(s)
- Tinka Jelsma
- Department of Virology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
- Correspondence:
| | - Joris J. Wijnker
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands;
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| | - Henk J. Wisselink
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| |
Collapse
|
18
|
Antiviral responses of ATG13 to the infection of peste des petits ruminants virus through activation of interferon response. Gene 2020; 754:144858. [PMID: 32531455 DOI: 10.1016/j.gene.2020.144858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Not only are autophagy-related (ATG) proteins the essential orchestrators of the autophagy machinery, but also they regulate many other cellular pathways. Here, we demonstrated that ATG13 exerted an obviously antiviral activity against the infection of peste des petits ruminants virus (PPRV) in cell culture model. We found that PPRV infection or the treatment with interferon (IFN) against PPRV infection significantly induced ATG13 expression. Mechanistically, ATG13 stimulated interferon expression and the subsequent activation of the JAK-STAT cascade. These activations triggered the transcription of interferon-stimulated genes (ISGs) to exert antiviral activity. Conversely, the loss of ATG13 significantly attenuated the potency of RIG-IN in activating IFN responses. In summary, we have demonstrated that basal ATG13 was involved in host antiviral activities against PPRV infection and the over-expression of ATG13 activated IFN production to inhibit PPRV replication in an unconventional fashion.
Collapse
|
19
|
Kamel M, El-Sayed A. Toward peste des petits virus (PPRV) eradication: Diagnostic approaches, novel vaccines, and control strategies. Virus Res 2019; 274:197774. [PMID: 31606355 DOI: 10.1016/j.virusres.2019.197774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease affecting domestic and wild small ruminants' species besides camels reared in Africa, Asia and the Middle East. The virus is a serious paramount challenge to the sustainable agriculture advancement in the developing world. The disease outbreak was also detected for the first time in the European Union namely in Bulgaria at 2018. Therefore, the disease has lately been aimed for eradication with the purpose of worldwide clearance by 2030. Radically, the vaccines needed for effectively accomplishing this aim are presently convenient; however, the availableness of innovative modern vaccines to fulfill the desideratum for Differentiating between Infected and Vaccinated Animals (DIVA) may mitigate time spent and financial disbursement of serological monitoring and surveillance in the advanced levels for any disease obliteration campaign. We here highlight what is at the present time well-known about the virus and the different available diagnostic tools. Further, we interject on current updates and insights on several novel vaccines and on the possible current and prospective strategies to be applied for disease control.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Yan F, Banadyga L, Zhao Y, Zhao Z, Schiffman Z, Huang P, Li E, Wang C, Gao Y, Feng N, Wang T, Wang H, Xia X, Wang C, Yang S, Qiu X. Peste des Petits Ruminants Virus-Like Particles Induce a Potent Humoral and Cellular Immune Response in Goats. Viruses 2019; 11:v11100918. [PMID: 31590353 PMCID: PMC6833106 DOI: 10.3390/v11100918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Peste des petits ruminants is a highly contagious acute or subacute disease of small ruminants caused by the peste des petits ruminants virus (PPRV), and it is responsible for significant economic losses in animal husbandry. Vaccination represents the most effective means of controlling this disease, with virus-like particle (VLP) vaccines offering promising vaccine candidates. In this study, a PPRV VLP-based vaccine was developed using a baculovirus expression system, allowing for the simultaneous expression of the PPRV matrix (M), hemagglutinin (H), fusion (F) and nucleocapsid (N) proteins in insect cells. Immunization of mice and goats with PPRV VLPs elicited a robust neutralization response and a potent cellular immune response. Mouse studies demonstrated that VLPs induced a more robust IFN-γ response in CD4+ and CD8+ T cells than PPRV Nigeria 75/1 and recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. In addition, PPRV VLPs induced a strong Th1 class response in mice, as indicated by a high IgG2a to IgG1 ratio. Goat studies demonstrated that PPRV VLPs can induce the production of antibodies specific for F and H proteins and can also stimulate the production of virus neutralizing antibodies to the same magnitude as the PPRV Nigeria 75/1 vaccine. Higher amounts of IFN-γ in VLP-immunized animal serum suggested that VLPs also elicited a cellular immune response in goats. These results demonstrated that VLPs elicit a potent immune response against PPRV infection in small ruminants, making PPRV VLPs a potential candidate for PPRV vaccine development.
Collapse
Affiliation(s)
- Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Ziqi Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Cuiling Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- Xinxiang medical university, Xinxiang 453003, Henan, China.
| | - Yuwei Gao
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou 510642, Guangdong, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Chang Q, Guo F, Liu J, Zhang D, Feng Y, Ma XX, Shang Y. Basal interferon signaling and therapeutic use of interferons in controlling peste des petits ruminants virus infection. INFECTION GENETICS AND EVOLUTION 2019; 75:103981. [PMID: 31369863 DOI: 10.1016/j.meegid.2019.103981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus which causes severe disease in ruminants. Since interferons (IFNs) serve as the important defense line against viral infection, we have investigated the roles of types I and III IFNs in PPRV infection in vitro. Upon PPRV infection, IFN-λ3 was strongly induced, while IFN-β and IFN-λ2 were moderately induced at transcriptional level in human embryonic kidney 293 T (HEK293T) cells. Although the transcription of type I and III IFNs were triggered, the production of functional IFN products was not detected. Importantly, the replication of PPRV was strongly inhibited in HEK293T cells treated by the exogenous IFNs (IFN-α-2b, IFN-β and IFN-λ3). Consistently, these IFNs significantly activate a panel of IFN-stimulated genes (ISGs). The inhibition of JAK-STAT pathway by JAK I inhibitor can abrogate the anti-PPRV activity of IFNs. Thus, our study shall contribute to better understanding of the complex PPRV-host interactions and provide rationale for therapeutic development of IFN-based treatment against PPRV infection.
Collapse
Affiliation(s)
- Qiuyan Chang
- Center for Biomedical Research, Northwest Minzu University, Gansu 730030, PR China
| | - Fucheng Guo
- Center for Biomedical Research, Northwest Minzu University, Gansu 730030, PR China
| | - Junlin Liu
- Center for Biomedical Research, Northwest Minzu University, Gansu 730030, PR China
| | - Derong Zhang
- Center for Biomedical Research, Northwest Minzu University, Gansu 730030, PR China
| | - Yuping Feng
- Center for Biomedical Research, Northwest Minzu University, Gansu 730030, PR China
| | - Xiao-Xia Ma
- Center for Biomedical Research, Northwest Minzu University, Gansu 730030, PR China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| |
Collapse
|
22
|
Wani SA, Sahu AR, Khan RIN, Pandey A, Saxena S, Hosamani N, Malla WA, Chaudhary D, Kanchan S, Sah V, Rajak KK, Muthuchelvan D, Mishra B, Tiwari AK, Sahoo AP, Sajjanar B, Singh YP, Gandham RK, Mishra BP, Singh RK. Contrasting Gene Expression Profiles of Monocytes and Lymphocytes From Peste-Des-Petits-Ruminants Virus Infected Goats. Front Immunol 2019; 10:1463. [PMID: 31333643 PMCID: PMC6624447 DOI: 10.3389/fimmu.2019.01463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, transcriptome analysis of PPRV infected PBMC subsets-T helper cells, T cytotoxic cells, monocytes, and B lymphocytes was done to delineate their role in host response. PPRV was found to infect lymphocytes and not monocytes. The established receptor for PPRV-SLAM was found downregulated in lymphocytes and non-differentially expressed in monocytes. A profound deviation in the global gene expression profile with a large number of unique upregulated genes (851) and downregulated genes (605) was observed in monocytes in comparison to lymphocytes. ISGs-ISG15, Mx1, Mx2, RSAD2, IFIT3, and IFIT5 that play a role in antiviral response and the genes for viral sensors-MDA5, LGP2, and RIG1, were found to be upregulated in lymphocytes and downregulated in monocytes. The transcription factors-IRF-7 and STAT-1 that regulate expression of most of the ISGs were found activated in lymphocytes and not in monocytes. Interferon signaling pathway and RIG1 like receptor signaling pathway were found activated in lymphocytes and not in monocytes. This contrast in gene expression profiles and signaling pathways indicated the predominant role of lymphocytes in generating the antiviral response against PPRV in goats, thus, giving us new insights into host response to PPRV.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, United States
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Neelima Hosamani
- Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Dheeraj Chaudhary
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Sonam Kanchan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Vaishali Sah
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - D Muthuchelvan
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Aditya P Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Yash Pal Singh
- ARIS Cell, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
23
|
Jia L, Zhang R. Comprehensive Bioinformatics Analysis of the Immune Mechanism of Dendritic Cells Against Measles Virus. Med Sci Monit 2019; 25:903-912. [PMID: 30705250 PMCID: PMC6367888 DOI: 10.12659/msm.912949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The purpose of this study was to explore the immune mechanism of dendritic cells (DCs) against measles virus (MV), and to identify potential biomarkers to improve measles prevention and treatment. Material/Methods The gene expression profile of GSE980, which comprised 10 DC samples from human blood infected with MV (RNA was isolated at 3, 6, 12, and 24 h post-infection) and 4 normal DC control samples, was obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the MV-infected DC samples and the control samples were screened using Genevestigator software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed using GenCLip 2.0 and STRING 10.5 software. The protein–protein interaction (PPI) network was established using Cytoscape 3.4.0. Results The gene expression profiles of MV-infected DCs were obviously changed. Twenty-six common DEGs (0.9%, MV-infected DCs vs. normal DCs) were identified at 4 different time points, including 14 down-regulated and 12 up-regulated genes (P=0.001). GO analysis showed that DEGs were significantly enriched in defense response to virus, type I interferon signaling pathway, et al. ISG15 and CXCL10 were the key genes in the PPI network of the DEGs, and may interact directly with the type I interferon signaling and defense response to virus signaling. Conclusions The DEGs increased gradually with the duration of MV infection. The type I interferon signaling pathway and the defense response to viral processes can be activated against MV by ISG15 and CXCL10 in DCs. These may provide novel targets for the treatment of MV.
Collapse
Affiliation(s)
- Lili Jia
- College of Humanities and Management, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Rongqiang Zhang
- College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| |
Collapse
|
24
|
Khanduri A, Sahu AR, Wani SA, Khan RIN, Pandey A, Saxena S, Malla WA, Mondal P, Rajak KK, Muthuchelvan D, Mishra B, Sahoo AP, Singh YP, Singh RK, Gandham RK, Mishra BP. Dysregulated miRNAome and Proteome of PPRV Infected Goat PBMCs Reveal a Coordinated Immune Response. Front Immunol 2018; 9:2631. [PMID: 30524425 PMCID: PMC6262310 DOI: 10.3389/fimmu.2018.02631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, the miRNAome and proteome of virulent Peste des petits ruminants virus (PPRV) infected goat peripheral blood mononuclear cells (PBMCs) were analyzed. The identified differentially expressed miRNAs (DEmiRNAs) were found to govern genes that modulate immune response based on the proteome data. The top 10 significantly enriched immune response processes were found to be governed by 98 genes. The top 10 DEmiRNAs governing these 98 genes were identified based on the number of genes governed by them. Out of these 10 DEmiRNAs, 7 were upregulated, and 3 were downregulated. These include miR-664, miR-2311, miR-2897, miR-484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and miR-30. miR-664 and miR-484 with proviral and antiviral activities, respectively, were upregulated in PPRV infected PBMCs. miR-210 that inhibits apoptosis was downregulated. miR-21-5p that decreases the sensitivity of cells to the antiviral activity of IFNs and miR-30b that inhibits antigen processing and presentation by primary macrophages were downregulated, indicative of a strong host response to PPRV infection. miR-21-5p was found to be inhibited on IPA upstream regulatory analysis of RNA-sequencing data. This miRNA that was also highly downregulated and was found to govern 16 immune response genes in the proteome data was selected for functional validation vis-a-vis TGFBR2 (TGF-beta receptor type-2). TGFBR2 that regulates cell differentiation and is involved in several immune response pathways was found to be governed by most of the identified immune modulating DEmiRNAs. The decreased luciferase activity in Dual Luciferase Reporter Assay indicated specific binding of miR-21-5p and miR-484 to their target thus establishing specific binding of the miRNAs to their targets.This is the first report on the miRNAome and proteome of virulent PPRV infected goat PBMCs.
Collapse
Affiliation(s)
- Alok Khanduri
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,The Ohio State University, Columbus, Ohio, OH, United States
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Piyali Mondal
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - D Muthuchelvan
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aditya P Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Yash Pal Singh
- ARIS Cell, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
25
|
Selection and validation of suitable reference genes for qPCR gene expression analysis in goats and sheep under Peste des petits ruminants virus (PPRV), lineage IV infection. Sci Rep 2018; 8:15969. [PMID: 30374051 PMCID: PMC6206032 DOI: 10.1038/s41598-018-34236-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/26/2018] [Indexed: 01/28/2023] Open
Abstract
Identification of suitable candidate reference genes is an important prerequisite for validating the gene expression data obtained from downstream analysis of RNA sequencing using quantitative real time PCR (qRT-PCR). Though existence of a universal reference gene is myth, commonly used reference genes can be assessed for expression stability to confer their suitability to be used as candidate reference genes in gene expression studies. In this study, we evaluated the expression stability of ten most commonly used reference genes (GAPDH, ACTB, HSP90, HMBS, 18S rRNA, B2M, POLR2A, HPRT1, ACAC, YWHAZ) in fourteen different Peste des petits ruminants virus (PPRV) infected tissues of goats and sheep. RefFinder and RankAggreg software were used to deduce comprehensive ranking of reference genes. Our results suggested HMBS and B2M in goats and HMBS and HPRT1 in sheep can be used as suitable endogenous controls in gene expression studies of PPRV infection irrespective of tissues and condition as a whole, thus eliminating the use of tissue specific/ condition specific endogenous controls. We report for the first time suitable reference genes for gene expression studies in PPRV infected tissues. The reference genes determined here can be useful for future studies on gene expression in sheep and goat infected with PPRV, thus saving extra efforts and time of repeating the reference gene determination and validation.
Collapse
|