1
|
Shaaban F, Salem Sokhn E, Khalil C, Saleh FA. Antimicrobial activity of adipose-derived mesenchymal stromal cell secretome against methicillin-resistant Staphylococcus aureus. Stem Cell Res Ther 2025; 16:21. [PMID: 39849590 PMCID: PMC11755800 DOI: 10.1186/s13287-025-04138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is still a growing concern in the field of antimicrobial resistance due to its resistance to conventional antibiotics and its association with high mortality rates. Mesenchymal stromal cells (MSCs) have been shown as a promising and attractive alternative treatment for bacterial infections, due to their antibacterial properties and potential to bypass traditional resistance mechanisms. This study aims to shed light on the antibacterial potential of adipose-derived mesenchymal stromal cell (AD-MSC) secretome against clinical isolates of Staphylococcus spp., including MRSA strains. METHODS Using the Kirby-Bauer disk diffusion method, broth microdilution assays, and colony-forming unit (CFU) counting, the antibacterial activity of AD-MSC secretome was assessed. These tests were first conducted on Staphylococcus (S.) aureus ATCC 25923, then on 73 clinical isolates including MRSA strains. Further molecular analysis was performed to identify resistant genes in MRSA isolates. RESULTS The AD-MSC secretome demonstrated significant antibacterial activity against S. aureus ATCC with a 32 mm inhibition zone. 96% of the collected staphylococcal clinical isolates showed susceptibility to the secretome with 87.5% inhibition observed in MRSA isolates, along with 100% in MSSA, MSSE, and MRSE strains. Molecular analysis revealed that MRSA strains resistant to the secretome harbored mecA, ermA, and ermB genes. Additionally, the mecA-negative MRSA strains remained susceptible to the secretome, suggesting alternative resistance mechanisms. CONCLUSION These findings emphasize the ability of AD-MSCs secretome as a promising alternative for treating antibiotic-resistant infections, with potential applications in combating MRSA. However, further research is required to explore its clinical applications as a complementary or standalone therapy for resistant infections.
Collapse
Affiliation(s)
- Fatimah Shaaban
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Elie Salem Sokhn
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Regenerative Medicine Center, Bsalim, Lebanon
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE
- School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Fatima A Saleh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| |
Collapse
|
2
|
Ahangari F, Soudi S, Ghaffari Khaligh S, Mirsanei Z, Soufihasanabad S, Ebadi Asl P, Mahmoud Hashemi S. Combinational therapy of mesenchymal stem cell-derived extracellular vesicles and azithromycin improves clinical and histopathological recovery in CLP sepsis model. Int Immunopharmacol 2024; 139:112732. [PMID: 39053229 DOI: 10.1016/j.intimp.2024.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Sepsis is a syndrome that occurs following an infection and marked by severe inflammatory responses, and if not treated in time, it can lead to multi-organ failure syndrome and death. This study examines the effects of a novel combination therapy using azithromycin and mesenchymal stem cell-derived extracellular vesicles (EVs) on a cecal ligation and puncture (CLP) model of sepsis. METHODS Human Wharton's jelly-mesenchymal stem cells were cultured, characterized, and used to extract EVs. The CLP sepsis model was induced in mice, followed by treatments: saline, AZM, EVs, and combination therapy (A+E). Clinical sepsis scores were recorded 24 h post-treatment. Serum, peritoneal fluid, and organ tissues (kidney, liver, lung) were collected and analyzed for biochemical parameters (AST ALT, and creatinine), inflammatory markers, bacterial load, and histopathological changes. RESULTS The A+E combined treatment improved the clinical scores of septic mice. The administration of A+E reduced bacterial loads in the peritoneum of septic mice, contributing to effective control of infection. Inflammatory markers of neutrophils-to-lymphocytes ratio (NLR) and TNF-α serum levels were significantly lower in the combinational therapy group, indicating significant anti-inflammatory effect of this combination. Additionally, combination of AZM and EVs alleviated organ damage mainly within liver, kidneys and lungs. Based on histopathological assessments and biochemical parameters, there was diminished tissue damage as well as reduced inflammation, which is correlated with improved functions of these vital organs. CONCLUSION The combined use of azithromycin and EVs offers a promising therapeutic approach for sepsis by effectively controlling infection and modulating the inflammatory response.
Collapse
Affiliation(s)
- Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soufihasanabad
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Pedram Ebadi Asl
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bagheri-Josheghani S, Saffari M, Radaei T, Mirzaei H, Rashki S, Fatemi-Nasab ZS, Derakhshan-Nezhad E, Bakhshi B. The effect of mesenchymal stem cell conditioned medium incorporated within chitosan nanostructure in clearance of common gastroenteritis bacteria in-vitro and in-vivo. Sci Rep 2024; 14:14274. [PMID: 38902286 PMCID: PMC11190150 DOI: 10.1038/s41598-024-64465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Gastroenteritis infection is a major public health concern worldwide, especially in developing countries due to the high annual mortality rate. The antimicrobial and antibiofilm activity of human mesenchymal stem cell-derived conditioned medium (hMSCsCM) encapsulated in chitosan nanoparticles (ChNPs) was studied in vitro and in vivo against common gastroenteritis bacteria. The synthesized ChNPs were characterized using Zeta potential, scanning electron microscopy (SEM), and dynamic light scattering (DLS) techniques. HMSC-derived conditioned medium incorporated into chitosan NPs (hMSCsCM-ChNPs) composite was fabricated by chitosan nanoparticles loaded with BM-MSCs (positive for CD73 and CD44 markers). The antimicrobial and antibiofilm activity of composite was investigated against four common gastroenteritis bacteria (Campylobacter jejuni ATCC29428, Salmonella enteritidis ATCC13076, Shigella dysenteriae PTCC1188, and E. coli ATCC25922) in-vitro and in-vivo. Majority of ChNPs (96%) had an average particle size of 329 nm with zeta potential 7.08 mV. The SEM images confirmed the synthesis of spherical shape for ChNPs and a near-spherical shape for hMSCsCM-ChNPs. Entrapment efficiency of hMSCsCM-ChNPs was 75%. Kinetic profiling revealed that the release rate of mesenchymal stem cells was reduced following the pH reduction. The antibacterial activity of hMSCsCM-ChNPs was significantly greater than that of hMSCsCM and ChNPs at dilutions of 1:2 to 1:8 (P < 0.05) against four common gastroenteritis bacteria. The number of bacteria present decreased more significantly in the group of mice treated with the hMSCsCM-ChNPs composite than in the groups treated with hMSCsCM and ChNPs. The antibacterial activity of hMSCsCM against common gastroenteritis bacteria in an in vivo assay decreased from > 106 CFU/ml to approximately (102 to 10) after 72 h. Both in vitro and in vivo assays demonstrated the antimicrobial and antibiofilm activities of ChNPs at a concentration of 0.1% and hMSCsCM at a concentration of 1000 μg/ml to be inferior to that of hMSCsCM-ChNPs (1000 μg/ml + 0.1%) composite. These results indicated the existence of a synergistic effect between ChNPs and hMSCsCM. The designed composite exhibited notable antibiofilm and antibacterial activities, demonstrating optimal release in simulated intestinal lumen conditions. The utilization of this composite is proposed as a novel treatment approach to combat gastroenteritis bacteria in the context of more challenging infections.
Collapse
Affiliation(s)
| | - Mahmood Saffari
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tooba Radaei
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somaye Rashki
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Zahra Sadat Fatemi-Nasab
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Bita Bakhshi
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR, Iran.
| |
Collapse
|
4
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
5
|
Mahmoudjanlou H, Saberpour M, Bakhshi B. Antimicrobial, anti-adhesive, and anti-invasive effects of condition media derived from adipose mesenchymal stem cells against Shigella flexneri. Arch Microbiol 2024; 206:142. [PMID: 38441673 DOI: 10.1007/s00203-024-03860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/07/2024]
Abstract
The objective of the current study was to examine the antimicrobial, anti-adhesion, and anti-invasion properties of various concentrations of condition media obtained from adipose mesenchymal stem cells (AD-MSCs CM) against Shigella flexneri (S. flexneri). AD-MSCs characterization and antimicrobial assay were performed using flow cytometry and microdilution by colony counting, respectively. For evaluating adhesion and invasion, Caco-2 cells were infected by S. flexneri at three different multiplicities of infection (MOIs of 1, 10, and 50) and then treated with DMEM medium and AD-MSCs CM. The inhibitory effect of AD-MSCs CM was assessed after 24 and 48 h of treatment by CFU (colony-forming unit) counting. A total of 84, 65, and 56% reduction in the adhesion rate of S. flexneri to Caco-2 cells treated with AD-MSCs CM were observed at MOIs of 1, 10, and 50, respectively. While S. flexneri at MOI:1 had no invasive effect on Caco-2 cells, convincing invasion was detected at MOIs of 10 and 50, showing a significant decrease following treatment with AD-MSCs CM. The current study results open new insights into AD-MSCs CM as a new non-antibiotic therapeutic candidate for S. flexneri infections.
Collapse
Affiliation(s)
- Hodiseh Mahmoudjanlou
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116, Iran
| | - Masoumeh Saberpour
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116, Iran.
| |
Collapse
|
6
|
Bicer M, Fidan O. Can mesenchymal stem/stromal cells and their secretomes combat bacterial persisters? World J Microbiol Biotechnol 2023; 39:276. [PMID: 37567959 DOI: 10.1007/s11274-023-03725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The increasing number of life-threatening infections caused by persister bacteria is associated with various issues, including antimicrobial resistance and biofilm formation. Infections due to persister cells are often difficult to suppress without the use of last-resort antibiotics. Throughout the world, bacterial persistence and resistance create an unmet clinical demand for the exploration of newly introduced therapeutic approaches. Mesenchymal stem / stromal cells (MSCs) have an antimicrobial activity to protect against bacterial infections, including those caused by bacterial persisters. MSCs have substantial potential to secrete antimicrobial peptides (AMPs), including cathelicidin, beta-defensins, lipocalin-2, hepcidin, indoleamine 2,3-dioxygenase (IDO), cysteine proteases, and inducible nitric oxide synthases (iNOS). MSCs possess the potential to contribute to innate immunity by regulating the immune response. Recently, MSCs and their secreted components have been reported to improve antimicrobial activity. Bactericidal activity by MSCs and their secretomes has been shown to be mediated in part by the secretion of AMPs. Even though they were discovered more than 80 years ago, therapeutic options for persisters are restricted, and there is an urgent need for alternative treatment regimens. Hence, this review intends to critically assess the current literature on the effects of MSCs and their secretomes on persister bacteria. MSCs and their secretome-based therapies could be preferred as an up-and-coming approach to reinforce the antimicrobial efficiency in persister infections.
Collapse
Affiliation(s)
- Mesude Bicer
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey.
| | - Ozkan Fidan
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey
| |
Collapse
|
7
|
Pezzanite LM, Chow L, Strumpf A, Johnson V, Dow SW. Immune Activated Cellular Therapy for Drug Resistant Infections: Rationale, Mechanisms, and Implications for Veterinary Medicine. Vet Sci 2022; 9:610. [PMID: 36356087 PMCID: PMC9695672 DOI: 10.3390/vetsci9110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Antimicrobial resistance and biofilm formation both present challenges to treatment of bacterial infections with conventional antibiotic therapy and serve as the impetus for development of improved therapeutic approaches. Mesenchymal stromal cell (MSC) therapy exerts an antimicrobial effect as demonstrated in multiple acute bacterial infection models. This effect can be enhanced by pre-conditioning the MSC with Toll or Nod-like receptor stimulation, termed activated cellular therapy (ACT). The purpose of this review is to summarize the current literature on mechanisms of antimicrobial activity of MSC with emphasis on enhanced effects through receptor agonism, and data supporting use of ACT in treatment of bacterial infections in veterinary species including dogs, cats, and horses with implications for further treatment applications. This review will advance the field's understanding of the use of activated antimicrobial cellular therapy to treat infection, including mechanisms of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alyssa Strumpf
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Michigan State University, Lansing, MI 48824, USA
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Kaigorodov DG, Kaigorodova AD. The non-protein fraction of embryonic stem cell secretome has antibacterial effects against antibiotic-resistant strains of bacteria. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-npf-1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years, the search for new antibacterial agents has been shown to be extremely important, as the burgeoning problem of antibiotic resistance and the toxicity of many antimicrobial compounds has forced scientists to turn their attention to alternatives. Searching stem cell secretomes, including the non-protein part, for new antimicrobials is a promising area of current research. We investigated the effect of the non-protein part of an embryonic stem cell secretome on various bacterial strains, including antibiotic-resistant ones. The non-protein fraction of the stem cell secretome was obtained by preparative high-performance liquid chromatography. Bactericidal activity was tested against eight museum strains and 206 clinical strains of bacteria by comparing the secretomes effects on growth of bacterial cultures. The museum strains showed some dose-dependent effects at concentrations of 25-100 g/ml. Against the clinical strains of Gram-negative microorganisms of different species, some bactericidal activity was shown at a concentration of 100 g/ml, but sensitivity of bacteria to the secretome fraction varied, with growth stimulation being detected in some strains. Application of higher concentrations of 100-1000 g/ml showed no dose-dependent effect. The clinical strains of E. coli and P. aeruginosa were shown to have reduced bactericidal activity after one day of incubation. Thus, this study has shown that the non-protein fraction of the embryonic stem cell secretome has bactericidal effects against some strains. However, more detailed studies are needed to identify the mechanism of action and to determine the most effective dose and frequency of administration.
Collapse
|
9
|
Saberpour M, Najar-Peeraye S, Shams S, Bakhshi B. Effects of chitosan nanoparticles loaded with mesenchymal stem cell conditioned media on gene expression in Vibrio cholerae and Caco-2 cells. Sci Rep 2022; 12:9781. [PMID: 35697926 PMCID: PMC9192724 DOI: 10.1038/s41598-022-14057-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio (V.) cholerae forms a pellicle for self-defense in the pathological conditions in the intestine, which protects it against antibiotics and adverse conditions. Targeting biofilm genes and Toll-like receptors (TLRs) is one of the new strategies to combat multidrug-resistant bacteria. The objective of this study was to evaluate the effect of mesenchymal stem cell conditioned media (MSC CM; 1000 µg), chitosan nanoparticles incorporated with mesenchymal stem cell conditioned media (MSC CM-CS NPs; 1000 µg + 0.05%), and chitosan nanoparticles (CS NPs; 0.05%) on the expression of bap1 and rbmC biofilm genes in V. cholerae and TLR2 and TLR4 genes in Caco-2 cells. The bacteria were inoculated in the presence or absence of MSC CM, MSC CM-CS NPs, and CS NPs for 24 h at 37 °C to evaluate the expression of biofilm genes. The Caco-2 cells were also exposed to V. cholerae for 1 h and then MSC CM, MSC CM-CS NPs, and CS NPs for 18 h at 37 °C. After these times, RNA was extracted from Caco-2 cells and bacteria exposed to the compounds, and the expression of target genes was evaluated using real-time PCR. Caco-2 cell viability was also assessed by MTT assay. After adding MSC CM, MSC CM-CS NPs, and CS NPs to V. cholerae medium, the percentage reduction in gene expression of bap1 was 96, 91, and 39%, and rbmC was 93, 92, and 32%, respectively. After adding MSC CM, MSC CM-CS NPs, and CS NPs to the Caco-2 cell medium, the percentage reduction in the gene expression of TLR4 was 89, 90, and 82%, and TLR2 was 41, 43, and 32%, respectively. MTT showed that Caco-2 cell viability was high and the compounds had little toxicity on these cells. Finally, it suggests that MSC CM-CS NPs designed may be a therapeutic agent to combat inflammation and biofilm formation in multidrug-resistant V. cholerae. However, further studies in vivo are also recommended.
Collapse
Affiliation(s)
- Masoumeh Saberpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peeraye
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 PMCID: PMC8510528 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
Affiliation(s)
- Timothy D. Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
11
|
Antimicrobial and Regenerative Effects of Placental Multipotent Mesenchymal Stromal Cell Secretome-Based Chitosan Gel on Infected Burns in Rats. Pharmaceuticals (Basel) 2021; 14:ph14121263. [PMID: 34959663 PMCID: PMC8707738 DOI: 10.3390/ph14121263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background: There is a need for better strategies to promote burn wound healing and prevent infection. The aim of our study was to develop an easy-to-use placental multipotent mesenchymal stromal cell (MMSC) secretome-based chitosan hydrogel (MSC-Ch-gel) and estimate its antimicrobial and regenerative activity in Staphylococcus aureus-infected burn wounds in rats. Methods: Proteomic studies of the MMSC secretome revealed proteins involved in regeneration, angiogenesis, and defence responses. The MMSC secretome was collected from cultured cells and mixed with water-soluble chitosan to prepare the placental MSC-Ch-gel, which was stored in liquid phase at 4 °C. The wounds of rats with established II-IIIa-degree burns were then infected with S. aureus and externally covered with the MSC-Ch-gel. Three additional rat groups were treated with medical Vaseline oil, the antiseptic drug Miramistin®, or the drug Bepanthen® Plus. Skin wound samples were collected 4 and 8 days after burning for further microbiological and histological analysis. Blood samples were also collected for biochemical analysis. Results: Application of the MSC-Ch-gel cleared the wound of microorganisms (S. aureus wasn’t detected in the washings from the burned areas), decreased inflammation, enhanced re-epithelialisation, and promoted the formation of well-vascularised granulation tissue. Conclusions: MSC-Ch-gel effectively promotes infected wound healing in rats with third-degree burns. Gel preparation can be easily implemented into clinical practice.
Collapse
|
12
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Res Ther 2021; 12:564. [PMID: 34732259 PMCID: PMC8567566 DOI: 10.1186/s13287-021-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causative agent of cholera, which is commonly associated with high morbidity and mortality, and presents a major challenge to healthcare systems throughout the world. Lipopolysaccharide (LPS) is required for full protection against V. cholerae but can induce inflammation and septic shock. Mesenchymal stem cells (MSCs) are currently used to treat infectious and inflammatory diseases. Therefore, this study aimed to evaluate the immune-modulating effects of the LPS-MSC-conditioned medium (CM) on V. cholerae LPS immunization in a murine model. METHODS After preconditioning MSCs with LPS, mice were immunized intraperitoneally on days 0 and 14 with the following combinations: LPS + LPS-MSC-CM; detoxified LPS (DLPS) + MSC-CM; LPS + MSC sup; LPS; LPS-MSC-CM; MSC supernatant (MSC sup); and PBS. The mouse serum and saliva samples were collected to evaluate antibody (serum IgG and saliva IgA) and cytokine responses (TNF-α, IL-10, IL-6, TGF-β, IL-4, IL-5, and B-cell activating factor (BAFF)). RESULTS The LPS + LPS-MSC-CM significantly increased total IgG and IgA compared to other combinations (P < 0.001). TNF-α levels, in contrast to IL-10 and TGF-β, were reduced significantly in mice receiving the LPS + LPS-MSC-CM compared to mice receiving only LPS. IL-4, IL-5, and BAFF levels significantly increased in mice receiving increased doses of LPS + LPS-MSC-CM compared to those who received only LPS. The highest vibriocidal antibody titer (1:64) was observed in LPS + LPS-MSC-CM-immunized mice and resulted in a significant improvement in survival in infant mice infected by V. cholerae O1. CONCLUSIONS The LPS-MSC-CM modulates the immune response to V. cholerae LPS by regulating inflammatory and anti-inflammatory responses and inducing vibriocidal antibodies, which protect neonate mice against V. cholerae infection.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| |
Collapse
|
13
|
Planat-Benard V, Varin A, Casteilla L. MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Front Immunol 2021; 12:626755. [PMID: 33995350 PMCID: PMC8120150 DOI: 10.3389/fimmu.2021.626755] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are currently widely used in cell based therapy regarding to their remarkable efficacy in controlling the inflammatory status in patients. Despite recent progress and encouraging results, inconstant therapeutic benefits are reported suggesting that significant breakthroughs in the understanding of MSCs immunomodulatory mechanisms of action remains to be investigated and certainly apprehended from original point of view. This review will focus on the recent findings regarding MSCs close relationship with the innate immune compartment, i.e. granulocytes and myeloid cells. The review will also consider the intercellular mechanism of communication involved, such as factor secretion, cell-cell contact, extracellular vesicles, mitochondria transfer and efferocytosis. Immune-like-properties of MSCs supporting part of their therapeutic effect in the clinical setting will be discussed, as well as their potentials (immunomodulatory, anti-bacterial, anti-inflammatory, anti-oxidant defenses and metabolic adaptation…) and effects mediated, such as cell polarization, differentiation, death and survival on various immune and tissue cell targets determinant in triggering tissue regeneration. Their metabolic properties in term of sensing, reacting and producing metabolites influencing tissue inflammation will be highlighted. The review will finally open to discussion how ongoing scientific advances on MSCs could be efficiently translated to clinic in chronic and age-related inflammatory diseases and the current limits and gaps that remain to be overcome to achieving tissue regeneration and rejuvenation.
Collapse
Affiliation(s)
- Valerie Planat-Benard
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Audrey Varin
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Saberpour M, Bakhshi B, Najar-peerayeh S. Evaluation of the Antimicrobial and Antibiofilm Effect of Chitosan Nanoparticles as Carrier for Supernatant of Mesenchymal Stem Cells on Multidrug-Resistant Vibrio cholerae. Infect Drug Resist 2020; 13:2251-2260. [PMID: 32765001 PMCID: PMC7367937 DOI: 10.2147/idr.s244990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
AIM The aim of the present study was to evaluate the in vitro antimicrobial and antibiofilm activity of chitosan nanoparticles (CS NPs) incorporated with mesenchymal stem cells-derived conditioned media (MSCs CM) on MDR Vibrio cholerae strains. MATERIALS AND METHODS Chitosan NPs were prepared and characterized by dynamic light scattering (DLS), scanning electron microscope (SEM) and zeta potential measurement. MSCs CM were prepared and entrapped into MSCs CM-CS NPs composite and its release efficiency was measured. Antibacterial efficacy of nano structures was determined by disk diffusion and broth microdilution methods. Antibiofilm activity was assessed by crystal violet assay. RESULTS BM-MSCs were characterized to be negative for CD34 and CD45 markers, positive for CD73 and CD44 markers, and able to differentiate into osteoblast and adipocyte cells. The mean particle size of 96.6% of chitosan NPs was 414.9 nm with a suitable zeta potential and SEM morphology. Entrapment efficiency of MSCs CM-CS NPs was 76.9%. Unstimulated MSCs CM-CS NPs composite as a novel and proficient therapeutic nanostructure against MDR V. cholerae strains showed the synergistic activity of the two components of MSCs CM and CS NPs, leading to greater bacterial killing compared to control groups. MSCs CM more efficiently inhibited biofilm formation, although MSCs CM-CS NPs was also appeared to be effective in inhibiting biofilm formation compared to CS NPs and control group. CONCLUSION The designed nanodrug composite showed the best release in conditions mimicking the physiological conditions of the intestinal lumen. Given the fact that no overuse or genetic event would cause the emergence of antimicrobial resistance against the MSCs CM-CS NPs nanodrug, it could be considered as a promising alternative for the treatment of MDR V. cholerae infections in clinical settings.
Collapse
Affiliation(s)
- Masoumeh Saberpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University Tehran, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University Tehran, Tehran, Iran
| | - Shahin Najar-peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University Tehran, Tehran, Iran
| |
Collapse
|