1
|
Garvey M, Kremer TA, Rowan NJ. Efficacy of cleaning, disinfection, and sterilization modalities for addressing infectious drug-resistant fungi: a review. J Appl Microbiol 2025; 136:lxaf005. [PMID: 39774830 DOI: 10.1093/jambio/lxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
This is a timely and important review that focuses on the appropriateness of established cleaning, disinfection, and sterilization methods to safely and effectively address infectious fungal drug-resistant pathogens that can potentially contaminate reusable medical devices used in healthcare environment in order to mitigate the risk of patient infection. The release of the World Health Organization (WHO) fungal priority pathogen list (FPPL) in 2022 highlighted the public health crisis of antimicrobial resistance (AMR) in clinically relevant fungal species. Contamination of medical devices with drug-resistant fungal pathogens (including those on the FPPL) in healthcare is a rare event that is more likely to occur due to cross-transmission arising from lapses in hand hygiene practices. Established disinfection and sterilization methods decontaminate fungal pathogens on single-use and reusable medical devices; however, there are assumptions that reusable devices destined for semi-critical use are appropriately cleaned and do not harbour biofilms that may undermine the ability to effectively decontamination these type devices in healthcare. International standards dictate that manufacturer's instructions for use must provide appropriate guidance to healthcare facilities to meet safe reprocessing expectations that include addressing drug-resistant fungal pathogens. Increased environmental monitoring and vigilance surrounding fungal pathogens in healthcare is advised, including adherence to hand hygiene/aseptic practices and appropriate cleaning encompassing the simplification of reusable device features for 'ease-of-reach'. There are emereging opportunities to promote a more integrated multiactor hub approach to addressing these sophisticated challenges, including future use of artificial intelligence and machine learning for improved diagnostics, monitoring/surveillance (such as healthcare and wastewater-based epidemiology), sterility assurance, and device design. There is a knowledge gap surrounding the occurrence and potential persistence of drug-resistant fungal pathogens harboured in biofilms, particularly for ascertaining efficacy of high-level disinfection for semi-critical use devices.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo F91 YW50, Ireland
| | - Terra A Kremer
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- Microbiological Quality and Quality Assurance, Johnson & Johnson, 1000 Route 202, South Raritan, NJ 08869, United States
| | - Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- SFI-funded CURAM Centre for Medical Device Research, University of Galway, Ireland
| |
Collapse
|
2
|
Roy S, Bhogapurapu B, Chandra S, Biswas K, Mishra P, Ghosh A, Bhunia A. Host antimicrobial peptide S100A12 disrupts the fungal membrane by direct binding and inhibits growth and biofilm formation of Fusarium species. J Biol Chem 2024; 300:105701. [PMID: 38301897 PMCID: PMC10891332 DOI: 10.1016/j.jbc.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Fungal keratitis is the foremost cause of corneal infections worldwide, of which Fusariumspp. is the common etiological agent that causes loss of vision and warrants surgical intervention. An increase in resistance to the available drugs along with severe side effects of the existing antifungals demands for new effective antimycotics. Here, we demonstrate that antimicrobial peptide S100A12 directly binds to the phospholipids of the fungal membrane, disrupts the structural integrity, and induces generation of reactive oxygen species in fungus. In addition, it inhibits biofilm formation by Fusariumspp. and exhibits antifungal property against Fusariumspp. both in vitro and in vivo. Taken together, our results delve into specific effect of S100A12 against Fusariumspp. with an aim to investigate new antifungal compounds to combat fungal keratitis.
Collapse
Affiliation(s)
- Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India.
| | - Bharathi Bhogapurapu
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sreyanki Chandra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Karishma Biswas
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | - Priyasha Mishra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Abhijit Ghosh
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| |
Collapse
|
3
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
4
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
5
|
Thomas-Rüddel D, Schlattmann P, Pletz M, Kurzai O, Bloos F. Risk factors for invasive candida infection in critically ill patients - a systematic review and meta-analysis. Chest 2021; 161:345-355. [PMID: 34673022 PMCID: PMC8941622 DOI: 10.1016/j.chest.2021.08.081] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022] Open
Abstract
Background Current guidelines recommend empirical antifungal therapy in patients with sepsis with high risk of invasive Candida infection. However, many different risk factors have been derived from multiple studies. These risk factors lack specificity, and broad application would render most ICU patients eligible for empirical antifungal therapy. Research Question What risk factors for invasive Candida infection can be identified by a systematic review and meta-analysis? Study Design and Methods We searched PubMed, Web of Science, ScienceDirect, Biomed Central, and Cochrane and extracted the raw and adjusted OR for each risk factor associated with invasive Candida infection. We calculated pooled ORs for risk factors present in more than one study. Results We included 34 studies in our meta-analysis resulting in the assessment of 29 possible risk factors. Risk factors for invasive Candida infection included demographic factors, comorbid conditions, and medical interventions. Although demographic factors do not play a role for the development of invasive Candida infection, comorbid conditions (eg, HIV, Candida colonization) and medical interventions have a significant impact. The risk factors associated with the highest risk for invasive Candida infection were broad-spectrum antibiotics (OR, 5.6; 95% CI, 3.6-8.8), blood transfusion (OR, 4.9; 95% CI, 1.5-16.3), Candida colonization (OR, 4.7; 95% CI, 1.6-14.3), central venous catheter (OR, 4.7; 95% CI, 2.7-8.1), and total parenteral nutrition (OR, 4.6; 95% CI, 3.3-6.3). However, dependence between the various risk factors is probably high. Interpretation Our systematic review and meta-analysis identified patient- and treatment-related factors that were associated with the risk for the development of invasive Candida infection in the ICU. Most of the factors identified were either related to medical interventions during intensive care or to comorbid conditions.
Collapse
Affiliation(s)
- Daniel Thomas-Rüddel
- Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany;; Dept. of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany;.
| | - Peter Schlattmann
- Institut für Medizinische Statistik, Informatik und Datenwissenschaften (IMSID), Jena University Hospital Jena
| | - Mathias Pletz
- Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany;; Institute for Infectious Diseases and Infection Control, Jena University Hospital Jena
| | - Oliver Kurzai
- Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany;; National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena; University of Wuerzburg, Institute for Hygiene and Microbiology, Germany
| | - Frank Bloos
- Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany;; Dept. of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi-Latest Findings. Antibiotics (Basel) 2021; 10:antibiotics10091053. [PMID: 34572635 PMCID: PMC8471798 DOI: 10.3390/antibiotics10091053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.
Collapse
|
7
|
Advances in Fusarium drug resistance research. J Glob Antimicrob Resist 2021; 24:215-219. [PMID: 33460843 DOI: 10.1016/j.jgar.2020.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fusarium species cause many diseases in plants and humans, which results in a great number of economic losses every year. The management of plant diseases and related human diseases caused by Fusarium is challenging as many kinds of Fusarium may be intrinsically resistant to antifungal drugs, not to mention the fact that they can acquire drug resistance, which is common in clinical practice. To date, the drug resistance of Fusarium is mainly related to target alterations, drug efflux and biofilm formation. This article reviews recent studies related to the mechanism of Fusarium resistance, and summarizes the key molecules affecting resistance.
Collapse
|
8
|
Gonçalves LNC, Costa-Orlandi CB, Bila NM, Vaso CO, Da Silva RAM, Mendes-Giannini MJS, Taylor ML, Fusco-Almeida AM. Biofilm Formation by Histoplasma capsulatum in Different Culture Media and Oxygen Atmospheres. Front Microbiol 2020; 11:1455. [PMID: 32754126 PMCID: PMC7365857 DOI: 10.3389/fmicb.2020.01455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungus that causes an important systemic mycosis called histoplasmosis. It is an infectious disease with high prevalence and morbidity that affects the general population. Recently, the ability of these fungi to form biofilms, a phenotype that can induce resistance and enhance virulence, has been described. Despite some efforts, data regarding the impact of nutrients and culture media that affect the H. capsulatum biofilm development in vitro are not yet available. This work aimed to study H. capsulatum biofilms, by checking the influence of different culture media and oxygen atmospheres in the development of these communities. The biofilm formation by two strains (EH-315 and G186A) was characterized under different culture media: [Brain and Heart Infusion (BHI), Roswell Park Memorial Institute (RPMI) with 2% glucose, Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum and nutrient medium HAM-F12 (HAM-F12) supplemented with glucose (18.2 g/L), glutamic acid (1 g/L), HEPES (6 g/L) and L-cysteine (8.4 mg/L)] and oxygen atmospheres (aerobiosis and microaerophilia), using the XTT reduction assay to quantify metabolic activities, crystal violet staining for biomass, safranin staining for the quantification of polysaccharide material and scanning electron microscopy (SEM) for the observation of topographies. Results indicated that although all culture mediums have stimulated the maturation of the communities, HAM-F12 provided the best development of biomass and polysaccharide material when compared to others. Regarding the oxygen atmospheres, both stimulated an excellent development of the communities, however in low oxygen conditions an exuberant amount of extracellular matrix was observed when compared to biofilms formed in aerobiosis, mainly in the HAM-F12 media. SEM images showed yeasts embedded by an extracellular matrix in several points, corroborating the colorimetric assays. However, biofilms formed in BHI, RPMI, and DMEM significantly induced yeast to hyphae reversal, requiring further investigation. The results obtained so far contribute to in vitro study of biofilms formed by these fungi and show that nutrition promoted by different media modifies the development of these communities. These data represent advances in the field of biofilms and contribute to future studies that can prove the role of these communities in the fungi-host interaction.
Collapse
Affiliation(s)
| | - Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Níura Madalena Bila
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil.,School of Veterinary, Department of Para Clinic, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Carolina Orlando Vaso
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | | | | | - Maria Lucia Taylor
- School of Medicine, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Kischkel B, Souza GK, Chiavelli LUR, Pomini AM, Svidzinski TIE, Negri M. The ability of farnesol to prevent adhesion and disrupt Fusarium keratoplasticum biofilm. Appl Microbiol Biotechnol 2019; 104:377-389. [PMID: 31768611 DOI: 10.1007/s00253-019-10233-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/26/2023]
Abstract
A biofilm is represented by a community of microorganisms capable of adhering to a surface and producing substances that envelop the cells, forming an extracellular matrix. The extracellular matrix is responsible for protecting microorganisms against environmental stress, hosts the immune system and confers resistance to antimicrobials. Fusarium keratoplasticum is a common species of FSSC (Fusarium solani species complex) associated with human infections, being the most prevalent species related to biofilm formation in hospital water systems and internal pipelines. With this in mind, this study aimed to characterise the biofilm formed by the fungus F. keratoplasticum and to evaluate the effects of farnesol, a fungal quorum sensing (QS) molecule, on the preformed biofilm and also during its formation at different times (adhesion and 24, 48 and 72 h). F. keratoplasticum is able to adhere to an abiotic surface and form a dense biofilm in 72 h, with increased total biomass and matrix modulation with the presence of extracellular DNA, RNA, polysaccharides and proteins. Farnesol exhibited important anti-biofilm activity, causing the destruction of hyphae and the extracellular matrix in preformed biofilm and preventing the adhesion of conidia, filamentation and the formation of biofilm. Few studies have characterised the formation of biofilm by filamentous fungi. Our findings suggest that farnesol acts efficiently on F. keratoplasticum biofilm since this molecule is capable of breaking the extracellular matrix, thereby disarranging the biofilm.
Collapse
Affiliation(s)
- Brenda Kischkel
- Clinical Analysis Department, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Gredson Keiff Souza
- Department of Chemistry, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Armando Mateus Pomini
- Department of Chemistry, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Melyssa Negri
- Clinical Analysis Department, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
10
|
Robles-Martínez M, González JFC, Pérez-Vázquez FJ, Montejano-Carrizales JM, Pérez E, Patiño-Herrera R. Antimycotic Activity Potentiation of Allium sativum Extract and Silver Nanoparticles against Trichophyton rubrum. Chem Biodivers 2019; 16:e1800525. [PMID: 30614195 DOI: 10.1002/cbdv.201800525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
A natural and biocompatible extract of garlic as a support, decorated with silver nanoparticles, is a proposal to generate an effective antifungal agent against dermatophytes at low concentrations. Silver nanoparticles (AgNPs) with a diameter of 26±7 nm were synthesized and their antimycotic activity was examined against Trichophyton rubrum (T. rubrum), inhibiting 94 % of growth at a concentration of 0.08 mg ml-1 . Allium sativum (garlic) extract was also obtained (AsExt), and its MIC was 0.04 mg ml-1 . To increase the antifungal capacity of those systems, AsExt was decorated with AgNPs, obtaining AsExt-AgNPs. Using an AsExt concentration of 0.04 mg ml-1 in independent experiments with concentrations from 0.01 to 0.08 mg ml-1 of AgNPs, it was possible to inhibit T. rubrum at all AgNPs concentrations; it proves a synergistic effect between AgNPs and AsExt. Even if 1 % of the minimum inhibitory concentration of AsExt (0.0004 mg ml-1 ) is used, it was possible to inhibit T. rubrum at all concentrations of AgNPs, demonstrating the successful antimycotic activity potentiation when combining AsExt and AgNPs.
Collapse
Affiliation(s)
- Marissa Robles-Martínez
- Doctorado en Ingeniería y Ciencia de Materiales de la UASLP, Sierra Leona 530, San Luis Potosí, San Luis Potosí, 78210, México
| | | | - Francisco Javier Pérez-Vázquez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), UASLP, San Luis Potosí, San Luis Potosí, 78210, México
| | | | - Elías Pérez
- Instituto de Física, UASLP, Álvaro Obregón 64, San Luis Potosí 78000, México
| | - Rosalba Patiño-Herrera
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Antonio García Cubas Pte #600 esq. Av. Tecnológico. Celaya, Guanajuato, 38010, México
| |
Collapse
|
11
|
Richardson M, Rautemaa-Richardson R. Exposure to Aspergillus in Home and Healthcare Facilities' Water Environments: Focus on Biofilms. Microorganisms 2019; 7:E7. [PMID: 30621244 PMCID: PMC6351985 DOI: 10.3390/microorganisms7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022] Open
Abstract
Aspergillus conida are ubiquitous in the environment, including freshwater, water for bathing, and in drinking water. Vulnerable patients and those suffering from allergic diseases are susceptible to aspergillosis. Avoidance of Aspergillus is of paramount importance. Potential outbreaks of aspergillosis in hospital facilities have been described where the water supply has been implicated. Little is known regarding the risk of exposure to Aspergillus in water. How does Aspergillus survive in water? This review explores the biofilm state of Aspergillus growth based on recent literature and suggests that biofilms are responsible for the persistence of Aspergillus in domestic and healthcare facilities' water supplies.
Collapse
Affiliation(s)
- Malcolm Richardson
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
| |
Collapse
|