1
|
Wu M, Wang K, Wang H, Yan H, Wu S, Yang G, Li Y, Che Y, Jiang J. Mycophenolate mofetil exerts broad-spectrum antiviral activity against coronaviruses including SARS-CoV-2. Virol J 2025; 22:56. [PMID: 40038695 PMCID: PMC11877706 DOI: 10.1186/s12985-025-02673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND New anti-coronavirus drugs are continuously being developed to address the serious long-term challenge posed by numerous SARS-CoV-2 variants. The clinical immunosuppressants mycophenolate mofetil (MMF) and mycophenolic acid (MPA) have been reported to have anti-coronavirus activities. However, systematic studies have not been conducted to evaluate their activities and mechanisms against pan-coronaviruses, including SARS-CoV-2. METHODS The antiviral effect of MMF and MPA was determined by qRT-PCR assay, Western blotting, and immunofluorescence assay. The IMPDH inhibition effect of MMF was determined by cellular thermal shift assay and Western blotting. RESULTS We showed that MMF and MPA had broad-spectrum inhibitory effect against coronavirus, including HCoV-229E, HCoV-OC43, and SARS-CoV-2 ancestral strain and its variants. In terms of characteristics, MMF acted in the early stages of viral infection and inhibited viral replication by blocking purine nucleotide synthesis through interaction with inosine-5'-monophosphate dehydrogenase (IMPDH). Therefore, the antiviral effect of MMF can be reversed by exogenous guanosine. Additionally, MMF in combination with molnupiravir, GC376 or E64d showed synergistic antiviral effects. CONCLUSION MMF and MPA exerted broad-spectrum anti-coronavirus effects by inhibiting IMPDH activity. MMF had a synergistic antiviral effect when combined with other drugs, showing its potential clinical antiviral applications.
Collapse
Affiliation(s)
- Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yongsheng Che
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Carretero-Ledesma M, Aguilar-Guisado M, Berastegui-Cabrera J, Balsera-Manzanero M, Pachón J, Cordero E, Sánchez-Céspedes J. Antiviral activity of immunosuppressors alone and in combination against human adenovirus and cytomegalovirus. Int J Antimicrob Agents 2024; 63:107116. [PMID: 38401774 DOI: 10.1016/j.ijantimicag.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Human adenovirus (HAdV) and cytomegalovirus (HCMV) cause high morbidity and mortality in patients undergoing solid organ transplantation (SOT) and haematopoietic stem cell transplantation (HSCT). Immunosuppressors are used universally to prevent graft-vs-host disease in HSCT and graft rejection in SOT. The long-term use of these drugs is associated with a high risk of infection, but there is also evidence of their specific interference with viral infection. This study evaluated the antiviral activity of immunosuppressors commonly used in clinical practice in SOT and HSCT recipients in vitro to determine whether their use could be associated with reduced risk of HAdV and HCMV infection. Cyclophosphamide, tacrolimus, cyclosporine, mycophenolic acid, methotrexate, everolimus and sirolimus presented antiviral activity, with 50% inhibitory concentration (IC50) values at low micromolar and sub-micromolar concentrations. Mycophenolic acid and methotrexate showed the greatest antiviral effects against HAdV (IC50=0.05 µM and 0.3 µM, respectively) and HCMV (IC50=10.8 µM and 0.02 µM, respectively). The combination of tacrolimus and mycophenolic acid showed strong synergistic antiviral activity against both viruses, with combinatory indexes (CI50) of 0.02 and 0.25, respectively. Additionally, mycophenolic acid plus cyclosporine, and mycophenolic acid plus everolimus/sirolimus showed synergistic antiviral activity against HAdV (CI50=0.05 and 0.09, respectively), while methotrexate plus cyclosporine showed synergistic antiviral activity against HCMV (CI50=0.29). These results, showing antiviral activity in vitro against both HAdV and HCMV, at concentrations below the human Cmax values, may be relevant for the selection of specific immunosuppressant therapies in patients at risk of HAdV and HCMV infections.
Collapse
Affiliation(s)
- Marta Carretero-Ledesma
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Manuela Aguilar-Guisado
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Judith Berastegui-Cabrera
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María Balsera-Manzanero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla, Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Elisa Cordero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Javier Sánchez-Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Li C, Lin L, Tang Y, Huang S. Molecular mechanism of ChaiShi JieDu granule in treating dengue based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e36773. [PMID: 38206728 PMCID: PMC10754559 DOI: 10.1097/md.0000000000036773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Dengue fever is a frequently occurring infectious disease caused by the Dengue virus, prevalent in tropical and subtropical regions. Chaishi Jiedu Granules (CSJD) is an empirical prescription of the Eighth Affiliated Hospital of Guangzhou Medical University in the treatment of dengue fever, which has been widely used in the treatment of dengue fever, and has shown good efficacy in improving the clinical symptoms of patients. This study aims to explore the molecular mechanism of CSJD in treating dengue fever using network pharmacology, molecular docking techniques, and virtual screening methods. The results showed that luteolin, quercetin and other compounds in CSJD could target important targets related to dengue virus, including STAT3, AKT1, TNF, IL-6, and other key genes, thus playing an antiviral role. Among them, luteolin and wogonin in CSJD also inhibited dengue virus replication and reduced inflammation, and showed good binding force with IL-6 and TNF. Therefore, this study provides an important reference for the development of CSJD as a potential drug for dengue fever treatment and a new perspective for research and development in this field.
Collapse
Affiliation(s)
- Cong Li
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luping Lin
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yexiao Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sanqi Huang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Chen Y, You Y, Wang S, Jiang L, Tian L, Zhu S, An X, Song L, Tong Y, Fan H. Antiviral Drugs Screening for Swine Acute Diarrhea Syndrome Coronavirus. Int J Mol Sci 2022; 23:ijms231911250. [PMID: 36232553 PMCID: PMC9569988 DOI: 10.3390/ijms231911250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses as possible cross-species viruses have caused several epidemics. The ongoing emergency of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has posed severe threats to the global economy and public health, which has generated great concerns about zoonotic viruses. Swine acute diarrhea syndrome coronavirus (SADS-CoV), an alpha-coronavirus, was responsible for mass piglet deaths, resulting in unprecedented economic losses, and no approved drugs or vaccines are currently available for SADS-CoV infection. Given its potential ability to cause cross-species infection, it is essential to develop specific antiviral drugs and vaccines against SADS-CoV. Drug screening was performed on a total of 3523 compound-containing drug libraries as a strategy of existing medications repurposing. We identified five compounds (gemcitabine, mycophenolate mofetil, mycophenolic acid, methylene blue and cepharanthine) exhibiting inhibitory effects against SADS-CoV in a dose-dependent manner. Cepharanthine and methylene blue were confirmed to block viral entry, and gemcitabine, mycophenolate mofetil, mycophenolic acid and methylene blue could inhibit viral replication after SADS-CoV entry. This is the first report on SADS-CoV drug screening, and we found five compounds from drug libraries to be potential anti-SADS-CoV drugs, supporting the development of antiviral drugs for a possible outbreak of SADS-CoV in the future.
Collapse
|
5
|
Sepúlveda CS, García CC, Damonte EB. Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy. Microorganisms 2022; 10:1631. [PMID: 36014049 PMCID: PMC9413629 DOI: 10.3390/microorganisms10081631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Emerging and re-emerging viruses have been a challenge in public health in recent decades. Host-targeted antivirals (HTA) directed at cellular molecules or pathways involved in virus multiplication represent an interesting strategy to combat viruses presently lacking effective chemotherapy. HTA could provide a wide range of agents with inhibitory activity against current and future viruses that share similar host requirements and reduce the possible selection of antiviral-resistant variants. Nucleotide metabolism is one of the more exploited host metabolic pathways as a potential antiviral target for several human viruses. This review focuses on the antiviral properties of the inhibitors of pyrimidine and purine nucleotide biosynthesis, with an emphasis on the rate-limiting enzymes dihydroorotate dehydrogenase (DHODH) and inosine monophosphate dehydrogenase (IMPDH) for which there are old and new drugs active against a broad spectrum of pathogenic viruses.
Collapse
Affiliation(s)
- Claudia Soledad Sepúlveda
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Cybele Carina García
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Elsa Beatriz Damonte
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Identification of Inhibitors of ZIKV Replication. Viruses 2020; 12:v12091041. [PMID: 32961956 PMCID: PMC7551609 DOI: 10.3390/v12091041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in the Zika forest of Uganda and it has emerged recently as a global health threat, with recurring outbreaks and its associations with congenital microcephaly through maternal fetal transmission and Guillain-Barré syndrome. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines or antivirals to treat ZIKV infections, which underscores an urgent medical need for the development of disease intervention strategies to treat ZIKV infection and associated disease. Drug repurposing offers various advantages over developing an entirely new drug by significantly reducing the timeline and resources required to advance a candidate antiviral into the clinic. Screening the ReFRAME library, we identified ten compounds with antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV). Moreover, we showed the ability of these ten compounds to inhibit influenza A and B virus infections, supporting their broad-spectrum antiviral activity. In this study, we further evaluated the broad-spectrum antiviral activity of the ten identified compounds by testing their activity against ZIKV. Among the ten compounds, Azaribine (SI-MTT = 146.29), AVN-944 (SI-MTT = 278.16), and Brequinar (SI-MTT = 157.42) showed potent anti-ZIKV activity in post-treatment therapeutic conditions. We also observed potent anti-ZIKV activity for Mycophenolate mofetil (SI-MTT = 20.51), Mycophenolic acid (SI-MTT = 36.33), and AVN-944 (SI-MTT = 24.51) in pre-treatment prophylactic conditions and potent co-treatment inhibitory activity for Obatoclax (SI-MTT = 60.58), Azaribine (SI-MTT = 91.51), and Mycophenolate mofetil (SI-MTT = 73.26) in co-treatment conditions. Importantly, the inhibitory effect of these compounds was strain independent, as they similarly inhibited ZIKV strains from both African and Asian/American lineages. Our results support the broad-spectrum antiviral activity of these ten compounds and suggest their use for the development of antiviral treatment options of ZIKV infection.
Collapse
|