1
|
Liu Z, Liu J, Geng J, Wu E, Zhu J, Cong B, Wu R, Sun H. Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study. Forensic Sci Int Genet 2024; 68:102978. [PMID: 37995518 DOI: 10.1016/j.fsigen.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms are potential markers for identifying body fluids (venous and menstrual blood, semen, saliva, and vaginal secretion) and skin tissue in forensic genetics. Existing published studies have mainly focused on investigating microbial DNA by 16 S rRNA gene sequencing or metagenome shotgun sequencing. We rarely find microbial RNA level investigations on common forensic body fluid/tissue. Therefore, the use of metatranscriptomics to characterize common forensic body fluids/tissue has not been explored in detail, and the potential application of metatranscriptomics in forensic science remains unknown. Here, we performed 30 metatranscriptome analyses on six types of common forensic sample from healthy volunteers by massively parallel sequencing. After quality control and host RNA filtering, a total of 345,300 unigenes were assembled from clean reads. Four kingdoms, 137 phyla, 267 classes, 488 orders, 985 families, 2052 genera, and 4690 species were annotated across all samples. Alpha- and beta-diversity and differential analysis were also performed. As a result, the saliva and skin groups demonstrated high alpha diversity (Simpson index), while the venous blood group exhibited the lowest diversity despite a high Chao1 index. Specifically, we discussed potential microorganism contamination and the "core microbiome," which may be of special interest to forensic researchers. In addition, we implemented and evaluated artificial neural network (ANN), random forest (RF), and support vector machine (SVM) models for forensic body fluid/tissue identification (BFID) using genus- and species-level metatranscriptome profiles. The ANN and RF prediction models discriminated six forensic body fluids/tissue, demonstrating that the microbial RNA-based method could be applied to BFID. Unlike metagenomic research, metatranscriptomic analysis can provide information about active microbial communities; thus, it may have greater potential to become a powerful tool in forensic science for microbial-based individual identification. This study represents the first attempt to explore the application potential of metatranscriptome profiles in forensic science. Our findings help deepen our understanding of the microorganism community structure at the RNA level and are beneficial for other forensic applications of metatranscriptomics.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Enlin Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Pongchaikul P, Romero R, Mongkolsuk P, Vivithanaporn P, Wongsurawat T, Jenjaroenpun P, Nitayanon P, Thaipisuttikul I, Kamlungkuea T, Singsaneh A, Santanirand P, Chaemsaithong P. Genomic analysis of Enterococcus faecium strain RAOG174 associated with acute chorioamnionitis carried antibiotic resistance gene: is it time for precise microbiological identification for appropriate antibiotic use? BMC Genomics 2023; 24:405. [PMID: 37468842 DOI: 10.1186/s12864-023-09511-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. RESULTS We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. CONCLUSION We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Roberto Romero
- Pregnancy Research Branch (formerly The Perinatology Research Branch, NICHD/NIH/DHHS, in Detroit, Michigan, USA, has been renamed as the Pregnancy Research Branch, NICHD/NIH/DHHS), Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Paninee Mongkolsuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Perapon Nitayanon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Threebhorn Kamlungkuea
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arunee Singsaneh
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Saraf VS, Ali Zaidi SS, Zhu J, Gillevet P, Sikaroodi M, Bokhari H, Javed S. Pathogenic microbe detection in placental tissues supports placental pathobiome association with preterm birth risk in Pakistani women: A brief snapshot. Placenta 2022; 126:160-163. [PMID: 35839624 DOI: 10.1016/j.placenta.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Preterm birth (PTB) poses great risk to neonatal health in Pakistan with few tertiary health care facilities. Role of intrauterine microbiome in maintaining healthy pregnancy has been highlighted. However, there is ongoing debate whether a true placental microbiome exist. We analyzed placental and vaginal microbiome through V3-V4 16srRNA sequencing and observed increased abundance of proteobacteria, with concomitant decline in the firmicutes population in preterm vagina. Simplistic placental microflora included many environmental microbes with PTB placenta carrying pathogenic microbes like ureaplasma and mycoplasma species. We observed contribution of environmental, vaginal and skin contamination in term versus pathobiome signatures in preterm placenta.
Collapse
Affiliation(s)
- Viqar Sayeed Saraf
- Public Health and Microbiology Lab, Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan
| | - Syed Shujaat Ali Zaidi
- Public Health and Microbiology Lab, Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan; Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Jay Zhu
- Department of Microbiology, University of Pennsylvania, USA
| | | | | | - Habib Bokhari
- Public Health and Microbiology Lab, Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan; Biosciences Department, Kohsar University Murree, Murree, Punjab, Pakistan.
| | - Sundus Javed
- Public Health and Microbiology Lab, Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
4
|
Madere FS, Monaco CL. The female reproductive tract virome: understanding the dynamic role of viruses in gynecological health and disease. Curr Opin Virol 2022; 52:15-23. [PMID: 34800892 PMCID: PMC8844092 DOI: 10.1016/j.coviro.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
The human body is inhabited by a large and complex network of commensal and predatory eukaryotic viruses and bacteriophages collectively termed the virome. Despite being the most abundant and genetically diverse biological entities on the planet, the impact of viruses on human health especially within the female reproductive tract (FRT) remains understudied. To better appreciate current knowledge regarding the dynamic role of viruses in FRT health and disease, in this review we highlight the known constituents of the FRT virome, transkingdom interactions within the FRT and their influence on gynecological disease. A better understanding of the FRT virome may pave the way toward improved outcomes in gynecological, reproductive, and neonatal health.
Collapse
Affiliation(s)
- Ferralita S Madere
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - Cynthia L Monaco
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA.
| |
Collapse
|
5
|
Therapeutic Potential of Antimicrobial Peptides in Polymicrobial Biofilm-Associated Infections. Int J Mol Sci 2021; 22:ijms22020482. [PMID: 33418930 PMCID: PMC7825036 DOI: 10.3390/ijms22020482] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is widely recognized that many chronic infections of the human body have a polymicrobial etiology. These include diabetic foot ulcer infections, lung infections in cystic fibrosis patients, periodontitis, otitis, urinary tract infections and even a proportion of systemic infections. The treatment of mixed infections poses serious challenges in the clinic. First, polymicrobial communities of microorganisms often organize themselves as biofilms that are notoriously recalcitrant to antimicrobial therapy and clearance by the host immune system. Secondly, a plethora of interactions among community members may affect the expression of virulence factors and the susceptibility to antimicrobials of individual species in the community. Therefore, new strategies able to target multiple pathogens in mixed populations need to be urgently developed and evaluated. In this regard, antimicrobial or host defense peptides (AMPs) deserve particular attention as they are endowed with many favorable features that may serve to this end. The aim of the present review is to offer a comprehensive and updated overview of studies addressing the therapeutic potential of AMPs in mixed infections, highlighting the opportunities offered by this class of antimicrobials in the fight against polymicrobial infections, but also the limits that may arise in their use for this type of application.
Collapse
|