1
|
Zhong HZ, Yan PJ, Gao QF, Wu J, Ji XL, Wei SB. Therapeutic potential of botanical drugs and their metabolites in the treatment of pelvic inflammatory disease. Front Pharmacol 2025; 16:1545917. [PMID: 40276605 PMCID: PMC12018882 DOI: 10.3389/fphar.2025.1545917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
The application of botanical drugs and their metabolites in the treatment of pelvic inflammatory disease (PID) has garnered significant attention. Owing to their broad-spectrum activity, global accessibility, and structural diversity, botanical drugs have emerged as promising candidates for adjunctive or alternative therapies. This review systematically summarizes botanical drugs and their metabolites, focusing on their antimicrobial potential against endogenous and exogenous pathogens associated with PID. Specifically, it addresses various underlying antibacterial mechanisms, including interference with bacterial cell membranes and cell walls, inhibition of pathogen-specific efflux pumps, modulation of pathogen-related gene expression, and synergistic effects when combined with conventional antibiotics. This review highlights the therapeutic promise of botanical drugs and their metabolites, emphasizing critical findings regarding their inhibitory effects on PID-associated pathogens. Such insights provide valuable guidance for future therapeutic strategies and may support ongoing antibiotic discovery and development.
Collapse
Affiliation(s)
- Han-Zhi Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Jia Yan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi-Feng Gao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jue Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Li Ji
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shao-Bin Wei
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Chauhan R, Patel H, Bhardwaj B, Suryawanshi V, Rawat S. Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114. Biometals 2025; 38:485-504. [PMID: 39708209 DOI: 10.1007/s10534-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Increasing antibiotic resistance among the common nosocomial pathogen i.e. Acinetobacter baumannii poses life threat to the health care workers as well as to the society. The dissemination of antibiotic resistance in this pathogen at an alarming rate could be not only due to the overuse of antibiotics but also due to the stress caused by exposure of bacterium to several environmental contaminants in their niches. In the present study, effect of copper stress on augmentation in the antibiotic resistance of A. baumannii MCC 3114 against three clinically used antibiotics was investigated along with the phenotypic and genotypic alterations in the cell. It induced 8, 44 and 22-fold increase in resistance against colistin, ciprofloxacin and levofloxacin, respectively. Moreover, the biofilm formation of adapted culture was significantly enhanced due to a dense EPS around the cell (as revealed by SEM images). The structural changes in EPS were demonstrated by FTIR spectroscopy. The adequate growth of adapted MCC 3114 despite increased level of ROS indicates its persistence in copper and ROS stress. The physiological alterations in cell viz., increased efflux pump activity and decreased membrane permeability was observed. Molecular analysis revealed increased expression of efflux pump related genes, oxidative stress genes, integron and antibiotic resistance genes. In sum, our study revealed that the exposure of the critical pathogen, A. baunmannii to copper in hospital settings and environmental reservoirs can impose adaptive pressure which may lead to genotypic as well phenotypic changes in cell resulting into the augmentation of antibiotic resistance.
Collapse
Affiliation(s)
- Ravi Chauhan
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Hardi Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Bhavna Bhardwaj
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Vijay Suryawanshi
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Seema Rawat
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
3
|
Neves MAD, de Jesus CM, de Oliveira JL, Buna SDSS, Silva LA, Fraceto LF, da Rocha CQ. Zein Nanoparticles-Loaded Flavonoids-Rich Fraction from Fridericia platyphylla: Potential Antileishmanial Applications. Pharmaceutics 2024; 16:1603. [PMID: 39771581 PMCID: PMC11678320 DOI: 10.3390/pharmaceutics16121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Leishmaniasis, caused by protozoa of the genus Leishmania, is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from Fridericia platyphylla (Syn. Arrabidaea brachypoda), a plant rich in dimeric flavonoids called brachydins. Methods: Zein nanoparticles were used as carriers to encapsulate DCMF. The system was characterized by measuring particle diameter, polydispersity index, zeta potential, and encapsulation efficiency. Analytical techniques such as FTIR, DSC, and AFM were employed to confirm the encapsulation and stability of DCMF. Antileishmanial activity was assessed against Leishmania amazonensis promastigotes and amastigotes, while cytotoxicity was tested on RAW264.7 macrophages. Results: The ZNP-DCMF system exhibited favorable properties, including a particle diameter of 141 nm, a polydispersity index below 0.2, and a zeta potential of 11.3 mV. DCMF was encapsulated with an efficiency of 94.6% and remained stable for 49 days. In antileishmanial assays, ZNP-DCMF inhibited the viability of promastigotes with an IC50 of 36.33 μg/mL and amastigotes with an IC50 of 0.72 μg/mL, demonstrating higher selectivity (SI = 694.44) compared to DCMF alone (SI = 43.11). ZNP-DCMF was non-cytotoxic to RAW264.7 macrophages, with a CC50 > 500 μg/mL. Conclusions: Combining F. platyphylla DCMF with zein nanoparticles as a carrier presents a promising approach for leishmaniasis treatment, offering improved efficacy, reduced toxicity, and protection of bioactive compounds from degradation.
Collapse
Affiliation(s)
- Monica Araujo das Neves
- PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (M.A.d.N.); (S.d.S.S.B.)
| | - Caroline Martins de Jesus
- PostGraduate Program in Health Sciences, Center for Biological and Health Sciences (CCBS), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (C.M.d.J.); (L.A.S.)
| | - Jhones Luiz de Oliveira
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba 18087-180, Brazil; (J.L.d.O.); (L.F.F.)
| | - Samuel dos Santos Soares Buna
- PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (M.A.d.N.); (S.d.S.S.B.)
| | - Lucilene Amorim Silva
- PostGraduate Program in Health Sciences, Center for Biological and Health Sciences (CCBS), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (C.M.d.J.); (L.A.S.)
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba 18087-180, Brazil; (J.L.d.O.); (L.F.F.)
| | - Cláudia Quintino da Rocha
- PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (M.A.d.N.); (S.d.S.S.B.)
| |
Collapse
|
4
|
das Neves MA, do Nascimento JR, Maciel-Silva VL, Dos Santos AM, Junior JDJGV, Coelho AJS, Lima MIS, Pereira SRF, da Rocha CQ. Anti-Leishmania activity and molecular docking of unusual flavonoids-rich fraction from Arrabidaea brachypoda (Bignoniaceae). Mol Biochem Parasitol 2024; 259:111629. [PMID: 38750697 DOI: 10.1016/j.molbiopara.2024.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.
Collapse
Affiliation(s)
- Monica A das Neves
- UFMA-Federal University of Maranhão, Center for Exact Sciences and Technology (CCET), Post Graduate Program in Chemistry, São Luís CEP 65080-805, Brazil
| | - Jessyane R do Nascimento
- UNESP, São Paulo State University Júlio de Mesquita Filho, Institute of Chemistry, Post Graduate Program in Chemistry, Araraquara CEP 14800-060, Brazil
| | - Vera Lucia Maciel-Silva
- UEMA, Maranhão State University, Center for Education, Exact and Natural Sciences (CECEN), Department of Biology, CEP: 65055-310, São Luís, Brazil
| | - Alberto M Dos Santos
- UNICAMP - University of Campinas, Institute of Chemistry and Center for Computer in Engineering and Sciences, Campinas CEP 13084-862, Brazil
| | | | - Ana Jessica S Coelho
- UFMA-Federal University of Maranhão, Laboratory of Genetics and Molecular Biology, Department of Biology, São Luís CEP 65080-805, Brazil
| | - Mayara Ingrid S Lima
- UFMA-Federal University of Maranhão, Laboratory of Genetics and Molecular Biology, Department of Biology, São Luís CEP 65080-805, Brazil
| | - Silma Regina F Pereira
- UFMA-Federal University of Maranhão, Laboratory of Genetics and Molecular Biology, Department of Biology, São Luís CEP 65080-805, Brazil
| | - Cláudia Q da Rocha
- UFMA-Federal University of Maranhão, Center for Exact Sciences and Technology (CCET), Post Graduate Program in Chemistry, São Luís CEP 65080-805, Brazil.
| |
Collapse
|
5
|
Martin ALAR, Pereira RLS, Rocha JE, Farias PAM, Freitas TS, Caldas FRDL, Figueredo FG, Sampaio NFL, Oliveira-Tintino CDDM, Tintino SR, da Hora GCA, Lima MCP, de Menezes IRA, Carvalho DT, Coutinho HDM, Fonteles MMF. Unlocking bacterial defense: Exploring the potent inhibition of NorA efflux pump by coumarin derivatives in Staphylococcus aureus. Microb Pathog 2024; 190:106608. [PMID: 38503396 DOI: 10.1016/j.micpath.2024.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.
Collapse
Affiliation(s)
- Ana Luíza A R Martin
- Department of Physiology and Pharmacology, Federal University of Ceará - UFC, 60430-160, Fortaleza, Brazil; Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil; School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil
| | | | - Janaína Esmeraldo Rocha
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | - Pablo A M Farias
- School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil; CECAPE College, 63024-015, Juazeiro do Norte, Brazil
| | - Thiago S Freitas
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | | | - Fernando G Figueredo
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil; School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil
| | - Nadghia Figueiredo Leite Sampaio
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil; School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | | | | | - Irwin Rose A de Menezes
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | - Diogo T Carvalho
- School of Pharmacy, Federal University of Alfenas - UNIFAL, 37130-001, Alfenas, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil.
| | - Marta M F Fonteles
- Department of Physiology and Pharmacology, Federal University of Ceará - UFC, 60430-160, Fortaleza, Brazil
| |
Collapse
|
6
|
Rosa DS, Oliveira SADS, Souza RDFS, de França CA, Pires IC, Tavares MRS, de Oliveira HP, da Silva Júnior FAG, Moreira MAS, de Barros M, de Menezes GB, Antunes MM, Azevedo VADC, Naue CR, da Costa MM. Antimicrobial and antibiofilm activity of highly soluble polypyrrole against methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2024; 135:lxae072. [PMID: 38503568 DOI: 10.1093/jambio/lxae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
AIMS The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.
Collapse
Affiliation(s)
- Danillo Sales Rosa
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco 56300-000, Brazil
| | | | | | | | | | | | | | | | | | - Mariana de Barros
- Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Maísa Mota Antunes
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Carine Rosa Naue
- Hospital Universitário da Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco 56304-205, Brazil
| | | |
Collapse
|
7
|
de Barros M, da Silva Lopes I, Moreira AJ, Dos Santos Oliveira Almeida R, Matiuzzi da Costa M, Mota RA, Nero LA, Scatamburlo Moreira MA. Multidrug Efflux System-mediated resistance in Staphylococcus aureus under a One Health approach. World J Microbiol Biotechnol 2023; 40:9. [PMID: 37938391 DOI: 10.1007/s11274-023-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
The aim of the study was to track the spread of antimicrobial resistance among the different sectors of One Health through the detection of Multidrug-Efflux-System in multidrug-resistant Staphylococcus aureus isolates. Multidrug-resistant (MDR) and methicillin-resistant (MRSA) S. aureus isolates were selected: 25 of human, one of animal and eight of food origin. The efflux system genes norA, norB, norC, LmrS, tet38 and msrA were screened by PCR. The activity of the efflux systems was determined by the minimum inhibitory concentration (MIC) of tetracycline and ciprofloxacin in the presence and absence of CCCP and in the quantification of ethidium bromide efflux. Furthermore, biofilm formation was determined in the presence and absence of the CCCP. The molecular epidemiology of the isolates was traced with the aid of PFGE. The gene norC was the most prevalent, detected in all isolates and msrA was the least prevalent, detected in only two isolates from humans. There was no difference in the MICs of tetracycline and ciprofloxacin in the presence of CCCP, but 55.9% of isolates showed ethidium bromide efflux. The presence of CCCP decreased the biofilm formation. Regarding the molecular epidemiology, in three clusters was a mixture of the isolates from different origins. Therefore, S. aureus MDR with active multidrug efflux systems are circulating between One Health domains and it is necessary to consider strategies to decrease this circulation in order to prevent the dissemination of resistance mediated by MES.
Collapse
Affiliation(s)
- Mariana de Barros
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Ana Júlia Moreira
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Luis Augusto Nero
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
8
|
do Nascimento JR, de Matos Monteiro Lira BS, do Nascimento MO, Lopes GLN, Ferreira GM, de Souza Nunes GC, Gonçalves RS, Carvalho ALM, Vilegas W, da Rocha CQ. Innovative Microemulsion Loaded with Unusual Dimeric Flavonoids from Fridericia platyphylla (Cham.) L.G. Lohmann Roots. AAPS PharmSciTech 2023; 24:212. [PMID: 37848719 DOI: 10.1208/s12249-023-02655-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Fridericia platyphylla (Cham.) L.G. Lohmann is a species native to the Brazilian cerrado, with promising bioactivity. The organic fraction of the roots is rich in unusual dimeric flavonoids, reported as potential candidates for cancer treatment. The exploration of these flavonoids is very important, considering their diverse biological activities and the need for innovative therapeutic options. This work aimed to develop and characterize a microemulsion loaded with a non-polar fraction (DCM). The constituents were chosen, and the pseudo-ternary diagram was constructed to determine the region of microemulsion formation. The microemulsions blank (ME), with 3% (ME3) and 5% (ME5) of fraction DCM, were characterized in terms of droplet size, zeta potential, and polydispersity index. Both MEs showed particle sizes <100 nm; only ME3 exhibited better values for polydispersity index and zeta potential and was therefore selected for further study. The organoleptic and physicochemical characteristics were evaluated, revealing limpidity and transparency typical of these microstructures, physiologically acceptable pH, refractive index of 1.42±0.01, and density of 1.017 g/cm3±0.01. The stability tests showed good stability profiles even after exposure to extreme thermal conditions, with minimal changes in pH and the content of the incorporated fraction. The in vitro release study demonstrated that ME3 enabled the controlled release of the fraction, with a cumulative amount released over 60% within 6 h. Furthermore, fraction DCM and ME3 exhibited no toxicity in Tenebrio molitor larvae. The developed microemulsion exhibited excellent properties, so this study represents the first successful attempt to develop a formulation that incorporates the dimeric flavonoid fraction.
Collapse
Affiliation(s)
| | | | | | | | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- Institut of Biosciences, Coastal Campus of São Vicente, Paulista State University-UNESP, São Vicente, São Paulo, Brazil
| | | |
Collapse
|
9
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
10
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
11
|
Oliveira RC, Bandeira PN, Lemos TLG, Dos Santos HS, Scherf JR, Rocha JE, Pereira RLS, Freitas TS, Freitas PR, Pereira-Junior FN, Marinho MM, Marinho EM, Marinho ES, Nogueira CES, Coutinho HDM, Teixeira AMR. In silico and in vitro evaluation of efflux pumps inhibition of α,β-amyrin. J Biomol Struct Dyn 2022; 40:12785-12799. [PMID: 34528866 DOI: 10.1080/07391102.2021.1976277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of the bacterial efflux pump mechanism to reduce the concentrations of antibiotics in the intracellular to the extracellular region is one of the main mechanisms by which bacteria acquire resistance to antibiotics. The present study aims to evaluate the antibacterial activity of the α,β-amyrin mixture isolated from Protium heptaphyllum against the multidrug-resistant strains of Escherichia coli 06 and Staphylococcus aureus 10, and to verify the inhibition of the efflux resistance mechanisms against the strains of S. aureus 1199B and K2068, carrying the NorA and MepA efflux pumps, respectively. The α,β-amyrin did not show clinically relevant direct bacterial activity. However, the α,β-amyrin when associated with the gentamicin antibiotic presented synergistic effect against the multidrug-resistant bacterial strain of S. aureus 10. In strains with efflux pumps, α,β-amyrin was able to inhibit the action of the efflux protein NorA against Ethidium Bromide. However, this inhibitory effect was not observed in the MepA efflux pump. In addition, when evaluating the effect of standard efflux pump inhibitors, clorptomazine and CCCP, α,β-amyrin showed a decrease in MIC, demonstrating the presence of the efflux mechanism through synergism. Docking studies indicate that α, β-amyrin have a higher affinity energy to MepA, and NorA than ciprofloxacin and norfloxacin. Also, α, β-amyrin bind to the same region of the binding site as these antibiotics. It was concluded that the α, β-amyrin has the potential to increase antibacterial activity with the association of antibiotics, together with the ability to be a strong candidate for an efflux pump inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raíssa C Oliveira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Paulo N Bandeira
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Telma L G Lemos
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélcio S Dos Santos
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil.,Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Jackelyne R Scherf
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Janaina E Rocha
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo L S Pereira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Thiago S Freitas
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Priscila R Freitas
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Francisco N Pereira-Junior
- Center of Agricultural Sciences and of the Biodiversity, Federal University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Márcia M Marinho
- Faculty of Education, Sciences and Letters of Iguatu, State University of Ceará, Campus FECLI, Iguatu, CE, Brazil
| | - Emanuelle M Marinho
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Emmanuel S Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Carlos E S Nogueira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil.,Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Henrique D M Coutinho
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Alexandre M R Teixeira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil.,Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| |
Collapse
|
12
|
Benali T, Jaouadi I, Ghchime R, El Omari N, Harboul K, Hammani K, Rebezov M, Shariati MA, Mubarak MS, Simal-Gandara J, Zengin G, Park MN, Kim B, Mahmud S, Lee LH, Bouyahya A. The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants (Basel) 2022; 11:1842. [PMID: 36139916 PMCID: PMC9495358 DOI: 10.3390/antiox11091842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P. 133, Kenitra 14000, Morocco
| | - Rokia Ghchime
- Department of Clinical Neurophysiology, Hospital of Specialities, Rabat Institute, Ibn Sina University Hospital, Rabat 10056, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Kaoutar Harboul
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 109316 Moscow, Russia
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St., 127550 Moscow, Russia
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Universtiy, 42130 Konya, Turkey
| | - Moon-Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
13
|
Ethyl Acetate Fraction of Bixa orellana and Its Component Ellagic Acid Exert Antibacterial and Anti-Inflammatory Properties against Mycobacterium abscessus subsp. massiliense. Antibiotics (Basel) 2022; 11:antibiotics11060817. [PMID: 35740223 PMCID: PMC9220277 DOI: 10.3390/antibiotics11060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium abscessus subsp. massiliense (Mabs) causes chronic infections, which has led to the need for new antimycobacterial agents. In this study, we investigated the antimycobacterial and anti-inflammatory activities of the ethyl acetate fraction of Bixa orellana leaves (BoEA) and ellagic acid (ElAc). In silico analysis predicted that ElAc had low toxicity, was not mutagenic or carcinogenic, and had antimicrobial and anti-inflammatory activities. Apparently, ElAc can interact with COX2 and Dihydrofolate reductase (DHFR) enzymes, which could explain both activities. In vitro analysis showed that BoEA and ElAc exerted antimicrobial activity against Mabs (minimum inhibitory concentration of 1.56, 1.56 mg/mL and bactericidal concentration of 6.25, 3.12 mg/mL, respectively. Clarithromycin showed MIC and MBC of 1 and 6 µg/mL). Treatment with BoEA or ElAc increased survival of Tenebrio molitor larvae after lethal infection with Mabs and reduced carrageenan-induced paw edema in mice, around 40% of edema volume after the fourth hour, similarly to diclofenac. In conclusion, BoEA and ElAc exert antimicrobial effects against Mabs and have anti-inflammatory effects, making them potential sources of antimycobacterial drugs. The biological activities of ElAc may be due to its high binding affinities predicted for COX2 and DHFR enzymes.
Collapse
|
14
|
Abstract
The emergence of resistant microorganisms towards standard antibiotics has stimulated an on-going exploration for new sources of antimicrobials. The microbial susceptibility of extracts produced from leaf, bark, or rhizome parts of nine different New Zealand bushes was investigated using liquid broth dilution and agar plating techniques. Minimum inhibitory (MIC) and lethal concentrations (MLC) were expressed in micrograms of dry extract per milliliters of solution. The lowest MIC of 62.5 μg/mL was determined for methanol extract of Kunzea ericoides against Bacillus cereus and Candida albicans, and ethyl acetate extract of Pseudowintera colorata against Staphylococcus aureus. Additionally, K. ericoides also presented the lowest MLC of 250 μg/mL against S. aureus and B. cereus (methanol extract), and against S. aureus (ethyl acetate extract). The methanol extract of Weinmannia racemosa was lethal to B. cereus (MLC = 250 µg/mL). Some of the extracts of Phormium tenax, Schefflera digitata, and Pomaderris kumeraho were antimicrobial against S. aureus and B. cereus (MIC = 500 µg/mL). The extracts of Geniostoma ligustrifolium and Melicytus ramiflorus plants did not exhibit antimicrobial activity.
Collapse
|
15
|
Maciel-Silva VL, da Rocha CQ, Alencar LMR, Castelo-Branco PV, Sousa IHD, Azevedo-Santos AP, Vale AAM, Monteiro SG, Soares REP, Guimarães SJA, Nascimento JRD, Pereira SRF. Unusual dimeric flavonoids (brachydins) induce ultrastructural membrane alterations associated with antitumor activity in cancer cell lines. Drug Chem Toxicol 2022:1-12. [PMID: 35635136 DOI: 10.1080/01480545.2022.2080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.
Collapse
Affiliation(s)
- Vera Lucia Maciel-Silva
- Postgraduate Program in Biodiversity and Biotechnology-Bionorte, Federal University of Maranhão, São Luis, Brazil.,Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil.,Department of Biology, State University of Maranhão, São Luis, Brazil
| | - Claudia Quintino da Rocha
- Laboratory of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís, Brazil
| | | | | | - Israel Higino de Sousa
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Ana Paula Azevedo-Santos
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil
| | - André Alvares Marques Vale
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil.,Postgraduate Program in Health Sciences, Federal University of Maranhão, Maranhão, Brazil
| | - Silvio Gomes Monteiro
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Rossy-Eric Pereira Soares
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Sulayne Janayna Araujo Guimarães
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil.,Postgraduate Program in Health Sciences, Federal University of Maranhão, Maranhão, Brazil
| | | | - Silma Regina Ferreira Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| |
Collapse
|
16
|
The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022; 14:pharmaceutics14050963. [PMID: 35631550 PMCID: PMC9147598 DOI: 10.3390/pharmaceutics14050963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is resistant to several chemotherapeutic agents. Brachydin A (BrA), a glycosylated flavonoid extracted from Fridericia platyphylla, displays a remarkable antitumoral effect against in vitro mPCa cells cultured as bidimensional (2D) monolayers. Considering that three-dimensional (3D) cell cultures provide a more accurate response to chemotherapeutic agents, this study investigated the antiproliferative/antimetastatic effects of BrA and the molecular mechanisms underlying its action in mPCa spheroids (DU145) in vitro. BrA at 60–100 μM was cytotoxic, altered spheroid morphology/volume, and suppressed cell migration and tumor invasiveness. High-content analysis revealed that BrA (60–100 µM) reduced mitochondrial membrane potential and increased apoptosis and necrosis markers, indicating that it triggered cell death mechanisms. Molecular analysis showed that (i) 24-h treatment with BrA (80–100 µM) increased the protein levels of DNA disruption markers (cleaved-PARP and p-γ-H2AX) as well as decreased the protein levels of anti/pro-apoptotic (BCL-2, BAD, and RIP3K) and cell survival markers (p-AKT1 and p-44/42 MAPK); (ii) 72-h treatment with BrA increased the protein levels of effector caspases (CASP3, CASP7, and CASP8) and inflammation markers (NF-kB and TNF-α). Altogether, our results suggest that PARP-mediated cell death (parthanatos) is a potential mechanism of action. In conclusion, BrA confirms its potential as a candidate drug for preclinical studies against mPCa.
Collapse
|
17
|
Soto-Sánchez J. Bioactivity of Natural Polyphenols as Antiparasitic Agents and their Biochemical Targets. Mini Rev Med Chem 2022; 22:2661-2677. [PMID: 35379147 DOI: 10.2174/1389557522666220404090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis and trypanosomiasis are diseases that affect public health worldwide due to their high incidence, morbidity, and mortality. Available treatments are costly, prolonged, and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is justified and polyphenols show promising activity. OBJECTIVE The main aim of this mini-review was to analyze the most promising phenolic compounds with reported antileishmanial and antitrypanosomal activity as well as their mechanisms of action. RESULTS We found that the mode of action of these natural compounds mainly lignans, neolignans, and flavonoids depends on the organism they act on and includes, macrophage activation, induction of morphological changes such as chromatin condensation, DNA fragmentation, accumulation of acidocalcisomes, and glycosomes, Golgi damage and mitochondrial dysfunction as well as negative regulation of mitochondrial enzymes and other essential enzymes for parasite survival such as arginase. This gives a wide scope for future research towards the rational development of anti-kinetoplastid drugs. CONCLUSION Although the specific molecular targets, bioavailability, route of administration, and dosages of some of these natural compounds need to be determined, polyphenols and their combinations represent a very promising and safe strategy to be considered for use against Leishmania spp and Trypanosoma spp. In addition, these compounds may provide a scaffold for developing new, more potent, and more selective antiprotozoal agents.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
18
|
Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat Chem Biol 2022; 18:706-712. [PMID: 35361990 PMCID: PMC9246859 DOI: 10.1038/s41589-022-00994-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.
Collapse
|
19
|
de Oliveira LCB, Nunes HL, Ribeiro DL, do Nascimento JR, da Rocha CQ, de Syllos Cólus IM, Serpeloni JM. Aglycone flavonoid brachydin A shows selective cytotoxicity and antitumoral activity in human metastatic prostate (DU145) cancer cells. Cytotechnology 2021; 73:761-774. [PMID: 34776627 DOI: 10.1007/s10616-021-00495-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
In prostate cancer, flavonoids possess a wide variety of anticancer effects, focused on the antioxidant/pro-oxidant activity, inactivation of the androgen receptor, cell cycle arrest, apoptosis induction, metastasis inhibition, among others. This current research investigated the antitumoral in vitro activity of Brachydin A (BrA), a dimeric flavonoid isolated from Fridericia platyphylla, in human castration-resistant prostate cancer DU145. It was compared BrA selective effects in tumor prostate DU145 cells with non-tumor prostate epithelial PNT2 cells. Cell viability experiments (resazurin, neutral red, MTT, and LDH release assays) showed that BrA was sevenfold more cytotoxic to tumor cells than non-tumor prostate cells, with IC50 values of 77.7 µM and 10.7 µM for PNT2 and DU145 cells, respectively. Furthermore, BrA induced necrosis and apoptosis (triple fluorescence staining assay) without interfering with oxidative stress (CM-H2DCFDA) in DU145 cells. Also, BrA (15.36 µM) reduced cell proliferation on clonogenic assay (DU145 cells) but no change in cell number and protein content was observed when cell growth curve assay was used. Wound healing and transwell assays were used for checking the effects of BrA on cell migration and invasion, and BrA impaired these processes in PNT2 (wound healing) and DU145 cells (transwell). Our results inspire further studies to test BrA as a novel chemotherapeutic drug and to evaluate its effects on drug-resistant metastatic cancer cells.
Collapse
Affiliation(s)
| | - Higor Lopes Nunes
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903 Brazil
| | | | - Cláudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, 65080-805 Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil.,Laboratório de Mutagênese e Oncogenética, Departamento de Biologia Geral, Universidade Estadual de Londrina - UEL, Rodovia Celso Garcia Cid - PR 445 Km 380 Cx. Postal 10.011 - Campus Universitário, Londrina, PR CEP: 86057-970 Brazil
| |
Collapse
|
20
|
Oo T, Saiboonjan B, Srijampa S, Srisrattakarn A, Sutthanut K, Tavichakorntrakool R, Chanawong A, Lulitanond A, Tippayawat P. Inhibition of Bacterial Efflux Pumps by Crude Extracts and Essential Oil from Myristica fragrans Houtt. (Nutmeg) Seeds against Methicillin-Resistant Staphylococcus aureus. Molecules 2021; 26:4662. [PMID: 34361815 PMCID: PMC8348620 DOI: 10.3390/molecules26154662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Myristicafragrans Houtt. (Nutmeg) is a widely known folk medicine across several parts of Asia, particularly used in antimicrobial treatment. Bacterial resistance involves the expression of efflux pump systems (chromosomal norA and mepA) in methicillin-resistant Staphylococcus aureus (MRSA). Crude extract (CE) and essential oil (EO) obtained from nutmeg were applied as efflux pump inhibitors (EPIs), thereby enhancing the antimicrobial activity of the drugs they were used in. The major substances in CE and EO, which function as EPIs, in a descending order of % peak area include elemicin, myristicin, methoxyeugenol, myristicin, and asarone. Here, we investigated whether the low amount of CE and EO used as EPIs was sufficient to sensitize MRSA killing using the antibiotic ciprofloxacin, which acts as an efflux system. Interestingly, synergy between ciprofloxacin and CE or EO revealed the most significant viability of MRSA, depending on norA and mepA, the latter being responsible for EPI function of EO. Therefore, CE and EO obtained from nutmeg can act as EPIs in combination with substances that act as efflux systems, thereby ensuring that the MRSA strain is susceptible to antibiotic treatment.
Collapse
Affiliation(s)
- Thidar Oo
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Faculty of Medicine, Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bhanubong Saiboonjan
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (A.S.)
| | - Arpasiri Srisrattakarn
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (A.S.)
| | | | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.T.); (A.C.); (A.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonwadee Chanawong
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.T.); (A.C.); (A.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.T.); (A.C.); (A.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Faculty of Medicine, Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
21
|
Monteiro KLC, de Aquino TM, Mendonça Junior FJB. An Update on Staphylococcus aureus NorA Efflux Pump Inhibitors. Curr Top Med Chem 2021; 20:2168-2185. [PMID: 32621719 DOI: 10.2174/1568026620666200704135837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Methicillin-resistant and vancomycin-resistant Staphylococcus aureus are pathogens causing severe infectious diseases that pose real public health threats problems worldwide. In S. aureus, the most efficient multidrug-resistant system is the NorA efflux pump. For this reason, it is critical to identify efflux pump inhibitors. OBJECTIVE In this paper, we present an update of the new natural and synthetic compounds that act as modulators of antibiotic resistance through the inhibition of the S. aureus NorA efflux pump. RESULTS Several classes of compounds capable of restoring the antibiotic activity have been identified against resistant-S. aureus strains, acting as NorA efflux pump inhibitors. The most promising classes of compounds were quinolines, indoles, pyridines, phenols, and sulfur-containing heterocycles. However, the substantial degree structural diversity of these compounds makes it difficult to establish good structure- activity correlations that allow the design of compounds with more promising activities and properties. CONCLUSION Despite substantial efforts put forth in the search for new antibiotic adjuvants that act as efflux pump inhibitors, and despite several promising results, there are currently no efflux pump inhibitors authorized for human or veterinary use, or in clinical trials. Unfortunately, it appears that infection control strategies have remained the same since the discovery of penicillin, and that most efforts remain focused on discovering new classes of antibiotics, rather than trying to prolong the life of available antibiotics, and simultaneously fighting mechanisms of bacterial resistance.
Collapse
|
22
|
Elhidar N, Nafis A, Goehler A, Abbad A, Hassani L, Mezrioui NE, Bohnert JA. Novel DiOC 3 96-well real-time efflux assay for discovery of NorA efflux pump inhibitors in Staphylococcus aureus. J Microbiol Methods 2020; 181:106128. [PMID: 33347918 DOI: 10.1016/j.mimet.2020.106128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
The NorA efflux pump is one of the most studied efflux systems in Staphylococcus aureus and confers multidrug resistance to a variety of dyes and antimicrobial compounds. Hence, inhibition of the NorA efflux pump might be a viable option for restoring susceptibility to antibiotics like fluoroquinolones. Fluorescent real-time efflux assays are important tools to identify putative efflux pump inhibitors. Nevertheless, the number of available compounds for usage in Staphylococcus aureus is limited. Previously, a 3-dipropyloxacarbocyanine iodide (DiOC3) efflux assay was published that circumvented problems associated with the usage of ethidium bromide, namely slow efflux and suggested mutagenicity. However, the DiOC3 assay protocol was cuvette - based and therefore needs to be adapted to the 96-well plate format. Hence, we optimized this assay for usage with 96-well plates. The new assay allows for rapid high-throughput efflux pump inhibitor screening.
Collapse
Affiliation(s)
- Najoua Elhidar
- Friedrich Loeffler Institute of Medical Microbiology, University of Medicine Greifswald, Germany; Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Ahmed Nafis
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - André Goehler
- Friedrich Loeffler Institute of Medical Microbiology, University of Medicine Greifswald, Germany
| | - Abdelaziz Abbad
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Lahcen Hassani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Nour-Eddine Mezrioui
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| | - Jürgen A Bohnert
- Friedrich Loeffler Institute of Medical Microbiology, University of Medicine Greifswald, Germany
| |
Collapse
|
23
|
In Vitro Anti-Inflammatory Activity in Arthritic Synoviocytes of A. brachypoda Root Extracts and Its Unusual Dimeric Flavonoids. Molecules 2020; 25:molecules25215219. [PMID: 33182470 PMCID: PMC7665123 DOI: 10.3390/molecules25215219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
Arrabidaea brachypoda is a plant commonly used for the treatment of kidney stones, arthritis and pain in traditional Brazilian medicine. Different in vitro and in vivo activities, ranging from antinociceptive to anti-Trypanosoma cruzi, have been reported for the dichloromethane root extract of Arrabidaea brachypoda (DCMAB) and isolated compounds. This work aimed to assess the in vitro anti-inflammatory activity in arthritic synoviocytes of the DCMAB, the hydroethanolic extract (HEAB) and three dimeric flavonoids isolated from the DCMAB. These compounds, brachydin A (1), B (2) and C (3), were isolated both by medium pressure liquid and high-speed counter current chromatography. Their quantification was performed by mass spectrometry on both DCMAB and HEAB. IL-1β activated human fibroblast-like synoviocytes were incubated with both extracts and isolated compounds to determine the levels of pro-inflammatory cytokine IL-6 by enzyme-linked immunosorbent assay (ELISA). DCMAB inhibited 30% of IL-6 release at 25 µg/mL, when compared with controls while HEAB was inactive. IC50 values determined for 2 and 3 were 3-fold higher than 1. The DCMAB activity seems to be linked to higher proportions of compounds 2 and 3 in this extract. These observations could thus explain the traditional use of A. brachypoda roots in the treatment of osteoarthritis.
Collapse
|
24
|
Nunes HL, Tuttis K, Serpeloni JM, Nascimento JRD, da Rocha CQ, Silva VAO, Lengert AVH, Reis RM, de Syllos Cólus IM. Characterization of the invitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:547-558. [PMID: 32590922 DOI: 10.1080/15287394.2020.1784339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Brachydins (Br) A, B, and C are flavonoids extracted from Fridericia platyphylla (Cham.) L.G. Lohmann roots (synonym Arrabidaea brachypoda), whose extract previously exhibited cytotoxic and antitumor activity. In vitro cell culture of human prostate tumor cell line (PC-3) was used to determine cell viability as evidenced by MTT, neutral red, and LDH release using nine concentrations (0.24 to 30.72 µM) of each brachydin. A triple-fluorescent staining assay assessed the mechanism resulting in cell death. Genomic instability and protein expression were evaluated using comet assay and western blot analysis, respectively. The pro-oxidant status was analyzed using the5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) probe. The IC50 values for brachydins BrA, BrB, and BrC were 23.41, 4.28, and 4.44 µM, respectively, and all compounds induced apoptosis and necrosis. BrB and BrC increased p21 levels indicating a possible G1 cell cycle arrest. BrA (6 µM) and BrB (3.84 µM) decreased phospho-AKT (AKT serine/threonine kinase) expression, which also influenced cell cycle and proliferation. BrA, BrB, and BrC elevated cleaved PARP (poly (ADP-ribose) polymerase), a protein related to DNA repair and induction of apoptotic processes. Therefore, this study determined the IC50 values of brachydins in the PC-3 cell line as well as the influence on cell proliferation and cell death processes, such as apoptosis and necrosis, indicating the proteins involved in these processes. ABBREVIATIONS ANOVA: Analysis of Variance; BrA: Brachydin A; BrB: Brachydin B; BrC: Brachydin C; CGEN: Genetic Heritage Management Council; CID: Compound identification number; CM-H2DCFDA, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester; CO2: Carbon dioxide; DMSO: Dimethyl sulfoxide; DNA: Deoxyribonucleic acid; DTT: Dithiothreitol; DXR: Doxorubicin; ECL: Chemiluminescence; EDTA: Ethylenediaminetetraacetic acid; FBS: Fetal bovine serum; H2O2: Hydrogen peroxide; HRMS: High-Resolution Mass Spectrometry; IC50: Half maximal inhibitory concentration; LDH: Lactate dehydrogenase; MTT, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide; Na3VO4: Sodium Orthovanadate; NaOH: Sodium hydroxide; NCBI: National Center for Biotechnology Information; NMR: Nuclear Magnetic Resonance; PBS: Phosphate buffer saline; PCR: Polymerase chain reaction; PSMF: Phenylmethylsulfonyl fluoride; RPMI: Roswell Park Memorial Institute Medium; SDS-PAGE: Sodium Dodecyl Sulfate-Polyacrylamide gel electrophoresis; STR: Short tandem repeat; TBS-T: Tris-buffered saline and Polysorbate 20; UPHLC: Ultra-Performance Liquid Chromatography.
Collapse
Affiliation(s)
- Higor Lopes Nunes
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | - Katiuska Tuttis
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | - Juliana Mara Serpeloni
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | | | - Claudia Quintino da Rocha
- Departamento De Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão , São Luís, Maranhão, Brasil
| | | | | | - Rui Manuel Reis
- Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos , Barretos, São Paulo, Brasil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ilce Mara de Syllos Cólus
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| |
Collapse
|
25
|
Rezende-Júnior LM, Andrade LMDS, Leal ALAB, Mesquita ABDS, dos Santos ALPDA, Neto JDSL, Siqueira-Júnior JP, Nogueira CES, Kaatz GW, Coutinho HDM, Martins N, da Rocha CQ, Barreto HM. Chalcones Isolated from Arrabidaea brachypoda Flowers as Inhibitors of NorA and MepA Multidrug Efflux Pumps of Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9060351. [PMID: 32575738 PMCID: PMC7345224 DOI: 10.3390/antibiotics9060351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial resistance to antibiotics has become a public health issue around the world. The present study aimed to evaluate the antibacterial activity of chalcones isolated from flowers of Arrabidaea brachypoda, and their potential as efflux pump inhibitors of Staphylococcus aureus efflux pumps. Microdilution assays were performed with natural products from A. brachypoda. Chalcones 1, 3, 4, and 5 did not show intrinsic antimicrobial activity against all S. aureus strains tested, but they were able to potentiate the Norfloxacin action against the SA1199-B (norA) strain, with a better modulating action for the 4 trimethoxylated chalcone. All chalcones were also able to potentiate the action of EtBr against SA1199-B strain, suggesting a potential NorA inhibition. Moreover, chalcone 4 was able to interfere in the activity of MepA, and interfered weakly in the QacA/B activity. Molecular docking analyzes showed that tested chalcones are capable of binding in the hydrophobic cavity of NorA and MepA, in the same Norfloxacin binding site, indicating that chalcone 4 compete with the antibiotic for the same NorA and MepA binding sites. Association of chalcone 4 with Norfloxacin could be an alternative against multidrug resistant S. aureus over-productive of NorA or MepA.
Collapse
Affiliation(s)
- Luís Mário Rezende-Júnior
- Laboratory of Research in Microbiology, Federal University of Piaui, Teresina, Piaui 64049-550, Brazil; (L.M.R.-J.); (L.M.d.S.A.); (A.L.A.B.L.); (A.B.d.S.M.)
| | - Leila Maria de Sousa Andrade
- Laboratory of Research in Microbiology, Federal University of Piaui, Teresina, Piaui 64049-550, Brazil; (L.M.R.-J.); (L.M.d.S.A.); (A.L.A.B.L.); (A.B.d.S.M.)
| | - Antonio Linkoln Alves Borges Leal
- Laboratory of Research in Microbiology, Federal University of Piaui, Teresina, Piaui 64049-550, Brazil; (L.M.R.-J.); (L.M.d.S.A.); (A.L.A.B.L.); (A.B.d.S.M.)
| | - Avilnete Belem de Souza Mesquita
- Laboratory of Research in Microbiology, Federal University of Piaui, Teresina, Piaui 64049-550, Brazil; (L.M.R.-J.); (L.M.d.S.A.); (A.L.A.B.L.); (A.B.d.S.M.)
| | | | - José de Sousa Lima Neto
- Laboratory of Organic Geochemistry, Federal University of Piaui, Teresina, Piauí 64049-550, Brazil;
| | - José Pinto Siqueira-Júnior
- Laboratory of Genetics of Microorganisms, Federal University of Paraiba, Joao Pessoa, Paraiba 58051-900, Brazil;
| | | | - Glenn William Kaatz
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (N.M.); (H.M.B.)
| | - Cláudia Quintino da Rocha
- Laboratory of Advanced Studies in Phytomedicines, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil; (A.L.P.d.A.d.S.); (C.Q.d.R.)
| | - Humberto Medeiros Barreto
- Laboratory of Research in Microbiology, Federal University of Piaui, Teresina, Piaui 64049-550, Brazil; (L.M.R.-J.); (L.M.d.S.A.); (A.L.A.B.L.); (A.B.d.S.M.)
- Correspondence: (N.M.); (H.M.B.)
| |
Collapse
|
26
|
de Sousa Silveira Z, Macêdo NS, Sampaio dos Santos JF, Sampaio de Freitas T, Rodrigues dos Santos Barbosa C, Júnior DLDS, Muniz DF, Castro de Oliveira LC, Júnior JPS, da Cunha FAB, Melo Coutinho HD, Balbino VQ, Martins N. Evaluation of the Antibacterial Activity and Efflux Pump Reversal of Thymol and Carvacrol against Staphylococcus aureus and Their Toxicity in Drosophila melanogaster. Molecules 2020; 25:E2103. [PMID: 32365898 PMCID: PMC7249103 DOI: 10.3390/molecules25092103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
The antibacterial activity and efflux pump reversal of thymol and carvacrol were investigated against the Staphylococcus aureus IS-58 strain in this study, as well as their toxicity against Drosophila melanogaster. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while efflux pump inhibition was assessed by reduction of the antibiotic and ethidium bromide (EtBr) MICs. D. melanogaster toxicity was tested using the fumigation method. Both thymol and carvacrol presented antibacterial activities with MICs of 72 and 256 µg/mL, respectively. The association between thymol and tetracycline demonstrated synergism, while the association between carvacrol and tetracycline presented antagonism. The compound and EtBr combinations did not differ from controls. Thymol and carvacrol toxicity against D. melanogaster were evidenced with EC50 values of 17.96 and 16.97 µg/mL, respectively, with 48 h of exposure. In conclusion, the compounds presented promising antibacterial activity against the tested strain, although no efficacy was observed in terms of efflux pump inhibition.
Collapse
Affiliation(s)
- Zildene de Sousa Silveira
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
- Graduate Program in Biological Sciences-PPGCB, Federal University of Pernambuco-UFPE, Recife 50670-901, PE, Brazil;
| | - Nair Silva Macêdo
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
- Graduate Program in Biological Sciences-PPGCB, Federal University of Pernambuco-UFPE, Recife 50670-901, PE, Brazil;
| | - Joycy Francely Sampaio dos Santos
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - Thiago Sampaio de Freitas
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Cristina Rodrigues dos Santos Barbosa
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Dárcio Luiz de Sousa Júnior
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Lígia Claudia Castro de Oliveira
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - José Pinto Siqueira Júnior
- Laboratory of Microorganism Genetics (LGM), Federal University of Paraiba-UFPB, João Pessoa 58051-900, PB, Brazil;
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Valdir Queiroz Balbino
- Graduate Program in Biological Sciences-PPGCB, Federal University of Pernambuco-UFPE, Recife 50670-901, PE, Brazil;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
27
|
Functional and Structural Roles of the Major Facilitator Superfamily Bacterial Multidrug Efflux Pumps. Microorganisms 2020; 8:microorganisms8020266. [PMID: 32079127 PMCID: PMC7074785 DOI: 10.3390/microorganisms8020266] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogenic microorganisms that are multidrug-resistant can pose severe clinical and public health concerns. In particular, bacterial multidrug efflux transporters of the major facilitator superfamily constitute a notable group of drug resistance mechanisms primarily because multidrug-resistant pathogens can become refractory to antimicrobial agents, thus resulting in potentially untreatable bacterial infections. The major facilitator superfamily is composed of thousands of solute transporters that are related in terms of their phylogenetic relationships, primary amino acid sequences, two- and three-dimensional structures, modes of energization (passive and secondary active), and in their mechanisms of solute and ion translocation across the membrane. The major facilitator superfamily is also composed of numerous families and sub-families of homologous transporters that are conserved across all living taxa, from bacteria to humans. Members of this superfamily share several classes of highly conserved amino acid sequence motifs that play essential mechanistic roles during transport. The structural and functional importance of multidrug efflux pumps that belong to the major facilitator family and that are harbored by Gram-negative and -positive bacterial pathogens are considered here.
Collapse
|