1
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
2
|
Ferreira AL, Ghanim M, Xu Y, Pinheiro PV. Interactions between Common Bean Viruses and Their Whitefly Vector. Viruses 2024; 16:1567. [PMID: 39459901 PMCID: PMC11512337 DOI: 10.3390/v16101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although there is a lot of information about some of these viruses, most of what we know has been developed using model systems, such as tomato plants and tomato yellow leaf curl virus (TYLCV). There is still very little information on the most relevant common bean viruses, such as bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), bean dwarf mosaic virus (BDMV), cowpea mild mottle virus (CPMMV), and bean yellow disorder virus (BnYDV). In this review, we discuss the available data in the most up-to-date literature and suggest future research avenues to contribute to the development of management tools for preventing or reducing the damage caused by viruses in this important crop.
Collapse
Affiliation(s)
- Amanda L. Ferreira
- Institute of Tropical Pathology and Public Health (IPTSP), Universidade Federal de Goiás (UFG), Goiânia 74605-050, GO, Brazil;
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
3
|
Chen N, Zou C, Pan LL, Du H, Yang JJ, Liu SS, Wang XW. Cotton leaf curl Multan virus subverts the processing of hydroxyproline-rich systemin to suppress tobacco defenses against insect vectors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5819-5838. [PMID: 38829390 DOI: 10.1093/jxb/erae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and βC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB βC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB βC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Chi Zou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
- Zhenhai Agricultural Technology Extension Station, 569 Minhe Road, Ningbo 310000, China
| | - Li-Long Pan
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Hui Du
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jing-Jing Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
4
|
Shahid MS, Paredes-Montero JR, Ashfaq M, Al-Sadi AM, Brown JK. Native and Non-Native Bemisia tabaci NAFME Haplotypes Can Be Implicated in Dispersal of Endemic and Introduced Begomoviruses in Oman. INSECTS 2023; 14:268. [PMID: 36975953 PMCID: PMC10056824 DOI: 10.3390/insects14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Irrigated agriculture and global trade expansion have facilitated diversification and spread of begomoviruses (Geminiviridae), transmitted by the Bemisia tabaci (Gennadius) cryptic species. Oman is situated on major crossroads between Africa and South Asia, where endemic/native and introduced/exotic begomoviruses occur in agroecosystems. The B. tabaci 'B mitotype' belongs to the North Africa-Middle East (NAFME) cryptic species, comprising at least eight endemic haplotypes, of which haplotypes 6 and/or 8 are recognized invasives. Prevalence and associations among native and exotic begomoviruses and NAFME haplotypes in Oman were investigated. Nine begomoviral species were identified from B. tabaci infesting crop or wild plant species, with 67% and 33% representing native and exotic species, respectively. Haplotypes 2, 3, and 5 represented 31%, 3%, and 66% of the B. tabaci population, respectively. Logistic regression and correspondence analyses predicted 'strong'- and 'close' virus-vector associations involving haplotypes 5 and 2 and the exotic chili leaf curl virus (ChiLCV) and endemic tomato yellow leaf curl virus-OM, respectively. Patterns favor a hypothesis of relaxed virus-vector specificity between an endemic haplotype and the introduced ChiLCV, whereas the endemic co-evolved TYLCV-OM and haplotype 2 virus-vector relationship was reinforced. Thus, in Oman, at least one native haplotype can facilitate the spread of endemic and introduced begomoviruses.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jorge R. Paredes-Montero
- Department of Biology, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil 090605, Ecuador
| | - Muhammad Ashfaq
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil EJ, Jahan SMH, Lee KY, Tsai CW, Dao HT, Hoat TX, Aye TT, Win NK, Lee J, Kim SM, Lee S. Emergence of Asian endemic begomoviruses as a pandemic threat. FRONTIERS IN PLANT SCIENCE 2022; 13:970941. [PMID: 36247535 PMCID: PMC9554542 DOI: 10.3389/fpls.2022.970941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.
Collapse
Affiliation(s)
- Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | | | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Hang Thi Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | - Jangha Lee
- Crop Breeding Research Center, NongWoo Bio, Yeoju, South Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
6
|
Lopez-Lopez K, Corredor-Rodríguez A, Correa-Forero AM, Álvarez-Rubiano LP, Suarez- Rodríguez A, Vaca-Vaca JC. DETECCIÓN MOLECULAR DE BEGOMOVIRUS AISLADOS DE ARVENSES ASOCIADAS AL CULTIVO DE AJÍ (Capsicum spp.) EN EL VALLE DEL CAUCA, COLOMBIA. ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n3.89802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los virus Potato yellow mosaic virus (PYMV/Co), Passionfruit leaf distortion virus (PLDV), Pepper rugose mosaic virus (PRMV) y Rhynchosia golden mosaic Colombia virus (RhGMCV) son begomovirus de interés agrícola, aislados y caracterizados molecularmente en el Valle del Cauca. Sin embargo, en la actualidad no hay suficiente información sobre sus hospederos alternos. Dado que las arvenses cumplen un papel importante en la ecología y epidemiología viral, este estudio tuvo como objetivo detectar la presencia de estos begomovirus en arvenses asociadas al cultivo de ají en el Valle del Cauca, Colombia. Se recolectaron 121 plantas arvenses en zonas productoras de ají, localizadas en 7 municipios del Valle del Cauca, las cuales fueron identificadas a nivel taxonómico. A partir del ADN genómico purificado de estas plantas se evaluó la presencia de virus por PCR, usando cebadores universales para el género Begomovirus y específicos para PYMV/Co, PLDV, PRMV y RhGMCV. Se detectaron begomovirus en 15 de las especies de arvenses evaluadas. Esta es la primera vez que las especies Ipomoea tiliacea, Melothria pendula, Caperonia palustris, Desmodium tortuosum, Desmodium intortum, Ammannia coccinea, Panicum polygonatum, Capsicum rhomboideum, Eclipta prostrata y Synedrella nodiflora se reportan como hospederas de begomovirus en Colombia. Se detectaron los begomovirus RhGMCV, PYMV/Co, PRMV y PLDV en infecciones simples y mixtas. Estos resultados aportan nuevos datos sobre los hospederos alternos de begomovirus. Esta información servirá para implementar un plan de manejo integrado de enfermedades virales con el potencial para afectar negativamente el rendimiento del cultivo de ají, y otros cultivos en Colombia.
Collapse
|
7
|
Uke A, Tokunaga H, Utsumi Y, Vu NA, Nhan PT, Srean P, Hy NH, Ham LH, Lopez-Lavalle LAB, Ishitani M, Hung N, Tuan LN, Van Hong N, Huy NQ, Hoat TX, Takasu K, Seki M, Ugaki M. Cassava mosaic disease and its management in Southeast Asia. PLANT MOLECULAR BIOLOGY 2022; 109:301-311. [PMID: 34240309 PMCID: PMC9162994 DOI: 10.1007/s11103-021-01168-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/21/2021] [Indexed: 05/09/2023]
Abstract
Key message Status of the current outbreak of cassava mosaic disease (CMD) in Southeast Asia was reviewed. Healthy cassava seed production and dissemination systems have been established in Vietnam and Cambodia, along with integrated disease and pest management systems, to combat the outbreak. Abstract Cassava (Manihot esculenta Crantz) is one of the most important edible crops in tropical and subtropical regions. Recently, invasive insect pests and diseases have resulted in serious losses to cassava in Southeast Asia. In this review we discuss the current outbreak of cassava mosaic disease (CMD) caused by the Sri Lankan cassava mosaic virus (SLCMV) in Southeast Asia, and summarize similarities between SLCMV and other cassava mosaic begomoviruses. A SATREPS (Science and Technology Research Partnership for Sustainable Development) project “Development and dissemination of sustainable production systems based on invasive pest management of cassava in Vietnam, Cambodia and Thailand”, was launched in 2016, which has been funded by The Japan International Cooperation Agency (JICA) and The Japan Science and Technology Agency (JST), Japan. The objectives of SATREPS were to establish healthy seed production and dissemination systems for cassava in south Vietnam and Cambodia, and to develop management systems for plant diseases and insect pests of cassava. To achieve these goals, model systems of healthy seed production in Vietnam and Cambodia have been developed incorporating CMD-resistant planting materials through international networks with The International Center for Tropical Agriculture (CIAT) and The International Institute of Tropical Agriculture (IITA). Supplementary Information The online version contains supplementary material available at 10.1007/s11103-021-01168-2.
Collapse
Affiliation(s)
- Ayaka Uke
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| | - Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Yoshinori Utsumi
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Nguyen Anh Vu
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Pham Thi Nhan
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Pao Srean
- University of Battambang (UBB), Battambang, Cambodia
| | - Nguyen Huu Hy
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Le Huy Ham
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Manabu Ishitani
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nguyen Hung
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Ngoc Tuan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Van Hong
- Sub-Department of Plantation and Plant Protection of Tay Ninh Province, Hanoi, Vietnam
| | - Ngo Quang Huy
- Plant Protection Research Institute (PPRI), Hanoi, Vietnam
| | | | - Keiji Takasu
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
| | - Masashi Ugaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| |
Collapse
|
8
|
Paradza VM, Khamis FM, Yusuf AA, Subramanian S, Akutse KS. Virulence and horizontal transmission of Metarhizium anisopliae by the adults of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and the efficacy of oil formulations against its nymphs. Heliyon 2021; 7:e08277. [PMID: 34765790 PMCID: PMC8571502 DOI: 10.1016/j.heliyon.2021.e08277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The pathogenicity of dry conidia and fungal suspensions of 16 entomopathogenic fungal isolates (10 Metarhizium anisopliae and six Beauveria bassiana) was evaluated against adults and second instar nymphs of the greenhouse whitefly, Trialeurodes vaporariorum respectively. All the tested isolates were pathogenic to T. vaporariorum and caused mortality of 45-93% against the adults and 24-89% against the nymphs. However, M. anisopliae strains showed higher virulence to both developmental stages as compared to B. bassiana strains. The three most virulent isolates that caused high mortalities in adults were M. anisopliae ICIPE 18, ICIPE 62 and ICIPE 69, with cumulative mortalities of 82, 91 and 93%, and median lethal times (LT50) of 5.20, 5.05 and 4.78 days, respectively. These isolates were further assessed for spore acquisition and retention by the adult insects at 0, 24, 48 and 72 h after exposure to dry conidia spores. There was no significant difference among isolates on their acquisition by the insects, although the effect of time on the number of spores retained by each insect was significant. For M. anisopliae ICIPE 62 and ICIPE 69, spore number was significantly higher immediately after exposure at 0 h than at 24, 48 and 72 h, whereas for M. anisopliae ICIPE 18, the spore number remained constant for all the days. The infected "donor" insects were able to horizontally transmit the acquired spores to uninfected "recipient" insects causing high mortality rates in both donor and recipient groups. Metarhizium anisopliae ICIPE 7, ICIPE 18 and ICIPE 62 were the most virulent isolates against the nymphs in aqueous formulation during the first screening with >80% mortality. However, in 2% (v/v) oil formulations at 1 × 108 conidia/ml, canola formulated ICIPE 62, ICIPE 18 and olive formulated ICIPE 18 were the most effective, resulting in 87.8, 88.1 and 99.4% nymphal mortalities respectively and with lower LT50. Oil formulations significantly enhanced the efficacy and virulence of the isolates against the nymphs compared to aqueous formulations.
Collapse
Affiliation(s)
- Vongai M. Paradza
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 2021; 159:105122. [PMID: 34352375 DOI: 10.1016/j.micpath.2021.105122] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Global food security is threatened by insect pests of economically important crops. Chemical pesticides have been used frequently for the last few decades to manage insect pests throughout the world. However, these chemicals are hazardous for human health as well as the ecosystem. In addition, several pests have evolved resistance to many chemicals. Finding environment friendly alternatives lead the researchers to introduce biocontrol agents such as entomopathogenic fungi (EPF). These fungi include various genera that can infect and kill insects efficiently. Moreover, EPFs have considerable host specificity with a mild effect on non-target organisms and can be produced in bulk quantity quickly. However, insights into the biology of EPF and mechanism of action are of prime significance for their efficient utilization as a biocontrol agent. This review focuses on EPF-mediated insect management by explaining particular EPF strains and their general mode of action. We have comprehensively discussed which criteria should be used for the selection of pertinent EPF, and which aspects can impact the EPF efficiency. Finally, we have outlined various advantages of EPF and their limitations. The article summarizes the prospects related to EPF utilization as biocontrol agents. We hope that future strategies for the management of insects will be safer for our planet.
Collapse
|
10
|
Avalos-Calleros JA, Pastor-Palacios G, Bolaños-Martínez OC, Mauricio-Castillo A, Gregorio-Jorge J, Martínez-Marrero N, Bañuelos-Hernández B, Méndez-Lozano J, Arguello-Astorga GR. Two strains of a novel begomovirus encoding Rep proteins with identical β1 strands but different β5 strands are not compatible in replication. Arch Virol 2021; 166:1691-1709. [PMID: 33852083 DOI: 10.1007/s00705-021-05066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Geminiviruses have genomes composed of single-stranded DNA molecules and encode a rolling-circle replication (RCR) initiation protein ("Rep"), which has multiple functions. Rep binds to specific repeated DNA motifs ("iterons"), which are major determinants of virus-specific replication. The particular amino acid (aa) residues that determine the preference of a geminivirus Rep for specific iterons (i.e., the trans-acting replication "specificity determinants", or SPDs) are largely unknown, but diverse lines of evidence indicate that most of them are closely associated with the so-called RCR motif I (FLTYP), located in the first 12-19 aa residues of the protein. In this work, we characterized two strains of a novel begomovirus, rhynchosia golden mosaic Sinaloa virus (RhGMSV), that were incompatible in replication in pseudorecombination experiments. Systematic comparisons of the Rep proteins of both RhGMSV strains in the DNA-binding domain allowed the aa residues at positions 71 and 74 to be identified as the residues most likely to be responsible for differences in replication specificity. Residue 71 is part of the β-5 strand structural element, which was predicted in previous studies to contain Rep SPDs. Since the Rep proteins encoded by both RhGMSV strains are identical in their first 24 aa residues, where other studies have mapped potential SPDs, this is the first study lending direct support to the notion that geminivirus Rep proteins contain separate SPDs in their N-terminal domain.
Collapse
Affiliation(s)
- Jesús Aarón Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Guillermo Pastor-Palacios
- CONACYT-Consorcio de Investigación Innovación y Desarrollo para las Zonas Áridas, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a La Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Omayra C Bolaños-Martínez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | | | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala (UPTx)., Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, 03940, Mexico City, Mexico
| | - Nadia Martínez-Marrero
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Bernardo Bañuelos-Hernández
- Facultad de Agronomia y Veterinaria, Universidad De La Salle Bajio, Avenida Universidad 602, Lomas del Campestre, 37150, León Guanajuato, Mexico
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101, Guasave, Sinaloa, Mexico
| | - Gerardo Rafael Arguello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
11
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
12
|
Zou C, Shu YN, Yang JJ, Pan LL, Zhao J, Chen N, Liu SS, Wang XW. Begomovirus-Associated Betasatellite Virulence Factor βC1 Attenuates Tobacco Defense to Whiteflies via Interacting With Plant SKP1. FRONTIERS IN PLANT SCIENCE 2020; 11:574557. [PMID: 32973859 PMCID: PMC7481519 DOI: 10.3389/fpls.2020.574557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/12/2020] [Indexed: 05/23/2023]
Abstract
Plant-mediated interactions between plant viruses and their vectors are important determinants of the population dynamics of both types of organisms in the field. The whitefly Bemisia tabaci can establish mutualism with begomoviruses via their shared host plants. This mutualism is achieved by the interaction between virulence factors and their host proteins. While the virulence factor βC1 encoded by tomato yellow leaf curl China betasatellite (TYLCCNB), a subviral agent associated to the begomovirus tomato yellow leaf curl China virus (TYLCCNV), may interact with plant protein MYC2, thereby establishing the indirect mutualism between TYLCCNV and whitefly, whether other mechanisms are involved remains unknown. Here, we found the in vitro and in vivo interactions between βC1 and tobacco protein S-phase kinase associated protein 1 (NtSKP1). Silencing the expression of NtSKP1 enhanced the survival rate and fecundity of whiteflies on tobacco plants. NtSKP1 could activate the transcription of genes in jasmonic acid (JA) pathways by impairing the stabilization of JAZ1 protein. Moreover, βC1-NtSKP1 interaction could interfere JAZ1 degradation and attenuate the plant JA defense responses. These results revealed a novel mechanism underlying the better performance of whiteflies on TYLCCNV/TYLCCNB-infected plants.
Collapse
|
13
|
Qasim M, Xiao H, He K, Omar MAA, Liu F, Ahmed S, Li F. Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes. Microb Pathog 2020; 147:104391. [PMID: 32679245 DOI: 10.1016/j.micpath.2020.104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Mosquitoes are the main vector of multiple diseases worldwide and transmit viral (malaria, chikungunya, encephalitis, yellow fever, as well as dengue fever), as well as bacterial diseases (tularemia). To manage the outbreak of mosquito populations, various management programs include the application of chemicals, followed by biological and genetic control. Here we aimed to focus on the role of bacterial pathogenesis and molecular tactics for the management of mosquitoes and their vectorial capacity. Bacterial pathogenesis and molecular manipulations have a substantial impact on the biology of mosquitoes, and both strategies change the gene expression and regulation of disease vectors. The strategy for genetic modification is also proved to be excellent for the management of mosquitoes, which halt the development of population via incompatibility of different sex. Therefore, the purpose of the present discussion is to illustrate the impact of both approaches against the vectorial capacity of mosquitoes. Moreover, it could be helpful to understand the relationship of insect-pathogen and to manage various insect vectors as well as diseases.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huamei Xiao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences and Resource Environment, Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun University, Yichun, 336000, China
| | - Kang He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A A Omar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feiling Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sohail Ahmed
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Fei Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Islam W, Noman A, Naveed H, Alamri SA, Hashem M, Huang Z, Chen HYH. Plant-insect vector-virus interactions under environmental change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135044. [PMID: 31726403 DOI: 10.1016/j.scitotenv.2019.135044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insects play an important role in the spread of viruses from infected plants to healthy hosts through a variety of transmission strategies. Environmental factors continuously influence virus transmission and result in the establishment of infection or disease. Plant virus diseases become epidemic when viruses successfully dominate the surrounding ecosystem. Plant-insect vector-virus interactions influence each other; pushing each other for their benefit and survival. These interactions are modulated through environmental factors, though environmental influences are not readily predictable. This review focuses on exploiting the diverse relationships, embedded in the plant-insect vector-virus triangle by highlighting recent research findings. We examined the interactions between viruses, insect vectors, and host plants, and explored how these interactions affect their behavior.
Collapse
Affiliation(s)
- Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Saad A Alamri
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Assiut University, Faculty of Science, Botany Department, Assiut 71516, Egypt
| | - Zhiqun Huang
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
15
|
Wang D, Zhang X, Yao X, Zhang P, Fang R, Ye J. A 7-Amino-Acid Motif of Rep Protein Essential for Virulence Is Critical for Triggering Host Defense Against Sri Lankan Cassava Mosaic Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:78-86. [PMID: 31486716 DOI: 10.1094/mpmi-06-19-0163-fi] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geminiviruses cause severe damage to agriculture worldwide. The replication (Rep) protein is the indispensable viral protein for viral replication. Although various functional domains of Rep protein in Geminivirus spp. have been characterized, the most carboxyl terminus of Rep protein was not available. We have reported the first cassava-infecting geminivirus, Sri Lankan cassava mosaic virus (SLCMV-HN7 strain), in China. In this study, we reported the second Chinese SLCMV strain, SLCMV-Col, and conducted comparative genomic analysis between these two SLCMV strains. The virulence of SLCMV-Col is much stronger than SLCMV-HN7, indicated by the higher virus titer, more severe symptoms, and more extent host defense. We functionally characterized that Rep protein, a 7-amino-acid motif at the most carboxyl terminus, is essential for Rep protein accumulation and virulence of SLCMV. We also provided evidence suggesting that the motif could also enhance triggering of salicylic acid (SA) defense against SLCMV infection in Nicotiana benthamiana. The significance of the balance between virulence and host SA defense responses in expanding invasions of SLCMV is also discussed.
Collapse
Affiliation(s)
- Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangmei Yao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Torres-Herrera SI, Romero-Osorio A, Moreno-Valenzuela O, Pastor-Palacios G, Cardenas-Conejo Y, Ramírez-Prado JH, Riego-Ruiz L, Minero-García Y, Ambriz-Granados S, Argüello-Astorga GR. A Lineage of Begomoviruses Encode Rep and AC4 Proteins of Enigmatic Ancestry: Hints on the Evolution of Geminiviruses in the New World. Viruses 2019; 11:E644. [PMID: 31337020 PMCID: PMC6669703 DOI: 10.3390/v11070644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
The begomoviruses (BGVs) are plant pathogens that evolved in the Old World during the Cretaceous and arrived to the New World (NW) in the Cenozoic era. A subgroup of NW BGVs, the "Squash leaf curl virus (SLCV) lineage" (S-Lin), includes viruses with unique characteristics. To get clues on the evolutionary origin of this lineage, a search for divergent members was undertaken. Four novel BGVs were characterized, including one that is basal to the group. Comparative analyses led to discover a ~670 bp genome module that is nearly exclusive of this lineage, encompassing the replication origin, the AC4 gene, and 480 bp of the Rep gene. A similar DNA module was found in two curtoviruses, hence suggesting that the S-Lin ancestor acquired its distinctive genomic segment by recombination with a curtovirus. This hypothesis was definitely disproved by an in-depth sequence analysis. The search for homologs of S-Lin Rep uncover the common origin of Rep proteins encoded by diverse Geminiviridae genera and viral "fossils" integrated at plant genomes. In contrast, no homolog of S-Lin Rep was found in public databases. Consequently, it was concluded that the SLCV clade ancestor evolved by a recombination event between a primitive NW BGV and a virus from a hitherto unknown lineage.
Collapse
Affiliation(s)
- Sandra Iliana Torres-Herrera
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., México
- Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Río Papaloapan Esquina con Blvd Durango (s/n), Col. Valle del Sur. 34120, Durango, Dgo, México
| | - Angélica Romero-Osorio
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., México
| | | | - Guillermo Pastor-Palacios
- CONACYT-CIIDZA-Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., México
| | - Yair Cardenas-Conejo
- CONACyT-Universidad de Colima, Laboratorio de Agrobiotecnología, Carretera Los Limones-Loma de Juarez (s/n), Tecnoparque CLQ Colima 28629, Colima, México
| | | | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., México
| | - Yereni Minero-García
- Centro de Investigación Científica de Yucatán, A.C., Mérida 97000, Yucatán, México
| | - Salvador Ambriz-Granados
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., México
| | - Gerardo R Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., México.
| |
Collapse
|
17
|
Chen W, Wosula EN, Hasegawa DK, Casinga C, Shirima RR, Fiaboe KKM, Hanna R, Fosto A, Goergen G, Tamò M, Mahuku G, Murithi HM, Tripathi L, Mware B, Kumar LP, Ntawuruhunga P, Moyo C, Yomeni M, Boahen S, Edet M, Awoyale W, Wintermantel WM, Ling KS, Legg JP, Fei Z. Genome of the African cassava whitefly Bemisia tabaci and distribution and genetic diversity of cassava-colonizing whiteflies in Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:112-120. [PMID: 31102651 DOI: 10.1016/j.ibmb.2019.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 05/26/2023]
Abstract
The whitefy Bemisia tabaci, a species complex consisting of many morphologically indistinguishable species divided into distinct clades, is one of the most globally important agricultural pests and plant virus vectors. Cassava-colonizing B. tabaci transmits viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Half of all cassava plants in Africa are affected by these viral diseases, resulting in annual production losses of more than US$ 1 billion. Here we report the draft genome of the cassava whitefly B. tabaci Sub-Saharan Africa - East and Central Africa (SSA-ECA), the super-abundant population that has been associated with the rapid spread of viruses causing the pandemics of CMD and CBSD. The SSA-ECA genome assembled from Illumina short reads has a total size of 513.7 Mb and a scaffold N50 length of 497 kb, and contains 15,084 predicted protein-coding genes. Phylogenetic analysis suggests that SSA-ECA diverged from MEAM1 around 5.26 million years ago. A comprehensive genetic analysis of cassava-colonizing B. tabaci in Africa was also conducted, in which a total of 243 whitefly specimens were collected from 18 countries representing all major cassava-growing regions in the continent and genotyped using NextRAD sequencing. Population genomic analyses confirmed the existence of six major populations linked by gene flow and inferred the distribution patterns of these populations across the African continent. The genome of SSA-ECA and the genetic findings provide valuable resources and guidance to facilitate whitefly research and the development of strategies to control cassava viral diseases spread by whiteflies.
Collapse
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Everlyne N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Daniel K Hasegawa
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Clerisse Casinga
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
| | - Rudolph R Shirima
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Komi K M Fiaboe
- International Institute of Tropical Agriculture, Yaòunde, Cameroon
| | - Rachid Hanna
- International Institute of Tropical Agriculture, Yaòunde, Cameroon
| | - Apollin Fosto
- International Institute of Tropical Agriculture, Yaòunde, Cameroon
| | - Georg Goergen
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Harun M Murithi
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Bernard Mware
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Lava P Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Christopher Moyo
- International Institute of Tropical Agriculture, Lilongwe, Malawi
| | - Marie Yomeni
- International Institute of Tropical Agriculture, Freetown, Sierra Leone
| | - Stephen Boahen
- International Institute of Tropical Agriculture, Nampula, Mozambique
| | - Michael Edet
- International Institute of Tropical Agriculture, Monrovia, Liberia
| | - Wasiu Awoyale
- International Institute of Tropical Agriculture, Monrovia, Liberia
| | - William M Wintermantel
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research, Salinas, CA, 93905, USA
| | - Kai-Shu Ling
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - James P Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA; U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Kliot A, Kontsedalov S, Lebedev G, Czosnek H, Ghanim M. Combined infection with Tomato yellow leaf curl virus and Rickettsia influences fecundity, attraction to infected plants and expression of immunity-related genes in the whitefly Bemisia tabaci. J Gen Virol 2019; 100:721-731. [PMID: 30762513 DOI: 10.1099/jgv.0.001233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently shown that Rickettsia, a secondary facultative bacterial symbiont that infects the whitefly B. tabaci is implicated in the transmission of Tomato yellow leaf curl virus (TYLCV). Infection with Rickettsia improved the acquisition and transmission of the virus by B. tabaci adults. Here we performed a transcriptomic analysis with Rickettsia-infected and uninfected B. tabaci adults before and after TYLCV acquisition. The results show a dramatic and specific activation of the immune system in the presence of Rickettsia before TYLCV acquisition. However, when TYLCV was acquired, it induced massive activation of gene expression in the Rickettsia uninfected population, whereas in the Rickettsia-infected population the virus induced massive down-regulation of gene expression. Fitness and choice experiments revealed that while Rickettsia-infected whiteflies are always more attracted to TYLCV-infected plants, this attraction is not always beneficiary for their offspring. These studies further confirm the role of Rickettsia in many aspects of B. tabaci interactions with TYLCV, and possibly serves as an important factor in the dissemination of the virus.
Collapse
Affiliation(s)
- Adi Kliot
- 1Department of Entomology, The Volcani Center, Rishon LeZion, Israel.,2Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Galina Lebedev
- 1Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - Henryk Czosnek
- 2Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- 1Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
19
|
Islam W, Naveed H, Zaynab M, Huang Z, Chen HYH. Plant defense against virus diseases; growth hormones in highlights. PLANT SIGNALING & BEHAVIOR 2019; 14:1596719. [PMID: 30957658 PMCID: PMC6546145 DOI: 10.1080/15592324.2019.1596719] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Phytohormones are critical in various aspects of plant biology such as growth regulations and defense strategies against pathogens. Plant-virus interactions retard plant growth through rapid alterations in phytohormones and their signaling pathways. Recent research findings show evidence of how viruses impact upon modulation of various phytohormones affecting plant growth regulations. The opinion is getting stronger that virus-mediated phytohormone disruption and alteration weaken plant defense strategies through enhanced replication and systemic spread of viral particles. These hormones regulate plant-virus interactions in various ways that may involve antagonism and cross talk to modulate small RNA (sRNA) systems. The article aims to highlight the recent research findings elaborating the impact of viruses upon manipulation of phytohormones and virus biology.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Hassan Naveed
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Madiha Zaynab
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Zhiqun Huang Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Han Y. H. Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Faculty of Natural Resources Management, Lakehead University, Ontario, Canada
- CONTACT Han Y. H. Chen Faculty of Natural Resources Management, Lakehead University, Ontario Canada
| |
Collapse
|