1
|
Chen X, Chang Y, Ye M, Wang Z, Wu S, Duan N. Rational Design of a Robust G-Quadruplex Aptamer as an Inhibitor to Alleviate Listeria monocytogenes Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15946-15958. [PMID: 38519414 DOI: 10.1021/acsami.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Listeria monocytogenes (LM) is one of the most invasive foodborne pathogens that cause listeriosis, making it imperative to explore novel inhibiting strategies for alleviating its infection. The adhesion and invasion of LM within host cells are partly orchestrated by an invasin protein internalin A (InlA), which facilitates bacterial passage by interacting with the host cell E-cadherin (E-Cad). Hence, in this work, we proposed an aptamer blocking strategy by binding to the region on InlA that directly mediated E-Cad receptor engagement, thereby alleviating LM infection. An aptamer GA8 with a robust G-quadruplex (G4) structural feature was designed through truncation and base mutation from the original aptamer A8. The molecular docking and dynamics analysis showed that the InlA/aptamer GA8 binding interface was highly overlapping with the natural InlA/E-Cad binding interface, which confirmed that GA8 can tightly and stably bind InlA and block more distinct epitopes on InlA that involved the interaction with E-Cad. On the cellular level, it was confirmed that GA8 effectively blocked LM adhesion with an inhibition rate of 78%. Overall, the robust G4 aptamer-mediated design provides a new direction for the development of inhibitors against other wide-ranging and emerging pathogens.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Tang M, Tian S, Chen K, Zhang Q, Lei Y, Tang T, Zeng J, Wang C. Membrane vesicles derived from Listeria monocytogenes might be a potential antigen delivery vector. Int J Pharm 2023; 644:123275. [PMID: 37516216 DOI: 10.1016/j.ijpharm.2023.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Membrane vesicles (MVs) derived from Listeria monocytogenes (LM) have a natural nanoscale size and contain a variety of bacterial components. We speculated that LM MVs may be a novel delivery vector, but it is necessary to evaluate the safety and immunogenicity of LM MVs in vivo. Here, we isolated LM MVs and tested their safety and immunogenicity both in vitro and in vivo. The results showed that LM MVs stimulated RAW264.7 cells and DC2.4 cells to secrete the inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-10. Intraperitoneal injection of LM MVs at 80 μg per C57BL/6 mouse did not cause lethal effects or irreversible pathological changes in major organs, indicating that LM MVs were safe. Intraperitoneal immunization of C57BL/6 mice twice with LM MVs mainly induced a high level of LM MV-specific IgG antibodies. In addition, we subcutaneously injected C57BL/6 mice with a mixture of ovalbumin and LM MVs and found that LM MVs exhibited a humoral immune adjuvant effect equal to that of the same amount of alum. The results of this study indicated that LM MVs have good safety and effective immunogenicity and may act as humoral immune adjuvants. Therefore, LM MVs are a potential new choice for antigen and drug delivery vectors.
Collapse
Affiliation(s)
- Mingyuan Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Sicheng Tian
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Kehan Chen
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Qiuyang Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Yao Lei
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Jumei Zeng
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China.
| |
Collapse
|
3
|
Çelik P, Derkuş B, Erdoğan K, Barut D, Manga EB, Yıldırım Y, Pecha S, Çabuk A. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv 2021; 54:107869. [PMID: 34793882 DOI: 10.1016/j.biotechadv.2021.107869] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Bacterial membrane vesicles are cupped-shaped structures formed by bacteria in response to environmental stress, genetic alteration, antibiotic exposure, and others. Due to the structural similarities shared with the producer organism, they can retain certain characteristics like stimulating immune responses. They are also able to carry molecules for long distances, without changes in the concentration and integrity of the molecule. Bacteria originally secrete membrane vesicles for gene transfer, excretion, cell to cell interaction, pathogenesis, and protection against phages. These functions are unique and have several innovative applications in the pharmaceutical industry that have attracted both scientific and commercial interest.This led to the development of efficient methods to artificially stimulate vesicle production, purification, and manipulation in the lab at nanoscales. Also, for specific applications, engineering methods to impart pathogen antigens against specific diseases or customization as cargo vehicles to deliver payloads to specific cells have been reported. Many applications of bacteria membrane vesicles are in cancer drugs, vaccines, and adjuvant development with several candidates in clinical trials showing promising results. Despite this, applications in therapy and commercialization stay timid probably due to some challenges one of which is the poor understanding of biogenesis mechanisms. Nevertheless, so far, bacterial membrane vesicles seem to be a reliable and cost-efficient technology with several therapeutic applications. Research toward characterizing more membrane vesicles, genetic engineering, and nanotechnology will enable the scope of applications to widen. This might include solutions to other currently faced medical and healthcare-related challenges.
Collapse
Affiliation(s)
- PınarAytar Çelik
- Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir 26110, Turkey; Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Burak Derkuş
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| | - Kübra Erdoğan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Enuh Blaise Manga
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Yalın Yıldırım
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Ahmet Çabuk
- Department of Biology, Faculty of Science and Letter, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
4
|
Woo JH, Kim S, Lee T, Lee JC, Shin JH. Production of Membrane Vesicles in Listeria monocytogenes Cultured with or without Sub-Inhibitory Concentrations of Antibiotics and Their Innate Immune Responses In Vitro. Genes (Basel) 2021; 12:415. [PMID: 33805671 PMCID: PMC7998634 DOI: 10.3390/genes12030415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023] Open
Abstract
Listeriosis is a food-borne illness caused by Listeria monocytogenes. Ampicillin (AMP) alone or in combination with gentamicin (GEN) is the first-line treatment option. Membrane vesicle (MV) production in L. monocytogenes under antibiotic stress conditions and pathologic roles of these MVs in hosts have not been reported yet. Thus, the aim of this study was to investigate the production of MVs in L. monocytogenes cultured with sub-minimum inhibitory concentrations (MICs) of AMP, GEN, or trimethoprim/sulfamethoxazole (SXT) and determine pathologic effects of these MVs in colon epithelial Caco-2 cells. L. monocytogenes cultured in tryptic soy broth with 1/2 MIC of AMP, GEN, or SXT produced 6.0, 2.9, or 1.5 times more MV particles, respectively, than bacteria cultured without antibiotics. MVs from L. monocytogenes cultured with AMP (MVAMP), GEN (MVGEN), or SXT (MVSXT) were more cytotoxic to Caco-2 cell than MVs obtained from cultivation without antibiotics (MVTSB). MVAMP induced more expression of tumor necrosis factor (TNF)-α gene than MVTSB, MVGEN and MVSXT, whereas MVTSB induced more expression of interleukin (IL)-1β and IL-8 genes than other MVs. Expression of pro-inflammatory cytokine genes by L. monocytogenes MVs was significantly inhibited by proteinase K treatment of MVs. In conclusion, antibiotic stress can trigger the biogenesis of MVs in L. monocytogenes and MVs produced by L. monocytogenes exposed to sub-MIC of AMP can induce strong pro-inflammatory responses by expressing TNF-α gene in host cells, which may contribute to the pathology of listeriosis.
Collapse
Affiliation(s)
- Jung-Hwa Woo
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.W.); (S.K.)
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.W.); (S.K.)
| | - Taewon Lee
- Department of Applied Mathematics, College of Science and Technology, Korea University, Sejong 30019, Korea;
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.W.); (S.K.)
| | - Ji-Hyun Shin
- Institute of Science and Technology, College of Science and Technology, Korea University, Sejong 30019, Korea
| |
Collapse
|
5
|
Environmental conditions modulate the protein content and immunomodulatory activity of extracellular vesicles produced by the probiotic Propionibacterium freudenreichii. Appl Environ Microbiol 2021; 87:AEM.02263-20. [PMID: 33310709 PMCID: PMC7851693 DOI: 10.1128/aem.02263-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propionibacterium freudenreichii is a probiotic Gram-positive bacterium with promising immunomodulatory properties. It modulates regulatory cytokines, mitigates the inflammatory response in vitro and in vivo These properties were initially attributed to specific bacterial surface proteins. Recently, we showed that extracellular vesicles (EVs) produced by P. freudenreichii CIRM-BIA129 mimic the immunomodulatory features of parent cells in vitro (i.e. modulating NF-κB transcription factor activity and IL-8 release) which underlies the role of EVs as mediators of the probiotic effects of the bacterium. The modulation of EV properties, and particularly of those with potential therapeutic applications such as the EVs produced by the probiotic P. freudenreichii, is one of the challenges in the field to achieve efficient yields with the desired optimal functionality. Here we evaluated whether the culture medium in which the bacteria are grown could be used as a lever to modulate the protein content and hence the properties of P. freudenreichii CIRM-BIA129 EVs. The physical, biochemical and functional properties of EVs produced from cells cultivated on laboratory Yeast Extract Lactate (YEL) medium and cow milk ultrafiltrate (UF) medium were compared. UF-derived EVs were more abundant, smaller in diameter and displayed more intense anti-inflammatory activity than YEL-derived EVs. Furthermore, the growth media modulated EV content in terms of both the identities and abundances of their protein cargos, suggesting different patterns of interaction with the host. Proteins involved in amino acid metabolism and central carbon metabolism were modulated, as were the key surface proteins mediating host-propionibacteria interactions.Importance Extracellular vesicles (EVs) are cellular membrane-derived nanosized particles that are produced by most cells in all three kingdoms of life. They play a pivotal role in cell-cell communication through their ability to transport bioactive molecules from donor to recipient cells. Bacterial EVs are important factors in host-microbe interactions. Recently we have shown that EVs produced by the probiotic P. freudenreichii exhibited immunomodulatory properties. We evaluate here the impact of environmental conditions, notably culture media, on P. freudenreichii EV production and function. We show that EVs display considerable differences in protein cargo and immunomodulation depending on the culture medium used. This work offers new perspectives for the development of probiotic EV-based molecular delivery systems, and reinforces the optimization of growth conditions as a tool to modulate the potential therapeutic applications of EVs.
Collapse
|