1
|
Mani A, Henn C, Couch C, Patel S, Lieke T, Chan JTH, Korytar T, Salinas I. A brain microbiome in salmonids at homeostasis. SCIENCE ADVANCES 2024; 10:eado0277. [PMID: 39292785 PMCID: PMC11409976 DOI: 10.1126/sciadv.ado0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Ectotherms have peculiar relationships with microorganisms. For instance, bacteria are recovered from the blood and internal organs of healthy teleosts. However, the presence of microbial communities in the healthy teleost brain has not been proposed. Here, we report a living bacterial community in the brain of healthy salmonids with bacterial loads comparable to those of the spleen and 1000-fold lower than in the gut. Brain bacterial communities share >50% of their diversity with gut and blood bacterial communities. Using culturomics, we obtained 54 bacterial isolates from the brains of healthy trout. Comparative genomics suggests that brain bacteria may have adaptations for niche colonization and polyamine biosynthesis. In a natural system, Chinook salmon brain microbiomes shift from juveniles to reproductively mature adults. Our study redefines the physiological relationships between the brain and bacteria in teleosts. This symbiosis may endow salmonids with a direct mechanism to sense and respond to environmental microbes.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA
| | - Cory Henn
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA
| | - Claire Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Sonal Patel
- Norwegian Veterinary Institute, Thormøhlens Gate 53C, 5006 Bergen, Norway
| | - Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Justin T H Chan
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Tomas Korytar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA
| |
Collapse
|
2
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes are not underscored by different gut microbiomes. Ecol Evol 2024; 14:e70237. [PMID: 39219576 PMCID: PMC11362613 DOI: 10.1002/ece3.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Although bold and shy behavioral phenotypes in zebrafish (Danio rerio) have been selectively bred and maintained over multiple generations, it is unclear if they are underscored by different gut microbiota. Using the microbiota-gut-brain concept, we examined the relationship between gut microbiota and the behavioral phenotypes within this model animal system to assess possible gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced 16S rRNA gene amplicons from the guts of bold and shy zebrafish individuals using the Illumina Miseq platform. We did not record any significant differences in within-group microbial diversity nor between-group community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiome profiles between the two phenotypes would suggest that in this species, there might exist a stable core gut microbiome, regardless of behavioral phenotypes, and possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This study characterized the gut microbiomes of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and did not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A. Ayayee
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| | - Ryan Y. Wong
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
3
|
Jin H, Li L, Lu W, Zhang Z, Xing Y, Wu D. Identification of the regulatory roles of water qualities on the spatio-temporal dynamics of microbiota communities in the water and fish guts in the Heilongjiang River. Front Microbiol 2024; 15:1435360. [PMID: 39234540 PMCID: PMC11372393 DOI: 10.3389/fmicb.2024.1435360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
The Heilongjiang River is one of the largest rivers in the cool temperate zone and has an abundant fish source. To date, the microbiota community in water samples and fish guts from the Heilongjiang River is still unclear. In the present study, water samples and fish guts were collected from four locations of the Heilongjiang River during both the dry season and the wet season to analyze the spatio-temporal dynamics of microbiota communities in the water environment and fish guts through 16s ribosome RNA sequencing. The water qualities showed seasonal changes in which the pH value, dissolved oxygen, and total dissolved solids were generally higher during the dry season, and the water temperature was higher during the wet season. RDA indicated that higher pH values, dissolved oxygen, and total dissolved solids promoted the formation of microbiota communities in the water samples of the dry season, while higher water temperature positively regulated the formation of microbiota communities in the water samples of the wet season. LEFSe identified five biomarkers with the most abundant difference at the genus level, of which TM7a was upregulated in the water samples of the dry season, and SM1A02, Rheinheimera, Gemmatimonas, and Vogesella were upregulated in the water samples of the wet season. Pearson analysis revealed that higher pH values and dissolved oxygen positively regulated the formation of TM7a and negatively regulated the formation of SM1A02, Rheinheimera, Gemmatimonas, and Vogesella (p < 0.05), while higher water temperature had the opposite regulatory roles in the formation of these biomarkers. The relative abundance of microbiota diversity in fish guts varies greatly between different fish species, even if the fishes were collected from the same water source, indicating that dietary habits and fish species may be key factors, affecting the formation and construction of microbiome community in fish gut. P. glenii, P. lagowskii, G. cynocephalus, and L. waleckii were the main fish resources, which were collected and identified from at least six sample points. RDA indicated that the microbiota in the water environment regulated the formation of microbiota community in the guts of G. cynocephalus and L. waleckii and had limited regulated effects on P. glenii and P. lagowskii. The present study identified the regulatory effects of water qualities on the formation of microbiota communities in the water samples and fish guts, providing valuable evidence for the protection of fish resources in the Heilongjiang River.
Collapse
Affiliation(s)
- Hongyu Jin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Lei Li
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Wanqiao Lu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Zepeng Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Yue Xing
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Di Wu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| |
Collapse
|
4
|
Bu LK, Jia PP, Huo WB, Pei DS. Assessment of Probiotics' Impact on Neurodevelopmental and Behavioral Responses in Zebrafish Models: Implications for Autism Spectrum Disorder Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10335-y. [PMID: 39090455 DOI: 10.1007/s12602-024-10335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder; the prevalence of which has been on the rise with unknown causes. Alterations in the gut-brain axis have been widely recognized in ASD patients, and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. However, the effectiveness and mechanisms of multiple probiotics on zebrafish models are still not clearly revealed. This study aims to use the germ-free (GF) and conventionally raised (CR) AB wild-type zebrafish and the mutant Tbr1b-/- and Katnal2-/- lines as human-linked ASD animal models to evaluate the effects of multiple probiotics on mitigating developmental and behavioral defects. Results showed that the addition of probiotics increased the basic important developmental indexes, such as body length, weight, and survival rate of treated zebrafish. Moreover, the Lactobacillus plantarum and Lactobacillus rhamnosus affected the behavior of CR zebrafish by increasing their mobility, lowering the GF zebrafish manic, and mitigating transgenic zebrafish abnormal behavior. Moreover, the expression levels of key genes related to gamma-aminobutyric acid (GABA), dopamine (DA), and serotonin (5-HT) as important neuropathways to influence the appearance and development of autism-related disorders, including gad1b, tph1a, htr3a, th, and slc6a3, were significantly activated by some of the probiotics' treatment at some extent. Taken together, this study indicates the beneficial effects of different probiotics, which may provide a novel understanding of probiotic function in related diseases' therapy.
Collapse
Affiliation(s)
- Ling-Kang Bu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wen-Bo Huo
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing, 400025, China.
| |
Collapse
|
5
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes not underscored by different gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596447. [PMID: 38853862 PMCID: PMC11160693 DOI: 10.1101/2024.05.29.596447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Different animal behavioral phenotypes maintained and selectively bred over multiple generations may be underscored by dissimilar gut microbial community compositions or not have any significant dissimilarity in community composition. Operating within the microbiota-gut-brain axis framework, we anticipated differences in gut microbiome profiles between zebrafish (Danio rerio) selectively bred to display the bold and shy personality types. This would highlight gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced a fragment of the 16S rRNA gene from the guts of bold and shy zebrafish individuals (n=10) via Miseq. We uncovered no significant difference in within-group microbial diversity nor between-group microbial community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiota profiles between the two phenotypes would suggest that in this species, there might exist a stable "core" gut microbiome, regardless of behavioral phenotypes, and or possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This is the first study to characterize the gut microbial community of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
6
|
Kiran NS, Yashaswini C, Chatterjee A. Zebrafish: A trending model for gut-brain axis investigation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106902. [PMID: 38537435 DOI: 10.1016/j.aquatox.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Zebrafish (Danio rerio) has ascended as a pivotal model organism in the realm of gut-brain axis research, principally owing to its high-throughput experimental capabilities and evolutionary alignment with mammals. The inherent transparency of zebrafish embryos facilitates unprecedented real-time imaging, affording unparalleled insights into the intricate dynamics of bidirectional communication between the gut and the brain. Noteworthy are the structural and functional parallels shared between the zebrafish and mammalian gut-brain axis components, rendering zebrafish an invaluable model for probing the molecular and cellular intricacies inherent in this critical physiological interaction. Recent investigations in zebrafish have systematically explored the impact of gut microbiota on neurodevelopment, behaviour, and disease susceptibility, underscoring the model's prowess in unravelling the multifaceted influence of microbial communities in shaping gut-brain interactions. Leveraging the genetic manipulability inherent in zebrafish, researchers have embarked on targeted explorations of specific pathways and molecular mechanisms, providing nuanced insights into the fundamental functioning of the gut-brain axis. This comprehensive review synthesizes pivotal findings and methodological advancements derived from zebrafish-based gut-brain axis research, accentuating the model's potential to significantly advance our understanding of this complex interplay. Furthermore, it underscores the translational significance of these insights, offering promising avenues for the identification of therapeutic targets in neuro-gastroenterological disorders and psychiatric conditions intricately linked with gut-brain interactions.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
7
|
Huang M, Liu Y, Duan R, Yin J, Cao S. Effects of continuous and pulse lead exposure on the swimming behavior of tadpoles revealed by brain-gut axis analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133267. [PMID: 38150764 DOI: 10.1016/j.jhazmat.2023.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Lead (Pb) is present in aquatic environments with a continuous or pulse form due to the regular or irregular discharge of wastewater. These two modes of exposure result in different toxicological effects on aquatic animals. To compare the effects of Pb exposure mode on the swimming behavior of amphibian larvae, this study proposed a combination method to examine the brain-gut axis (gut bacteria, histopathology, metabolomics, and ethology) in order to evaluate the ecotoxic differences in Pelophylax nigromaculatus tadpoles (Gs 21-28) when exposed to continuous (CE100) versus pulse exposure (PE100) of environmental concentrations of Pb (100 μg/L). The results showed that: 1) CE100 significantly decreased the movement distance and swimming activity of the tadpoles compared to PE100 and the control, while there were no significant differences between the control group and PE100. 2) At the phyla level, compared to PE100, CE100 treatment significantly decreased the abundance of Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes and increased the abundance of Fusobacteria in the gut. At the genus level, compared to PE100, CE100 significantly increased the abundance of U114 and decreased the abundance of Anaerorhabdus, Exiguobacterium and Microbacterium. 3) Compared to PE100, CE100 changed the metabolites of the brain-gut axis pathway, such as quinolinic acid, L-valine, L-dopa, L-histidine, urocanic acid, L-threonine, γ-aminobutyric acid (GABA), L-glutamate (Glu), acetylcholine (Ach), L-tyrosine (Tyr), L-tryptophan (Trp), and levodopa (DOPA). 4) CE100 and PE100 played a repressive role in the histidine metabolism and tyrosine metabolism pathways and played a promoting role in the purine metabolism and pyrimidine metabolism pathways. This study provides a method for evaluating the toxic effects of heavy metal exposure via two different exposure modes (pulse versus continuous) which tadpoles may encounter in the natural environment from a combined study examining the brain-gut axis.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China.
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
8
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
9
|
Lactobacillus rhamnosus GG treatment potentiates ethanol-induced behavioral changes through modulation of intestinal epithelium in Danio rerio. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-022-00320-2. [PMID: 36656417 DOI: 10.1007/s10123-022-00320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
The gut-brain axis directly regulates the brain homeostatic environment; an imbalance in gut microbial composition following ethanol exposure is maleficent. In this context, involvement of probiotics as prophylactic intervention against ethanol-induced neurotoxicity is elusive in the literature. Therefore, the present study was aimed to determine the impact of chronic ethanol exposure on the neurobehavioral response of zebrafish and possible neuroprotection through co-supplementation of probiotic Lactobacillus rhamnosus GG (LGG). Zebrafish were divided into naive, control, ethanol (0.01% v/v), LGG, and ethanol co-supplemented with LGG groups. Neurobehavioral assessment was performed after 7 days of chronic waterborne exposure to ethanol with LGG co-supplementation followed by histopathological studies. The findings indicated that there was a clear alteration in locomotor activity and habitat preference, with animals preferentially migrating toward altered zones on exposure to ethanol. However, co-supplementation of LGG showed restoration against ethanol-induced neurobehavioral and cognitive dysfunction. Brain tissue pyknosis and intestinal epithelial disruption were significantly mitigated on LGG co-supplementation against ethanol in zebrafish. The present study provides a novel approach toward supplementation of probiotics such as LGG in modulation of gut commensal microbiota influencing zebrafish behavior. Moreover, the findings delineate the possible role of probiotics as a curative administration to counter ethanol-persuaded neurological outcomes.
Collapse
|
10
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
11
|
Medriano CA, Bae S. Acute exposure to microplastics induces metabolic disturbances and gut dysbiosis in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114125. [PMID: 36183426 DOI: 10.1016/j.ecoenv.2022.114125] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
There is limited knowledge of the ecotoxicological impacts of MPs at the environmentally relevant concentration on freshwater animals, even though numerous studies have demonstrated the toxic effects of MPs on living organisms. In this study, zebrafish (Danio rerio) was used as a model organism to investigate the ecotoxicological effects of acute exposure of virgin MPs on changes in metabolome and gut microbiota. High-throughput untargeted metabolomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS) provided comprehensive insights into the metabolic responses of zebrafish exposed to PE (polyethylene) and PES (polyester) MPs. Statistical analysis of metabolomics data indicated that 39 and 27 metabolites, such as lysophosphatidylcholine, phosphocholine, phosphatidylserine, triglyceride, glycosphingolipid, psychosine, 8-amino-7-oxononanoate, cholesterol fatty acid ester, phosphatidylinositol, n-Triacontanol, were significantly altered in PE- and PES-exposed zebrafish, respectively. Furthermore, the enrichment pathway analysis unveiled the synthesis of the structural and functional lipids, signaling molecules, fatty alcohol metabolism, and amino acid metabolism, which was considerably perturbated in MPs-exposed zebrafish. In addition, high-throughput DNA sequencing was conducted to examine changes in gut microbiota in the MPs-treated zebrafish. The MPs exposure increased in the relative abundance of Fusobacteria and Proteobacteria, while the relative abundance of Firmicutes declined in MPs-treated zebrafish. Also, microbial diversity and linear discriminant analyses indicated microbiota dysbiosis, metabolomic dysregulation, and oxidative stress. Taken together, the acute exposure of MPs at environmentally relevant concentrations could disrupt the metabolic interaction via the microbiota-gut-liver-brain relationship, implying gastrointestinal and neurological/immune disorders in zebrafish.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
13
|
Haque R, Das II, Sawant PB, Chadha NK, Sahoo L, Kumar R, Sundaray JK. Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Front Physiol 2022; 13:871045. [PMID: 36035477 PMCID: PMC9411670 DOI: 10.3389/fphys.2022.871045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.
Collapse
Affiliation(s)
- Ramjanul Haque
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | - Narinder Kumar Chadha
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Jitendra Kumar Sundaray,
| |
Collapse
|
14
|
Lof J, Smits K, Melotte V, Kuil LE. The health effect of probiotics on high-fat diet-induced cognitive impairment, depression and anxiety: A cross-species systematic review. Neurosci Biobehav Rev 2022; 136:104634. [PMID: 35339484 DOI: 10.1016/j.neubiorev.2022.104634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
Obesity is a complex disease with many co-morbidities, including impaired cognitive functions. Obese individuals often contain an aberrant microbiota. Via the microbiota-gut-brain axis, the altered microbiota composition can affect cognition or induce anxiety- or depressive-like behavior. Probiotics have been shown to alleviate both obesity- and neurobehavioral disorder-related symptoms. Here, we evaluated previously published results on the effectiveness of probiotic intervention in alleviating obesity- or high-fat diet (HFD)-related cognitive impairment, depression and anxiety. A systematic search was performed in PubMed, Embase, and Google Scholar until June 2021 to identify relevant articles. Seventeen studies were included: one human and sixteen animal studies. Overall, the findings support the beneficial health effect of probiotics on HFD-induced cognitive impairment and anxiety. However, the results suggest that multi-strain probiotic treatments should be used with caution, especially in the absence of HFD-induced impairment. Future studies should overcome the large variation in study design and high risk of bias found in the current evidence. Nevertheless, probiotic treatment, in particular using the Lactobacillus genus, seems promising.
Collapse
Affiliation(s)
- J Lof
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Smits
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - V Melotte
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L E Kuil
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Poonia N, Lal K, Kumar A, Kumar A, Sahu S, Baidya ATK, Kumar R. Urea-thiazole/benzothiazole hybrids with a triazole linker: synthesis, antimicrobial potential, pharmacokinetic profile and in silico mechanistic studies. Mol Divers 2021; 26:2375-2391. [PMID: 34671895 DOI: 10.1007/s11030-021-10336-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/13/2023]
Abstract
Some urea-thiazole/benzothiazole hybrids with a triazole linker were synthesized via Cu(I)-catalysed click reaction. After successfully analysed by various spectral techniques including FTIR, NMR and HRMS, antimicrobial screening of the synthesized hybrids along with their precursors was carried out against two Gram (+) bacteria (Staphylococcus aureus and Bacillus endophyticus), two Gram (-) bacteria (Escherichia coli and Pseudomonas fluorescens) and two fungi (Candida albicans and Rhizopus oryzae). All the synthesized compounds (4a-4l) displayed better biological response than the standard fluconazole against both of the tested fungi. Compounds 4h and 4j were found to be the most active compounds against R. oryzae and C. albicans, respectively. Molecular docking of hybrid 4j and its alkyne precursor 1b in the active site of C. albicans target sterol 14-α demethylase was also performed and was also supported by molecular dynamics studies. In silico ADME prediction of synthesized urea-thiazole/benzothiazole hybrids with a triazole linker and their alkyne precursors was also predicted.
Collapse
Affiliation(s)
- Nisha Poonia
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Anil Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Srikanta Sahu
- Department of Chemistry, Centurion University of Technology and Management, Jatni, Odisha, 752050, India
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (B.H.U.), U.P., Varanasi, 221005, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (B.H.U.), U.P., Varanasi, 221005, India
| |
Collapse
|
16
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
17
|
Cuomo M, Borrelli L, Della Monica R, Coretti L, De Riso G, D’Angelo Lancellotti di Durazzo L, Fioretti A, Lembo F, Dinan TG, Cryan JF, Cocozza S, Chiariotti L. DNA Methylation Profiles of Tph1A and BDNF in Gut and Brain of L. Rhamnosus-Treated Zebrafish. Biomolecules 2021; 11:biom11020142. [PMID: 33499115 PMCID: PMC7911505 DOI: 10.3390/biom11020142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.
Collapse
Affiliation(s)
- Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (G.D.R.); (L.D.L.d.D.); (S.C.)
- CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 482, 80145 Naples, Italy;
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (L.B.); (A.F.)
- Task Force on Microbiota Studies University of Naples “Federico II” of Naples, 80131 Naples, Italy; (L.C.); (F.L.)
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 482, 80145 Naples, Italy;
| | - Lorena Coretti
- Task Force on Microbiota Studies University of Naples “Federico II” of Naples, 80131 Naples, Italy; (L.C.); (F.L.)
- Department of Pharmacy, University “Federico II” of Naples, via Domenico Montesano, 80131 Naples, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (G.D.R.); (L.D.L.d.D.); (S.C.)
| | - Luna D’Angelo Lancellotti di Durazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (G.D.R.); (L.D.L.d.D.); (S.C.)
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (L.B.); (A.F.)
- Task Force on Microbiota Studies University of Naples “Federico II” of Naples, 80131 Naples, Italy; (L.C.); (F.L.)
| | - Francesca Lembo
- Task Force on Microbiota Studies University of Naples “Federico II” of Naples, 80131 Naples, Italy; (L.C.); (F.L.)
- Department of Pharmacy, University “Federico II” of Naples, via Domenico Montesano, 80131 Naples, Italy
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland; (T.G.D.); (J.F.C.)
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland; (T.G.D.); (J.F.C.)
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (G.D.R.); (L.D.L.d.D.); (S.C.)
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (G.D.R.); (L.D.L.d.D.); (S.C.)
- CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 482, 80145 Naples, Italy;
- Task Force on Microbiota Studies University of Naples “Federico II” of Naples, 80131 Naples, Italy; (L.C.); (F.L.)
- Correspondence:
| |
Collapse
|
18
|
Managing the Microbiome: How the Gut Influences Development and Disease. Nutrients 2020; 13:nu13010074. [PMID: 33383647 PMCID: PMC7823600 DOI: 10.3390/nu13010074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiome lies at the forefront of scientific research, as researchers work to uncover its mysterious influence on human development and disease. This paper reviews how the microbiome is studied, how researchers can improve its study, and what clinical applications microbiome research might yield. For this review, we analyzed studies concerning the role of the microbiome in disease and early development, the common methodologies by which the microbiome is researched in the lab, and modern clinical treatments for dysbiosis and their possible future applications. We found that the gut microbiome is essential for proper development of various physiological systems and that gut dysbiosis is a clear factor in the etiology of various diseases. Furthermore, we found that germ-free animal models and microbiome manipulation techniques are inadequate, reducing the efficacy of microbiome research. Nonetheless, research continues to show the significance of microbiome manipulation in the clinical treatment of disease, having shown great promise in the prevention and treatment of dysbiosis. Though the clinical applications of microbiome manipulation are currently limited, the significance of dysbiosis in the etiology of a wide array of diseases indicates the significance of this research and highlights the need for more effective research methods concerning the microbiome.
Collapse
|