1
|
Marquez R, Aguado RJ, Barrios N, Arellano H, Tolosa L, Delgado-Aguilar M. Advanced antimicrobial surfaces in cellulose-based food packaging. Adv Colloid Interface Sci 2025; 341:103472. [PMID: 40132295 DOI: 10.1016/j.cis.2025.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
This critical review provides a comprehensive framework for selecting engineered colloidal and nanostructured systems for cellulose-based food packaging. Meta-analysis was used as a methodological approach to categorize them according to antimicrobial agents, coating methods, and synergistic effects against a broad spectrum of microorganisms. The most frequent substrate is flexible packaging paper (35-70 g/m2, uncalendered), often intended for food wrapping. Among antimicrobial agents, chitosan-based coatings are a common choice-often combined with essential oils-being particularly effective against Gram-positive bacteria (e.g., Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis). This is attributed to electrostatic interactions between the polysaccharide's protonated -NH3+ groups and teichoic acids within bacterial cell walls. Inorganic metal nanoparticles, such as ZnO nanorods and Ag nanoparticles, are broadly effective by compromising the membranes of various foodborne pathogens-including Bacillus cereus and Pseudomonas aeruginosa. Terpenoid- or phenolic-rich essential oils-commonly delivered in emulsions or encapsulated in host-guest β-cyclodextrin complexes-inhibit the growth of yeasts and molds, besides some common bacteria when grafted onto bleached paper. Synergistic effects have been observed with complex coatings such as chitosan combined with CuONPs. Despite their promising performance, the widespread industrial adoption of cellulose-based active packaging in the food sector requires addressing not only antimicrobial activity, but also barrier properties and feasible methods to functionalize the paper surface (e.g., bar coating). These challenges, often overlooked, are critically assessed herein. All considered, further studies are required to address the challenges of cellulosic antimicrobial materials in a holistic manner to accelerate its large-scale implementation in the food sector.
Collapse
Affiliation(s)
- Ronald Marquez
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Roberto J Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA
| | - Helena Arellano
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France
| | - Laura Tolosa
- School of Chemical Engineering, University of Los Andes, Merida, Venezuela
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| |
Collapse
|
2
|
Liu H, Wei X, He Y, Pan S, Wang C, Cheng J, Zhao Q, Shi K, Si H. Elucidating the antiviral effects of a novel compound throat anti-viral through metabolomics and network pharmacology: A study on infectious bronchitis virus in poultry. Poult Sci 2025; 104:104956. [PMID: 40127563 PMCID: PMC11984592 DOI: 10.1016/j.psj.2025.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Infectious bronchitis virus (IBV) is a major pathogen that causes significant economic losses in the global poultry industry. Current vaccination strategies provide only partial protection, highlighting the need for more effective prevention and treatment methods. This study aimed to develop a novel compound throat anti-viral (CTA) from natural plants using data from the Traditional Chinese Medicine Inheritance System and identification through liquid chromatography-mass spectrometry. CTA demonstrated substantial anti-IBV effects both in vitro and in vivo studies. In vitro, CTA significantly inhibited IBV multiplication and alleviated the pathological lesions in chicken embryonic kidney cells, tracheal rings, and chicken embryos. In vivo, a seven-day treatment with CTA obtained much milder clinical signs, enhanced growth performance, and better immune organ indices in infected chickens. Additionally, CTA treatment reduced IBV levels in the trachea and lungs and increased specific antibody titers. CTA also maintained body homeostasis, exhibiting strong antioxidant and anti-inflammatory properties that mitigated respiratory tract damage. Metabolomics and network pharmacology analyses, revealed that CTA's antiviral effects are mediated through the FoxO signaling pathway. This study successfully developed an effective prescription database based on the Traditional Chinese Medicine Inheritance System and validated the antiviral efficacy of CTA through comprehensive in vitro and in vivo experiments. The findings elucidated the mechanisms of CTA's action, particularly through the FoxO signaling pathway, and highlighted its potential for clinical application as a novel antiviral treatment for IBV in the poultry industry.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaofang Wei
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Sijia Pan
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chenchen Wang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Junze Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiyuan Zhao
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
3
|
Fokas R, Giormezis N, Vantarakis A. Synergistic Approaches to Foodborne Pathogen Control: A Narrative Review of Essential Oils and Bacteriophages. Foods 2025; 14:1508. [PMID: 40361591 PMCID: PMC12071951 DOI: 10.3390/foods14091508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The emergence of antimicrobial resistance among foodborne pathogens has intensified the search for alternative biocontrol strategies. Among these, essential oils (EOs) and bacteriophages have gained increasing attention, due to their natural origin and antimicrobial potential. This narrative review investigates their individual and combined use as innovative tools for improving food safety. We discuss the mechanisms of action, current food applications, and regulatory or technical limitations associated with both EOs and phages. Particular emphasis is placed on their complementary characteristics, which may enhance efficacy when used together. An in-depth analysis of five key studies investigating synergistic EO-phage combinations against Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium is presented. These studies, conducted in both in vitro and food-based systems, reveal that antimicrobial synergy is often dose- and temperature-dependent. Optimized combinations lead to enhanced bacterial reduction and reduced resistance development. However, several challenges remain, including sensory alterations in food products, phage inactivation by EO compounds, and host cell destruction at high EO doses. The review concludes that while EOs and phages face limitations when applied independently, their strategic combination shows substantial promise. Future research should focus on formulation development, delivery systems, and regulatory alignment to unlock their full synergistic potential.
Collapse
Affiliation(s)
- Rafail Fokas
- Department of Public Health, Medical School, University of Patras, 26504 Patras, Greece
| | - Nikolaos Giormezis
- Department of Microbiology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Liu D, Deng H, Song H. Insights into the functional mechanisms of the sesquiterpene synthase GEAS and GERDS in lavender. Int J Biol Macromol 2025; 299:140195. [PMID: 39848388 DOI: 10.1016/j.ijbiomac.2025.140195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Lavenders are economically significant plants cultivated worldwide for their essential oils (EOs) containing sesquiterpenes. These EOs contribute to the cosmetic, personal hygiene, and pharmaceutical industries. The biosynthesis of lavender sesquiterpenes involves enzymes like sesquiterpene synthases GEAS and GERDS. The structure and functional mechanism of these sesquiterpene synthases (GEAS or GERDS) are not fully understood. Here, we achieved the successful expression and purification of monomeric proteins at high purity. The results of the molecular docking revealed that negatively charged residues interact electrostatically with magnesium ions (Mg2+), thereby stabilizing and neutralizing negatively charged phosphate groups on the substrate. Notably, deletion of the N-terminus (∆N-terminus) significantly increased the enzymatic activity compared to the wild-type protein. These findings offer insights into the regulatory mechanisms underlying sesquiterpene biosynthesis in lavender, and suggest potential avenues for improving essential oils through genetic engineering and developing cosmetic and personal care products and alternative medicines.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Huashui Deng
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongying Song
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
5
|
Sayed MA, Ghazy NM, El Sayed H, El-Bassuony AAH. Synergistic potential of essential oil combinations against Microsporum, Trichophyton, and Epidermophyton. Int Microbiol 2025; 28:811-827. [PMID: 39186133 DOI: 10.1007/s10123-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Dermatophyte infections globally account for 20 to 25% of fungal infections. Dermatophytes have begun exhibiting antifungal drug resistance, making it challenging to treat this particular infection. Essential oils could be used as alternative solutions as they have been used for a long period to treat different infections. The research has demonstrated the antifungal efficacy of cinnamon, clove, lemongrass, tea tree, thyme, and garlic essential oils, and the impact of their combinations was assayed against Microsporum canis, Trichophyton tonsurans, T. violaceum, T. verrucosum, and Epidermophyton floccosum. Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to identify the most prevalent M. canis. The accession number of M. canis was obtained as ON007275. All tested essential oils exhibited antidermatophytic action except garlic. A synergistic effect was attained by cinnamon + clove, cinnamon + lemongrass, clove + lemongrass, clove + tea tree, and thyme + tea tree combinations. Concerning antifungal activity, M. canis was the most susceptible dermatophytic species, except in the case of thyme T. violaceum, which was the most susceptible dermatophytic species. The maximum inhibition was recorded in the cases of cinnamon and cinnamon + lemongrass combination against M. canis. The least minimum inhibitory concentrations were attained by cinnamon and clove against M. canis, cinnamon + clove against M. canis and T. violaceum, and cinnamon + lemongrass against M. canis, T. violaceum, T. verrucosum, and E. floccosum. The least minimum fungicidal concentration showed by cinnamon against M. canis, cinnamon + clove against M. canis and T. violaceum, cinnamon + lemongrass against M. canis, T. violaceum, T. verrucosum, and E. floccosum, and clove + lemongrass against M. canis.
Collapse
Affiliation(s)
- Mohsen A Sayed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Nahla M Ghazy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hagar El Sayed
- Dermatology Department, Faculty of Medicine, Kasralainy School of Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Zhao P, Zhang C, Che Y, Zhang L, Lin H, Su Z, Kang Q, Zhang Z, Peng X, Wang T. Identification of anti-SARS-CoV-2 compounds from Qingwen Zhike prescription and exploration of their underlying mechanism by UPLC-Q-Exactive Orbitrap MS, high-throughput screening assays and transmission electron microscopy. J Pharm Biomed Anal 2025; 255:116649. [PMID: 39755021 DOI: 10.1016/j.jpba.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation. Utilizing the UPLC-Q-Exactive Orbitrap MS system, a total of 279 components were identified from Qingwen Zhike. Among these, 49 components were detected in the serum and lungs of dosed rat, with 26 components distributed abundantly in the lungs. Subsequently, a SARS-CoV-2 pseudovirus-based assay and a main protease (Mpro) enzymatic assay were used to screen for viral entry inhibitors and Mpro inhibitors. The results showed that two alkaloids (ephedrine and pseudoephedrine) and five polymethoxy-flavonoids (3,5,6,7,8,3',4'-heptamethoxyflavone, nobiletin, isosinensetin, tangeretin, and sinensetin) exhibited potent inhibitory effects on viral invasion. Further observation by TEM indicated that these two alkaloids could dissolve the viral envelope, while these five polymethoxy-flavonoids could cause leakage of virus contents, deformation of viral envelope or decomposition of the virus. Collectively, these seven compounds may serve as key antiviral components of QWZK.
Collapse
Affiliation(s)
- Ping Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cai Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Che
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianli Kang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyi Peng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Fantatto RR, Constantini JVC, Politi FAS, Sorrechia R, Medeiros CCB, Luiz MT, Bechara GH, de Souza Chagas AC, Chorilli M, Pietro RCLR. Current Tick Control Strategies and Prospects for Using Nanotechnology as an Efficient Alternative-A Review. Vet Sci 2025; 12:163. [PMID: 40005923 PMCID: PMC11860588 DOI: 10.3390/vetsci12020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Ticks pose significant challenges to public and veterinary health, acting as vectors of several diseases that affect animals and humans. Traditional chemical control methods, such as pyrethroids and organophosphates, have led to increasing resistance and environmental contamination, highlighting the need and urgency for alternative strategies. This review explores contemporary approaches to tick control, emphasizing plant-derived acaricides and their integration with nanotechnology. Plant extracts, known for their acaricidal properties, disrupt several biological processes in ticks, reducing reproduction and survival rates. The advent of nanotechnology offers promising advances in increasing the efficacy of these natural extracts. Nanoparticles add properties to the systems where they act by improving the stability, bioavailability, and targeted delivery of plant-derived compounds, potentially overcoming the limitations of traditional acaricides. This synthesis of current knowledge highlights the potential of combining plant extracts with nanotechnology to develop sustainable and effective tick control solutions, addressing issues of acaricide resistance as well as environmental concerns. The review also identifies research gaps and suggests directions for future studies to optimize the application of nanotechnology in tick management.
Collapse
Affiliation(s)
- Rafaela Regina Fantatto
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - João Vitor Carvalho Constantini
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - Flávio Augusto Sanches Politi
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - Rodrigo Sorrechia
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - Camila Cristina Baccetti Medeiros
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - Marcela Tavares Luiz
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - Gervásio Henrique Bechara
- Graduate Program in Animal Science—PPGCA, Pontifical Catholic University of Paraná, Rua Imaculada Conceição, Curitiba 80215-901, PR, Brazil;
| | - Ana Carolina de Souza Chagas
- Southeast Livestock Unit, EMBRAPA—Brazilian Agricultural Research Corporation, Rodovia Washington Luiz, Km 234, São Carlos 13560-970, SP, Brazil;
| | - Marlus Chorilli
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| | - Rosemeire Cristina Linhari Rodrigues Pietro
- Departament of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, SP, Brazil; (R.R.F.); (J.V.C.C.); (F.A.S.P.); (R.S.); (C.C.B.M.); (M.C.)
| |
Collapse
|
8
|
Uner B, Guler E, Vicir ME, Kayhan H, Atsu N, Kalaskar D, Cam ME. Antiviral properties of essential oil mixture: Modulation of E7 and E2 protein pathways in human papillomavirus (HPV) infection. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119289. [PMID: 39736345 DOI: 10.1016/j.jep.2024.119289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clove is used in Indian and Chinese traditional medicine for viral diseases. Palmarosa essential oils have been traditionally used in India and Southeast Asia since ancient times and have made considerable use of them. In New Caledonia, niaouli oil is used in aromatherapy and pharmaceutical formulations to treat pain and viral diseases. Since ancient times, the South Pacific region has used tamanu oil as a traditional medicine to treat a wide range of skin conditions. AIM OF THE STUDY This study investigates the antiviral properties of essential oils (EOs) from Eugenia aromaticum (clove oil, CL-R030424005 (CL)), Cymbopogon martinii (palmarosa oil, PA-R040923008 (PA)), Melaleuca viridiflora (niaouli oil, NI-R290124038 (NI)), and Calophyllum inophyllum (tamanu oil, TA-F140224029 (TA)), and their mixture against human papillomavirus (HPV) infection. MATERIALS AND METHODS A D-optimal mixture design is used to determine the most effective EO combinations and evaluate their antiviral efficacy through IC50 values. The EOs were tested for their ability to inhibit HPV-related oncogenes (L1, L2, E1, E2, E6, and E7) in HPV-infected cells with ELISA, qPCR, and Western blot analyses. RESULTS AND DISCUSSION The optimal mixture (31.5% CL, 31.5% PA, and 37% NI) demonstrated significant antiviral activity, reducing viral replication and protein expression in HPV-infected cells. Ex-vivo permeation studies showed higher permeation rates in healthy tissues compared to infected ones, indicating the oils' potential in targeted drug delivery. Additionally, cytotoxicity assessments confirmed the safety of the EOs at effective concentrations in HPVCs, DoTc2, and HEKa cells. Molecular docking studies further elucidated the interactions between EO components and HPV proteins, supporting their antiviral mechanisms. CONCLUSION These findings suggest that EOs, particularly in optimized combinations, offer a promising natural supportive treatment for managing HPV infections, warranting further in vivo animal tests and clinical trials.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, 34406, Türkiye; Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, 63110, USA; Department of Anesthesiology, Center for Clinical Pharmacology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA; MecNano Technologies, Cube Incubation, Teknopark Istanbul, Istanbul, 34906, Türkiye.
| | - Ece Guler
- MecNano Technologies, Cube Incubation, Teknopark Istanbul, Istanbul, 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, 34406, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF, London, UK.
| | | | - Hulya Kayhan
- Art de Huile, Teknopol Istanbul, Istanbul, 34930, Türkiye.
| | - Necmettin Atsu
- Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, 34406, Türkiye.
| | - Deepak Kalaskar
- UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF, London, UK.
| | - Muhammet Emin Cam
- MecNano Technologies, Cube Incubation, Teknopark Istanbul, Istanbul, 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, 34406, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF, London, UK; Art de Huile, Teknopol Istanbul, Istanbul, 34930, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal.
| |
Collapse
|
9
|
Gaikwad SY, More A, Seniya C, Verma K, Chandane-Tak M, Nema V, Kumar S, Mukherjee A. Synergistic inhibition of HIV-1 by Nelfinavir and Epigallocatechin Gallate: A novel nanoemulsion-based therapeutic approach. Virology 2025; 603:110391. [PMID: 39787774 DOI: 10.1016/j.virol.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity. Moreover, nanodrug platforms can target viral reservoirs, potentially reducing the emergence of drug-resistant strains-a significant challenge in anti-HIV treatment. This study evaluates the biological efficacy of a rosemary oil-based nanoemulsion loaded with Nelfinavir (NFV) and Epigallocatechin Gallate (EGCG), which demonstrated HIV-1 suppression at sub-CC₅₀ concentrations across two distinct cellular systems. The synergistic interaction between NFV and EGCG was confirmed through cellular assays, enzymatic studies, and molecular interaction analysis. In vitro experiments revealed that the NE-NFV-EGCG nanoemulsion exhibited enhanced HIV-1 inhibitory activity compared to pure NFV, highlighting a promising therapeutic synergy. The findings suggest that EGCG could be a valuable adjunct in NFV-based regimens for HIV management. Molecular interaction studies further confirmed the nanoemulsion's inhibitory potential against the HIV-1 protease enzyme. This study marks a significant advancement in HIV-1 treatment by documenting, for the first time, the synergistic inhibitory activity of NFV and EGCG. The novel nanoformulation offers improved oral bioavailability, minimal side effects, and enhanced therapeutic outcomes. Future studies are needed to optimize the formulation for clinical applications, including sustained drug release and drug transport mechanisms.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Ashwini More
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Chandrabhan Seniya
- Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, India
| | - Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India.
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India.
| |
Collapse
|
10
|
Licata A, Seidita A, Como S, de Carlo G, Cammilleri M, Bonica R, Soresi M, Veronese N, Chianetta R, Citarrella R, Giannitrapani L, Barbagallo M. Herbal and Dietary Supplements as Adjunctive Treatment for Mild SARS-CoV-2 Infection in Italy. Nutrients 2025; 17:230. [PMID: 39861359 PMCID: PMC11767322 DOI: 10.3390/nu17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
During the COVID-19 pandemic, several observational studies proved a certain efficacy of nutraceuticals, herbal products, and other dietary supplements as adjuvant therapies used alongside antiviral drugs. Although their use has not been widespread in Italy, according to preliminary evidence, many supplements with demonstrated immunomodulatory effects, such as vitamins C and D, herbal medicines and essential oils, might relieve the respiratory symptoms of COVID-19, since SARS-CoV-2 can activate inflammasome-mediated inflammatory signaling pathways. Other observational studies have shown that herbal treatments, such as Echinacea purpurea and ginseng, help alleviate respiratory symptoms and reduce serum levels of inflammatory cytokines, which are typically overexpressed in both adult and pediatric SARS-CoV-2 patients. Further, vitamins C and D can attenuate the immune response thanks to their cytokine suppression ability and to their known antimicrobial activity and potential to modulate T helper cell response. The strong immune response triggered by SARS-CoV-2 infection is responsible for the severity of the disease. Preliminary data have also shown that L-arginine, an endothelial-derived relaxing factor, is able to modulate endothelial damage, which appears to be one of the main targets of this systemic disease. Finally, some essential oils and their isolated compounds, such as eucalyptol, may be helpful in reducing many of the respiratory symptoms of COVID-19, although others, such as menthol, are not recommended, since it can lead to an undervaluation of the clinical status of a patient. In this narrative review, despite the lack of strong evidence in this field, we aimed to give an overview of the current available literature (mainly observational and cross-sectional studies) regarding herbal products and dietary supplements and their use in the treatment of mild disease from SARS-CoV-2 infection. Obviously, dietary supplements and herbal products do not constitute a standardized treatment for COVID-19 disease, but they could represent an adjunctive and useful treatment when used together with antivirals.
Collapse
Affiliation(s)
- Anna Licata
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Silvia Como
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Gabriele de Carlo
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
| | - Marcella Cammilleri
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Bonica
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Maurizio Soresi
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Nicola Veronese
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Chianetta
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberto Citarrella
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Lydia Giannitrapani
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Mario Barbagallo
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| |
Collapse
|
11
|
Di Rosario M, Continisio L, Mantova G, Carraturo F, Scaglione E, Sateriale D, Forgione G, Pagliuca C, Pagliarulo C, Colicchio R, Vitiello M, Salvatore P. Thyme Essential Oil as a Potential Tool Against Common and Re-Emerging Foodborne Pathogens: Biocidal Effect on Bacterial Membrane Permeability. Microorganisms 2024; 13:37. [PMID: 39858805 PMCID: PMC11768042 DOI: 10.3390/microorganisms13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Over the past decade, foodborne diseases have become a significant public health concern, affecting millions of people globally. Major pathogens like Salmonella spp., Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus contaminate food and cause several infections. This study investigates the potential of thyme essential oil (Thy-EO) as a natural antimicrobial agent against most common and re-emerging foodborne bacteria, including S. enterica, Yersinia enterocolitica, and L. monocytogenes. Preliminary tests provided qualitative evidence of Thy-EO's efficacy by evaluating its antibacterial activity through direct contact and vapor phase exposure. Then, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were defined to quantitatively evaluate the bacteriostatic and bactericidal effects of Thy-EO, revealing a strong inhibitory effect against S. enterica, Y. enterocolitica and L. monocytogenes. Additionally, Thy-EO exerted rapid bactericidal kinetics characterized by the disruption of bacterial cell membrane integrity over time. Results highlight Thy-EO's potential as an alternative antimicrobial agent, demonstrating that treatment with Thy-EO significantly and irreversibly affects the growth of the tested foodborne pathogens.
Collapse
Affiliation(s)
- Martina Di Rosario
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
| | - Leonardo Continisio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
| | - Francesca Carraturo
- Pediatric Surgery Unit, Department of Transalational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
| | - Daniela Sateriale
- Department of Science and Technology, University of Sannio, Via F. De Sanctis snc, 82100 Benevento, Italy; (D.S.); (G.F.); (C.P.)
| | - Giuseppina Forgione
- Department of Science and Technology, University of Sannio, Via F. De Sanctis snc, 82100 Benevento, Italy; (D.S.); (G.F.); (C.P.)
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Via F. De Sanctis snc, 82100 Benevento, Italy; (D.S.); (G.F.); (C.P.)
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
| | - Mariateresa Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.R.); (L.C.); (G.M.); (E.S.); (C.P.); (R.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
12
|
Baptista A, Menicucci F, Brunetti C, Dos Santos Nascimento LB, Pasquini D, Alderotti F, Detti C, Ferrini F, Gori A. Unlocking the Hidden Potential of Rosemary ( Salvia rosmarinus Spenn.): New Insights into Phenolics, Terpenes, and Antioxidants of Mediterranean Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:3395. [PMID: 39683188 DOI: 10.3390/plants13233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.) is a Mediterranean aromatic species used both as an official herb and as a spice. Different cultivars may exhibit diverse phytochemical compositions, making a comprehensive chemical characterization pivotal for a targeted selection of valuable cultivars. This study aimed to characterize and compare the phenolic and terpene composition and content of leaf extracts of six Mediterranean rosemary cultivars: 'Alba', 'Arp' 'Ginger', 'Gorizia', 'Tuscan Blue', and 'Roseus'. HPLC-DAD analysis revealed a similar phenolic composition in all the cultivars, but quantitative differences were observed. The main compounds were carnosic acid derivatives, flavonoids (e.g., luteolin, apigenin, and quercetin glucosides), rosmarinic acid, caffeic acid, and other hydroxycinnamic acid derivatives. The highest phenolic content was found in 'Alba', with a predominance of carnosic acid derivatives, whereas the lowest was found in 'Ginger' and 'Gorizia'. The GC-MS analysis evidenced quantitative differences among the cultivars. Particularly, 'Alba' contained the highest terpene content, whereas 'Arp' and 'Gorizia' showed the lowest values. Regarding the antioxidant activity, 'Alba' exhibited the highest values as regards phenols, while for terpenes, the highest ones were obtained for 'Ginger' and 'Tuscan Blue'. Significant Pearson correlations were obtained between the total phenol/terpene content and the antioxidant activity. The chemical characterization of these cultivars provides relevant information to produce the rosemary phytocomplexes, finding multiple industrial applications.
Collapse
Affiliation(s)
- Andrea Baptista
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Felicia Menicucci
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | | | - Dalila Pasquini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Francesca Alderotti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Cassandra Detti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Francesco Ferrini
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Antonella Gori
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| |
Collapse
|
13
|
Barrial-Lujàn AI, Taipe-Pardo F, Lima-Roman P, Correa-Cuba O, Aroni-Huamán J, Salas-Villano TS, Solano-Gutierrez J, Machaca Rejas J, Barrial-Lujàn C, Arevalo-Quijano JC, Huamán-Carrión ML. Assessment of physicochemical characteristics and bioactive compounds of the essential oil of wild herbs aromatic from Andean region of South Perú. BRAZ J BIOL 2024; 84:e286148. [PMID: 39570157 DOI: 10.1590/1519-6984.286148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/28/2024] [Indexed: 11/22/2024] Open
Abstract
Essential oils are a subject of study due to the heterogeneity of their components, which vary according to the genus and species of the plant material. The objective of this study was the physicochemical characterization and bioactive components of the essential oil (EO) extracted from wild punamuña (Satureja Boliviana) and runtuhuayra (Clinopodium Weberbaueri (Mansf.) Govaerts) herbs from high Andean areas of southern Peru. The extraction of the EO from both species was carried out using the steam distillation technique, the density characterization using gravimetric methods and the acidity, peroxide index and refraction by analytical methods recommended by the Norma Tecnica Peruana (NTP). The bioactive compounds were quantified using gas chromatography coupled to a mass spectrometry detector (GC-MS). A better EO performance was obtained from punañuna 0.38% (w/w) compared to runtuhuayra 0.28% (w/w); In both samples, the density and refractive index were similar values (0.93-0.94) g/mL and (1.528-1.520) (p>0.05) respectively; However, the acid and peroxide index showed a significant difference between the samples studied (p<0.05). 37 bioactive compounds synthesized as secondary metabolites in Satureja Boliviana EO were identified, with the majority being monoterpenes (62%) highlighted by menthone, L-menthone, pulegone and 3-cyclohexen-1-one. 2-isopropyl-5-methyl, linalool, α-cadinene and α-cadinol; Meanwhile, in the EO of Clinopodium Weberbaueri, 28 compounds were detected and quantified, in which monoterpenes predominate (61%) made up of pulegone (45.67%); isomenthol (13.85%), menthone (6.05%), carvacrol (5.39%), and also D-limonene; o-cymene; 3-octanol; β-pinene and α-terpineol successively. This characterization of the EO of the aforementioned samples reveals recent a new additive or ingredient alternative for the industry due to its biological value associated with antioxidant, antimicrobial, anti-inflammatory activities and psychotherapeutics.
Collapse
Affiliation(s)
- A I Barrial-Lujàn
- Universidad Politécnica de Valencia, Departamento de Tecnologia de Alimentos, Valencia, España
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - F Taipe-Pardo
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - P Lima-Roman
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - O Correa-Cuba
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - J Aroni-Huamán
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - T S Salas-Villano
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - J Solano-Gutierrez
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - J Machaca Rejas
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - C Barrial-Lujàn
- Universidad Tecnología de los Andes, Facultad de Ingeniería, Andahuaylas, Perú
| | - J C Arevalo-Quijano
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - M L Huamán-Carrión
- Universidad Nacional San Cristóbal de Huamanga, Unidad de Posgrado, Ayacucho, Perú
| |
Collapse
|
14
|
Verma K, Chandane-Tak M, Gaikwad SY, Mukherjee A, Kumar S. Optimizing rosemary oil nanoemulsion loaded with nelfinavir and epigallocatechin gallate: A Design Expert® endorsed approach for enhanced neuroAIDS management. Int J Biol Macromol 2024; 280:135885. [PMID: 39307507 DOI: 10.1016/j.ijbiomac.2024.135885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
This study focuses on optimizing the delivery of Nelfinavir (NFV), a vital protease inhibitor in antiretroviral therapy, and Epigallocatechin gallate (EGCG), a potent adjunctive anti- human immunodeficiency virus (anti-HIV) agent found in green tea. The challenge lies in NFV's low intrinsic dissolution rate, significant p-gp efflux, and high hepatic metabolism, necessitating frequent and high-dose administration. Our objective was to develop a nanoemulsion loaded with NFV and EGCG to enhance oral delivery, expediting antiretroviral effects for NeuroAIDS treatment. After meticulous excipient screening, we selected Tween 40 as the surfactant and polyethylene glycol 400 (PEG 400) as the co-surfactant. Employing a Quality by Design (QbD) approach with statistical multivariate methods, we optimized the nanoemulsion that exhibited a droplet size of 83.21 nm, polydispersity index (PDI) of 2.289, transmittance of 95.20 %, zeta potential of 1.495 mV, pH of 6.95, refractive index of 1.40, viscosity of 24.00 ± 0.42 mPas, and conductivity of 0.162 μS/cm. Pharmacokinetic studies demonstrated superior in vivo absorption of the optimized nanoemulsion compared to NFV and EGCG suspension. The optimized nanoemulsion showcased higher Cmax of NFV (9.75 ± 1.23 μg/mL) and EGCG (27.7 ± 1.22 μg/mL) in the brain, along with NFV (26.44 ± 1.44 μg/mL) and EGCG (313.20 ± 5.53 μg/mL) in the plasma. This study advocates for the potential of NFV and EGCG-loaded nanoemulsion in combination antiretroviral therapy (cART) for effective NeuroAIDS management.
Collapse
Affiliation(s)
- Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut 250005, Uttar Pradesh, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Shraddha Y Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India.
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut 250005, Uttar Pradesh, India.
| |
Collapse
|
15
|
Amri M, Jubinville É, Goulet-Beaulieu V, Fliss I, Jean J. Evaluation of inhibitory activity of essential oils and natural extracts on foodborne viruses. J Appl Microbiol 2024; 135:lxae221. [PMID: 39174457 DOI: 10.1093/jambio/lxae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
AIMS Enteric viruses are recognized as a major concern in health care and in the food sector in Canada. Novel clean-label strategies for controlling enteric viruses are sought in the food industry. In this study, we examined the antiviral potential of plant extracts and essential oils on murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and herpes simplex virus 1 (HSV-1). METHODS AND RESULTS Inactivation of the viruses by grape seed, blueberry, green tea, and cranberry extracts and by rosemary and thyme essential oils was measured using plaque formation assay. Concentrations ranging from 50 to 200 000 ppm with a contact time of 90 min were tested. Grape seed extract at 10 000 ppm was the most effective (P < 0.05) at reducing MNV-1 and HAV infectious titers, respectively, by 2.85 ± 0.44 log10 and 1.94 ± 0.17 log10. HSV-1 titer was reduced by 3.81 ± 0.40 log10 at 1000 ppm grape seed extract. CONCLUSIONS Among the plant products tested, grape seed extract was found the most effective at reducing the infectious titers of MNV-1, HAV, and HSV.
Collapse
Affiliation(s)
- Mariem Amri
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Éric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Ismail Fliss
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| |
Collapse
|
16
|
Wang L, Fang J, Wang H, Zhang B, Wang N, Yao X, Li H, Qiu J, Deng X, Leng B, Wang J, Tan W, Zhang Q. Natural medicine can substitute antibiotics in animal husbandry: protective effects and mechanisms of rosewood essential oil against Salmonella infection. Chin J Nat Med 2024; 22:785-796. [PMID: 39326973 DOI: 10.1016/s1875-5364(24)60576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 09/28/2024]
Abstract
Aniba rosaeodora essential oil (RO) has been traditionally used in natural medicine as a substitute for antibiotics due to its notable antidepressant and antibacterial properties. Salmonella, a prevalent pathogen in foodborne illnesses, presents a major challenge to current antibiotic treatments. However, the antibacterial efficacy and mechanisms of action of RO against Salmonella spp. remain underexplored. This study aims to elucidate the chemical composition of RO, evaluate its antibacterial activity and mechanisms against Salmonella in vitro, and further delineate its anti-inflammatory mechanisms in vivo during Salmonella infection. Gas chromatography-mass spectrometry (GC-MS) was utilized to characterize the chemical constituents of RO. The antibacterial activity of RO was assessed using minimal inhibitory concentration (MIC) and time-kill assays. Various biochemical assays were employed to uncover the potential bactericidal mechanisms. Additionally, mouse and chick models of Salmonella infection were established to investigate the prophylactic effects of RO treatment. RO exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacteria, with an MIC of 4 mg·mL-1 for Salmonella spp. RO treatment resulted in bacterial damage through the disruption of lipid and purine metabolism. Moreover, RO reduced injury and microbial colonization in infected mice and chicks. RO treatment also modulated the host inflammatory response by inhibiting proinflammatory pathways. In conclusion, our findings demonstrate that RO is effective against Salmonella infection, highlighting its potential as an alternative to antibiotics for antibacterial therapy.
Collapse
Affiliation(s)
- Lanqiao Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Baoyu Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyu Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - He Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bingfeng Leng
- Shenzhen Beichen Biotech Co., Ltd., Shenzhen 518057, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenxi Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Qiaoling Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
17
|
Lagoa T, Queiroga MC, Martins L. An Overview of Wound Dressing Materials. Pharmaceuticals (Basel) 2024; 17:1110. [PMID: 39338274 PMCID: PMC11434694 DOI: 10.3390/ph17091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Wounds are an increasing global concern, mainly due to a sedentary lifestyle, frequently associated with the occidental way of life. The current prevalence of obesity in Western societies, leading to an increase in type II diabetes, and an elderly population, is also a key factor associated with the problem of wound healing. Therefore, it stands essential to find wound dressing systems that allow for reestablishing the skin integrity in the shortest possible time and with the lowest cost, avoiding further damage and promoting patients' well-being. Wounds can be classified into acute or chronic, depending essentially on the duration of the healing process, which is associated withextent and depth of the wound, localization, the level of infection, and the patient's health status. For each kind of wound and respective healing stage, there is a more suitable dressing. The aim of this review was to focus on the possible wound dressing management, aiming for a more adequate healing approach for each kind of wound.
Collapse
Affiliation(s)
- Tânia Lagoa
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
- Department of Veterinary Medicine, School of Science and Technology, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| | - Luís Martins
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
- Department of Veterinary Medicine, School of Science and Technology, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| |
Collapse
|
18
|
Fernandez SA, Pelaez-Prestel HF, Ras-Carmona A, Mozas-Gutierrez J, Reyes-Manzanas R, Reche PA. Eucalyptus Essential Oil Inhibits Cell Infection by SARS-CoV-2 Spike Pseudotyped Lentivirus. Biomedicines 2024; 12:1885. [PMID: 39200349 PMCID: PMC11351113 DOI: 10.3390/biomedicines12081885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a public health concern due to infections with new SARS-CoV-2 variants. Therefore, finding effective preventive and therapeutic treatments against all SARS-CoV-2 variants is of great interest. In this study, we examined the capacity of eucalyptus essential oil (EEO) and eucalyptol (EOL) to prevent SARS-CoV-2 infection, using as a model SARS-CoV-2 Spike pseudotyped lentivirus (SARS-CoV-2 pseudovirus) and 293T cells transfected with human angiotensin-converting enzyme 2 (hACE2-293T cells). First, we determined the cytotoxicity of EEO and EOL using the MTT colorimetric assay, selecting non-cytotoxic concentrations ≤ 0.1% (v/v) for further analysis. Subsequently, we evaluated the capacity of EEO and EOL in cell cultures to preclude infection of hACE2-293T cells by SARS-CoV-2 pseudovirus, using a luciferase-based assay. We found that EEO and EOL significantly reduced SARS-CoV-2 pseudovirus infection, obtaining IC50 values of 0.00895% and 0.0042% (v/v), respectively. Likewise, EEO and EOL also reduced infection by vesicular stomatitis virus (VSV) pseudovirus, although higher concentrations were required. Hence, EEO and EOL may be able to inhibit SARS-CoV-2 infection, at least partially, through a Spike-independent pathway, supporting the implementation of aromatherapy with these agents as a cost-effective antiviral measure.
Collapse
Affiliation(s)
| | | | | | | | - Raquel Reyes-Manzanas
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, S/N, 28040 Madrid, Spain; (S.A.F.); (H.F.P.-P.); (A.R.-C.); (J.M.-G.)
| | - Pedro A. Reche
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, S/N, 28040 Madrid, Spain; (S.A.F.); (H.F.P.-P.); (A.R.-C.); (J.M.-G.)
| |
Collapse
|
19
|
Zhang F, Hirama Y, Onishi S, Mori T, Ono N, Kanaya S. Design of Fragrance Formulations with Antiviral Activity Using Bayesian Optimization. Microorganisms 2024; 12:1568. [PMID: 39203410 PMCID: PMC11356527 DOI: 10.3390/microorganisms12081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
In case of future viral threats, including the proposed Disease X that has been discussed since the emergence of the COVID-19 pandemic in March 2020, our research has focused on the development of antiviral strategies using fragrance compounds with known antiviral activity. Despite the recognized antiviral properties of mixtures of certain fragrance compounds, there has been a lack of a systematic approach to optimize these mixtures. Confronted with the significant combinatorial challenge and the complexity of the compound formulation space, we employed Bayesian optimization, guided by Gaussian Process Regression (GPR), to systematically explore and identify formulations with demonstrable antiviral efficacy. This approach required the transformation of the characteristics of formulations into quantifiable feature values using molecular descriptors, subsequently modeling these data to predict and propose formulations with likely antiviral efficacy enhancements. The predicted formulations underwent experimental testing, resulting in the identification of combinations capable of inactivating 99.99% of viruses, including a notably efficacious formulation of five distinct fragrance types. This model demonstrates high predictive accuracy (coefficient determination Rcv2 > 0.7) and suggests a new frontier in antiviral strategy development. Our findings indicate the powerful potential of computational modeling to surpass human analytical capabilities in the pursuit of complex, fragrance-based antiviral formulations.
Collapse
Affiliation(s)
- Fan Zhang
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi 640-8580, Wakayama, Japan;
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
| | - Yui Hirama
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan; (Y.H.); (S.O.); (T.M.)
| | - Shintaro Onishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan; (Y.H.); (S.O.); (T.M.)
| | - Takuya Mori
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan; (Y.H.); (S.O.); (T.M.)
| | - Naoaki Ono
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| | - Shigehiko Kanaya
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| |
Collapse
|
20
|
Soraya C, Batubara FY, Nasroen SL, Jakfar S, Gani BA. Role of Moringa oleifera irrigation solution on the cell metabolism change of Streptococcus mutans. J Adv Pharm Technol Res 2024; 15:200-207. [PMID: 39290550 PMCID: PMC11404440 DOI: 10.4103/japtr.japtr_442_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 09/19/2024] Open
Abstract
The principal etiological agent responsible for dental caries is Streptococcus mutans (S. mutans). The Moringa oleifera (M. oleifera) possesses antioxidant and antibacterial properties that function through the response to oxidative stress, which affects bacterial cell metabolism. This research examined M. oleifera impact on S. mutans growth, toxicity, glucan-binding protein (GBP) expression, and nucleic acid structure. Methods included spectrophotometry for growth analysis, enzyme-linked immunosorbent assay for GBP quantification, the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT assay for cytotoxicity, Fourier transform infrared for nucleic acid changes, and docking simulation for ligand-receptor affinity. Results showed that M. oleifera significantly inhibited S. mutans growth at all concentrations over 24 and 48 h (optical density <0.1), comparable to <300 CFU/mL. At 72 h, 6.25% and 3.125% concentrations were most effective, with chlorhexidine also showing stability at these times. A 3.125% concentration of M. oleifera notably reduced GBP production to below 15% and caused cell toxicity. Furthermore, 25% and 3.125% concentrations significantly altered S. mutans nucleic acids, and M. oleifera showed high binding affinity to the GBP gene receptor. Thus, M. oleifera can inhibit S. mutans growth and GBP production, cause nucleic acid deformation, and strongly bind to the GBP receptor, highlighting its potential in dental caries prevention.
Collapse
Affiliation(s)
- Cut Soraya
- Department of Dentistry Conservative, Dentistry Faculty, University of Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia
| | - Fitri Yunita Batubara
- Department of Conservative Dentistry, Dentistry Faculty, University of Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Saskia L Nasroen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Jenderal Achmad Yani, Cimahi, Bandung, Indonesia
| | - Subhaini Jakfar
- Department of Dental Material, Dentistry Faculty, University of Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia
| | - Basri A Gani
- Department of Oral Biology, Dentistry Faculty, University of Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
21
|
Ashaq B, Rasool K, Habib S, Bashir I, Nisar N, Mustafa S, Ayaz Q, Nayik GA, Uddin J, Ramniwas S, Mugabi R, Wani SM. Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances. Food Chem X 2024; 22:101521. [PMID: 38952570 PMCID: PMC11215000 DOI: 10.1016/j.fochx.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Lemongrass essential oil (LEO), extracted from high-oil lemongrass, gains prominence as a versatile natural product due to growing demand for safe health solutions. LEO comprises beneficial compounds like citral, isoneral, geraniol, and citronellal, offering diverse pharmacological benefits such as antioxidant, antifungal, antibacterial, antiviral, and anticancer effects. LEO finds applications in food preservation, cosmetics, and pharmaceuticals, enhancing profitability across these sectors. The review focuses on the extraction of LEO, emphasizing the need for cost-effective methods. Ultrasound and supercritical fluid extraction are effective in reducing extraction time, increasing yields, and enhancing oil quality. LEO shows promise as a valuable natural resource across industries, with applications in packaging, coating, and film development. LEO's ability to extend the shelf life of food items and impart natural flavors positions it as a valuable asset. Overall, the review emphasizes LEO's therapeutic, antimicrobial, and antioxidant properties, strengthening its potential in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Barjees Ashaq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Khansa Rasool
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Samira Habib
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Naseh Nisar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Sehrish Mustafa
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Qudsiya Ayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| |
Collapse
|
22
|
Kiełtyka-Dadasiewicz A, Esteban J, Jabłońska-Trypuć A. Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species. Pharmaceuticals (Basel) 2024; 17:705. [PMID: 38931371 PMCID: PMC11206715 DOI: 10.3390/ph17060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of natural plant materials in modern medicine is considerable, and raw materials with antiviral, antibacterial, antifungal, and anticancer properties are still sought because of microbe resistance and difficulties in anticancer therapy. This review focuses on the lemongrass Cymbopogon citratus (DC.) Stapf. and on the lemongrass oil properties and applications. Multiple applications of this plant were described in different latitudes and cultures, including cases of digestive disorders and anti-inflammatory, antipyretic, diaphoretic, stimulating, and antispasmodic conditions. Data from the literature on the composition of essential oil and extracts from C. citratus were analyzed, and the results of research on the antifungal, antibacterial, and antiviral effects were quoted. Essential oil inhibits the growth of fungi (Aspergillus niger, A. fumigatus, Candida spp.) and has an antibacterial effect (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa). It also shows antiviral activity and deters insects. Lemongrass contains active substances with potential anticancer effects. This plant has apoptosis-stimulating properties, mainly through the activity of apigenin, which is the main active flavonoid in this plant. This active substance helps inhibit cell proliferation by stopping the cell cycle and directing cancer cells toward apoptosis.
Collapse
Affiliation(s)
- Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Centre, 20-819 Lublin, Poland
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain;
| | - Agata Jabłońska-Trypuć
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Centre, 20-819 Lublin, Poland
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Białystok, Poland
| |
Collapse
|
23
|
Lanave G, Catella C, Catalano A, Lucente MS, Pellegrini F, Fracchiolla G, Diakoudi G, Palmisani J, Trombetta CM, Martella V, Camero M. Assessing the virucidal activity of essential oils against feline calicivirus, a non-enveloped virus used as surrogate of norovirus. Heliyon 2024; 10:e30492. [PMID: 38711631 PMCID: PMC11070907 DOI: 10.1016/j.heliyon.2024.e30492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
Norovirus (NoV) causes serious gastrointestinal disease worldwide and is regarded as an important foodborne pathogen. Due the difficulties of in vitro cultivation for human NoV, alternative caliciviruses (i.e., feline calicivirus, FCV, or murine NoV) have long been used as surrogates for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) are natural compounds that have displayed antimicrobial and antioxidant properties. We report in vitro the virucidal efficacy of four EOs, Melissa officinalis L. EO (MEO), Thymus vulgaris L. EO (TEO), Rosmarinus officinalis L. EO (REO), and Salvia officinalis L. EO (SEO) against FCV at different time contacts (10, 30 min, 1, 4 and 8 h). At the maximum non-cytotoxic concentration and at 10- and 100- fold concentrations over the cytotoxic threshold, the EOs did not decrease significantly FCV viral titers. However, MEO at 12,302.70 μg/mL exhibited a significant efficacy decreasing the viral titer by 0.75 log10 Tissue Culture Infectious Dose (TCID50)/50 μl after 10 min as compared to virus control. In this study, virucidal activity of four EOs against FCV, was investigated. A lack of virucidal efficacy of TEO, REO and SEO at different compound concentrations and time contacts against FCV was observed whilst MEO was able to significantly decrease FCV titer.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Jolanda Palmisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| |
Collapse
|
24
|
Yang H, Zhang S, Gu Y, Peng J, Huang X, Guo H, Chen L, Jiang Y, Liu M, Luo X, Xie J, Wan X. Identification and variation analysis of the composition and content of essential oil and fragrance compounds in Phoebe zhennan wood at different tree ages. FRONTIERS IN PLANT SCIENCE 2024; 15:1368894. [PMID: 38595765 PMCID: PMC11002133 DOI: 10.3389/fpls.2024.1368894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Wood essential oil and wood products with special fragrances are high value-added forest products. Despite the availability of essential oil and volatile organic compounds (VOCs) from Phoebe zhennan wood, their variation and dependence on tree age have not been examined. After essential oil extraction and wood processing, the yields and compositions of essential oils and VOCs in wood from P. zhennan trees of different ages (10a, 30a, and 80a) were determined. The yield of essential oil from 30a wood was significantly greater than that from 10a and 80a wood. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed 672 and 41 volatile compounds, respectively, in the essential oil and wood, the majority of which exhibited large fluctuations in relative content and composition depending on tree age. Sesquiterpenoids, fatty acids and conjugates may greatly contribute to the main components of essential oil from wood. Almost all major sesquiterpenoid compounds, such as caryophyllene α-oxide, eudesmo, and cubebene, were identified in the essential oils from the 30a and 80a wood, and their relative contents were much greater than those in the 10a wood. The main components of the wood fragrance were sesquiterpenoids. The types and relative contents of sesquiterpenoids from wood increased with tree age. These results suggest that choosing wood from trees of a suitable age will significantly improve the efficiency of wood utilization.
Collapse
Affiliation(s)
- Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuaiying Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yunjie Gu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu, China
| | - Jian Peng
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu, China
| | - Xin Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hongying Guo
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yongze Jiang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Minhao Liu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu, China
| | - Xiandan Luo
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiaxin Xie
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Weisany W, Yousefi S, Soufiani SP, Pashang D, McClements DJ, Ghasemlou M. Mesoporous silica nanoparticles: A versatile platform for encapsulation and delivery of essential oils for food applications. Adv Colloid Interface Sci 2024; 325:103116. [PMID: 38430728 DOI: 10.1016/j.cis.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Essential oils (EOs) are biologically active and volatile substances that have found widespread applications in the food, cosmetics, and pharmaceutical industries. However, there are some challenges to their commercial utilization due to their high volatility, susceptibility to degradation, and hydrophobicity. In their free form, EOs can quickly evaporate, as well as undergo degradation reactions like oxidation, isomerization, dehydrogenation, or polymerization when exposed to light, heat, or air. Encapsulating EOs within mesoporous silica nanoparticles (MSNPs) could overcome these limitations and thereby broaden their usage. MSNPs may endow protection and slow-release properties to EOs, thereby extending their stability, enhancing their efficacy, and improving their dispersion in aqueous environments. This review explores and compares the design and development of different MSNP-based nanoplatforms to encapsulate, protect, and release EOs. Initially, a brief overview of the various types of available MSNPs, their properties, and their synthesis methods is given to better understand their roles as carriers for EOs. Several encapsulation technologies are then examined, including solvent-based and solvent-free methods. The suitability of each technology for EO encapsulation, as well as its impact on their stability and release, is discussed in detail. Opportunities and challenges for using EO-loaded MSNPs as preservatives, flavor enhancers, and antimicrobial agents in the food industry are then highlighted. Overall, this review aims to bridge a knowledge gap by providing a thorough understanding of EO encapsulation within MSNPs, which should facilitate the application of this technology in the food industry.
Collapse
Affiliation(s)
- Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz Pourbarghi Soufiani
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danial Pashang
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
26
|
Al-Maharik N, Salama Y, Al-Hajj N, Jaradat N, Jobran NT, Warad I, Hamdan L, Alrob MA, Sawafta A, Hidmi A. Chemical composition, anticancer, antimicrobial activity of Aloysia citriodora Palau essential oils from four different locations in Palestine. BMC Complement Med Ther 2024; 24:94. [PMID: 38365676 PMCID: PMC10870676 DOI: 10.1186/s12906-024-04390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
The primary aim of this investigation was to determine the anticancer and antimicrobial properties of essential oils (EOs) extracted from the leaves of Aloysia citriodora Palau, which were procured from four separate locations in Palestine, in addition to analyzing their chemical composition. These areas include Jericho, which has the distinction of being the lowest location on Earth, at 260 m below sea level. The EOs were acquired by hydrodistillation, and their chemical composition was examined utilizing gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentration (MIC) of EOs was assessed against six bacterial strains and one fungal species using 96-well microtiter plates. The primary components found in these oils are geranial (26.32-37.22%), neral (18.38-29.00%), and α-curcumene (7.76-16.91%) in three regions. α-Curcumene (26.94%), spathulenol (13.69%), geranial (10.79%), caryophyllene oxide (8.66%), and neral (7.59%) were found to be the most common of the 32 chemical components in the EO from Jericho. The EOs exhibited bactericidal properties, particularly against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and showed highly effective fungicidal activity. Nevertheless, the antifungal efficacy of the EO was found to surpass its antibacterial activity when administered at lower dosages. The EOs exhibited anticancer activities against melanoma cancer cells, as indicated by their IC50 values, which ranged from 4.65 to 7.96 μg/mL. A. citriodora EO possesses substantial antifungal and anticancer characteristics, rendering it appropriate for utilization in food-related contexts, hence potentially enhancing the sustainability of the food sector.
Collapse
Affiliation(s)
- Nawaf Al-Maharik
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine.
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, 00970, Palestine
| | - Nisreen Al-Hajj
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Naji Thaer Jobran
- Department of Chemistry, Faculty of Sciences, Birzeit University, Birzeit, P.O. Box. 7, Palestine
| | - Ismael Warad
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Lina Hamdan
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Moataz Abo Alrob
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Asil Sawafta
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, 00970, Palestine
| | - Adel Hidmi
- Department of Chemistry, Faculty of Sciences, Birzeit University, Birzeit, P.O. Box. 7, Palestine
| |
Collapse
|
27
|
Tan WN, Samling BA, Tong WY, Chear NJY, Yusof SR, Lim JW, Tchamgoue J, Leong CR, Ramanathan S. Chitosan-Based Nanoencapsulated Essential Oils: Potential Leads against Breast Cancer Cells in Preclinical Studies. Polymers (Basel) 2024; 16:478. [PMID: 38399856 PMCID: PMC10891598 DOI: 10.3390/polym16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Since ancient times, essential oils (EOs) derived from aromatic plants have played a significant role in promoting human health. EOs are widely used in biomedical applications due to their medicinal properties. EOs and their constituents have been extensively studied for treating various health-related disorders, including cancer. Nonetheless, their biomedical applications are limited due to several drawbacks. Recent advances in nanotechnology offer the potential for utilising EO-loaded nanoparticles in the treatment of various diseases. In this aspect, chitosan (CS) appears as an exceptional encapsulating agent owing to its beneficial attributes. This review highlights the use of bioactive EOs and their constituents against breast cancer cells. Challenges associated with the use of EOs in biomedical applications are addressed. Essential information on the benefits of CS as an encapsulant, the advantages of nanoencapsulated EOs, and the cytotoxic actions of CS-based nanoencapsulated EOs against breast cancer cells is emphasised. Overall, the nanodelivery of bioactive EOs employing polymeric CS represents a promising avenue against breast cancer cells in preclinical studies.
Collapse
Affiliation(s)
- Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Benedict Anak Samling
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Nelson Jeng-Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Joseph Tchamgoue
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Chean-Ring Leong
- Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| |
Collapse
|
28
|
Wang W, Yuan Z, Li T, Wang Y, Zhang K, Wu J, Zhang S, Yuan F, Dong W. Rapid Preparation of Highly Stretchable and Fast Self-Repairing Antibacterial Hydrogels for Promoting Hemostasis and Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:394-405. [PMID: 38150008 DOI: 10.1021/acsabm.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Hydrogel dressings have emerged as a vital resource in wound management, offering several advantages over conventional wound dressing materials. Their inherent biocompatibility, ability to replicate the native extracellular matrix, and capacity to provide an ideal environment for cell survival make them particularly valuable. Nevertheless, the mechanical properties of many hydrogel dressings are an area that warrants improvement, as it currently constrains their application range. This limitation is especially evident when skin wounds are addressed in highly active or easily scratched areas. In this study, we present the development of a highly stretchable self-repairing hydrogel by cross-linking poly(vinyl alcohol) (PVA) through dynamic boron ester bonds, coupled with the hydrogen bonding of carboxymethyl cellulose sodium (CMC) via an efficient one-pot method without adding any catalyst. This innovative PVA/CMC hydrogel exhibited remarkable antibacterial properties achieved through the incorporation of bergamot oil, which was dispersed in a β-cyclodextrin solution. The hydrogel's elongation at the point of rupture reached an impressive 1910%, and it was capable of rapid self-healing in just 3 min upon bonding. Additionally, the hydrogel demonstrated excellent hemostatic properties, effectively mitigating blood loss and exudation. In vivo wound models have shown that PVA/CMC significantly expedites wound healing by reducing bacterial infections, inflammatory responses, and blood loss and by promoting collagen deposition. In summary, this research provides crucial insights into its potential as an advanced wound dressing material, particularly well-suited for addressing wounds in places with frequent activities or easy scratches.
Collapse
Affiliation(s)
- Wei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengdong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kaiwen Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Junjie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Shiru Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fenglai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
29
|
Brah AS, Armah FA, Obuah C, Akwetey SA, Adokoh CK. Toxicity and therapeutic applications of citrus essential oils (CEOs): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2158864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Augustine S. Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis A. Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Collins Obuah
- Department of Chemistry, University of Ghana, Legon, Ghana
| | - Samuel A. Akwetey
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Clinical Microbiology, School of Medicine, University for Development Studies, Tamale
| | - Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
30
|
Boone SA, Ijaz MK, Bright KR, Silva-Beltran NP, Nims RW, McKinney J, Gerba CP. Antiviral Natural Products, Their Mechanisms of Action and Potential Applications as Sanitizers and Disinfectants. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:265-280. [PMID: 37906416 DOI: 10.1007/s12560-023-09568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.
Collapse
Affiliation(s)
- Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Kelly R Bright
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | | | | | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
31
|
Betancur-Galvis L, Jimenez-Jarava OJ, Rivas F, Mendoza-Hernández WE, González-Cardenete MA. Synergistic In Vitro Antiviral Effect of Combinations of Ivermectin, Essential Oils, and 18-(Phthalimid-2-yl)ferruginol against Arboviruses and Herpesvirus. Pharmaceuticals (Basel) 2023; 16:1602. [PMID: 38004467 PMCID: PMC10674234 DOI: 10.3390/ph16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Combining antiviral drugs with different mechanisms of action can help prevent the development of resistance by attacking the infectious agent through multiple pathways. Additionally, by using faster and more economical screening methods, effective synergistic drug candidates can be rapidly identified, facilitating faster paths to clinical testing. In this work, a rapid method was standardized to identify possible synergisms from drug combinations. We analyzed the possible reduction in the antiviral effective concentration of drugs already approved by the FDA, such as ivermectin (IVM), ribavirin (RIBA), and acyclovir (ACV) against Zika virus (ZIKV), Chikungunya virus (CHIKV), and herpes virus type 2 (HHV-2). Essential oils (EOs) were also included in the study since they have been reported for more than a couple of decades to have broad-spectrum antiviral activity. We also continued studying the antiviral properties of one of our patented molecules with broad-spectrum antiviral activity, the ferruginol analog 18-(phthalimid-2-yl)ferruginol (phthFGL), which presented an IC99 of 25.6 μM for the three types of virus. In general, the combination of IVM, phthFGL, and oregano EO showed the greatest synergism potential against CHIKV, ZIKV, and HHV-2. For instance, this combination achieved reductions in the IC99 value of each component up to ~8-, ~27-, and ~12-fold for CHIKV, respectively. The ternary combination of RIBA, phthFGL, and oregano EO was slightly more efficient than the binary combination RIBA/phthFGL but much less efficient than IVM, phthFGL, and oregano EO, which indicates that IVM could contribute more to the differentiation of cell targets (for example via the inhibition of the host heterodimeric importin IMP α/β1 complex) than ribavirin. Statistical analysis showed significant differences among the combination groups tested, especially in the HHV-2 and CHIKV models, with p = 0.0098. Additionally, phthFGL showed a good pharmacokinetic profile that should encourage future optimization studies.
Collapse
Affiliation(s)
- Liliana Betancur-Galvis
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Orlando José Jimenez-Jarava
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, LA 70803, USA;
| | - William E. Mendoza-Hernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| | - Miguel A. González-Cardenete
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| |
Collapse
|
32
|
McGrath C, Clarkson J, Glenny AM, Walsh LJ, Hua F. Effectiveness of Mouthwashes in Managing Oral Diseases and Conditions: Do They Have a Role? Int Dent J 2023; 73 Suppl 2:S69-S73. [PMID: 37867064 PMCID: PMC10690548 DOI: 10.1016/j.identj.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Antimicrobial mouthwashes are considered to reduce dental plaque biofilm and thus the potential to prevent plaque-induced oral diseases, particularly periodontal diseases. The effectiveness of mouthwashes relates to this antiplaque role, as well as, their tooth-whitening potential and ability to mask/mange malodour (halitosis). There is also a growing interest in the use of mouthwashes as an adjunctive measure in post surgical and post-dental care, while the COVID-19 pandemic has given a new lease of life to mouthwashes as an oral antispetic that may be useful in reducing the oral viral load. The mode of action of mouthwashes varies, depending on their active ingredients, concentrations, and mode and frequency of use, as does their potential effectiveness. This article aims to provide a narrative overview of the evidence of the effectiveness of the most widely used mouthwashes in managing oral diseases, oral conditions, and adjunctive care roles.
Collapse
Affiliation(s)
- Colman McGrath
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | | | - Ann-Marie Glenny
- Division of Dentistry, School of Medical Sciences, University of Manchester, UK
| | | | - Fang Hua
- School & Hospital of Stomatology, Wuhan University, China
| |
Collapse
|
33
|
Bava R, Castagna F, Ruga S, Nucera S, Caminiti R, Serra M, Bulotta RM, Lupia C, Marrelli M, Conforti F, Statti G, Domenico B, Palma E. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee ( Apis mellifera) Pathogens. Pathogens 2023; 12:1260. [PMID: 37887776 PMCID: PMC10610010 DOI: 10.3390/pathogens12101260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The most important pollinator for agricultural crops is the Western honeybee (Apis mellifera). During the winter and summer seasons, diseases and stresses of various kinds endanger honeybee numbers and production, resulting in expenses for beekeepers and detrimental effects on agriculture and ecosystems. Researchers are continually in search of therapies for honeybees using the resources of microbiology, molecular biology, and chemistry to combat diseases and improve the overall health of these important pollinating insects. Among the most investigated and most promising solutions are medicinal plants and their derivatives. The health of animals and their ability to fight disease can be supported by natural products (NPs) derived from living organisms such as plants and microbes. NPs contain substances that can reduce the effects of diseases by promoting immunity or directly suppressing pathogens, and parasites. This literature review summarises the advances that the scientific community has achieved over the years regarding veterinary treatments in beekeeping through the use of NPs. Their impact on the prevention and control of honeybee diseases is investigated both in trials that have been conducted in the laboratory and field studies.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Maria Serra
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy;
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Britti Domenico
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
34
|
Chen T, Kong Q, Kuang X, Zhou J, Wang H, Zhou L, Yang H, Feng S, Ding C. Chemical Composition of Litsea pungens Essential Oil and Its Potential Antioxidant and Antimicrobial Activities. Molecules 2023; 28:6835. [PMID: 37836677 PMCID: PMC10574272 DOI: 10.3390/molecules28196835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Litsea pungens is a plant with medicinal and edible properties, where the fruits are edible and the leaves have medicinal properties. However, there is limited research on the chemical and pharmacological activities of the plant. In this study, essential oils were extracted by steam distillation and their antioxidant and antibacterial activities were further evaluated. Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical components of L. pungens fresh fruit essential oil (FREO) and L. pungens fresh flower essential oil (FLEO), rapeseed oil (RO) and commercial Litsea oil (CEO). The results showed that 12 chemical components were identified in FREO. Twelve chemical components were identified from FLEO, four chemical components were identified from CEO, and thirteen chemical components were identified from RO. Except for RO, the other three oils were mainly composed of terpenes, among which limonene is the main chemical component. In terms of antioxidant activity, FREO, FLEO, CEO and RO have antioxidant capacity, mainly reflected in the scavenging DPPH free radicals and the iron ion chelating ability, and the antioxidant activity shows a certain dose effect, but the antioxidant activity of FLEO is the weakest among the four oils. Meanwhile, under the stress of hydrogen peroxide, CEO demonstrated a significant antioxidant protective effect on cells. It is worth mentioning that compared with the positive control, the FREO exhibited a better antibacterial rate. When the concentration of essential oil is 20 mg/mL, the bacteriostatic rate can reach 100%. Therefore, it could be a promising candidate among medicinal and edible plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (T.C.); (Q.K.); (X.K.); (J.Z.); (H.W.); (L.Z.); (H.Y.); (S.F.)
| |
Collapse
|
35
|
Salas-Oropeza J, Rodriguez-Monroy MA, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Jarquin-Yanez K, Canales-Martinez MM. Essential Oil of Bursera morelensis Promotes Cell Migration on Fibroblasts: In Vitro Assays. Molecules 2023; 28:6258. [PMID: 37687087 PMCID: PMC10488845 DOI: 10.3390/molecules28176258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile natural compounds. We have extensively studied the EO of Bursera morelensis, which demonstrates antibacterial, antifungal, anti-inflammatory, and wound-healing activities. The objective of this work was to determine the effect of this EO on fibroblast migration in a three-dimensional in vitro model. For the three-dimensional in vitro model, a series of fibrin hydrogel scaffolds (FSs) were built in which fibroblasts were cultured and subsequently stimulated with fibroblast growth factor (FGF) or EO. The results demonstrated that these FSs are appropriate for fibroblast culture, since no decrease in cell viability or changes in cell proliferation were found. The results also showed that this EO promotes cell migration four hours after stimulation, and the formation of cell projections (filopodia) outside the SF was observed. From these results, we confirmed that part of the mechanism of action of the essential oil of B. morelensis during the healing process is the stimulation of fibroblast migration to the wound site.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico;
| | - Manuel Jimenez-Estrada
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico;
| | - Armando Perez-Torres
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Andres Eliu Castell-Rodriguez
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Katia Jarquin-Yanez
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| |
Collapse
|
36
|
Veldman LBM, Belt-Van Zoen E, Baars EW. Mechanistic Evidence of Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea Species and a Combination of Hedera helix L., Primula veris L./ Primula elatior L. and Thymus vulgaris L./ Thymus zygis L. in the Treatment of Acute, Uncomplicated Respiratory Tract Infections: A Systematic Literature Review and Expert Interviews. Pharmaceuticals (Basel) 2023; 16:1206. [PMID: 37765014 PMCID: PMC10537612 DOI: 10.3390/ph16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Reducing inappropriate antibiotic (AB) use by using effective non-antibiotic treatments is one strategy to prevent and reduce antimicrobial resistance (AMR). Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea species and a combination of ivy (Hedera helix L.), primrose (Primula veris L./Primula elatior L.) and thyme (Thymus vulgaris L./Thymus zygis L.) have promising clinical effects in uncomplicated, acute upper respiratory tract infections (URTI) treatment. However, mechanistic evidence of these herbal treatments is lacking. The objective of this Pstudy is to provide an overview of mechanistic evidence for these effects. Thirty-eight databases were searched. Included studies were mechanistic studies (in vitro, animal, and human studies and reviews) on these herbs; published before June 2021. Non-mechanistic studies or studies on combinations of herbs other than ivy/primrose/thyme were excluded. Furthermore, three experts in traditional, complementary and integrative healthcare (TCIH) research and pharmacognosy were interviewed to collect additional expert knowledge. The results show that A. paniculata acts through immunomodulation and antiviral activity, possibly supplemented by antibacterial and antipyretic effects. P. sidoides acts through antiviral, indirect antibacterial, immunomodulatory and expectorant effects. Echinacea species likely act through immunomodulation. The combination of ivy/primrose/thyme combines secretolytic and spasmolytic effects from ivy with antibacterial effects from thyme. Studies on primrose were lacking. This mechanistic evidence supports the difference-making evidence from clinical studies, contributes to evidence-based recommendations for their use in URTI treatment, and guides future mechanistic studies on URTI treatments.
Collapse
Affiliation(s)
- Liesbeth B. M. Veldman
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Eefje Belt-Van Zoen
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Erik W. Baars
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
- Louis Bolk Institute, 3981 Bunnik, The Netherlands
| |
Collapse
|
37
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
38
|
Ginting B, Chiari W, Duta TF, Hudaa S, Purnama A, Harapan H, Rizki DR, Puspita K, Idroes R, Meriatna M, Iqhrammullah M. COVID-19 pandemic sheds a new research spotlight on antiviral potential of essential oils - A bibliometric study. Heliyon 2023; 9:e17703. [PMID: 37456016 PMCID: PMC10338973 DOI: 10.1016/j.heliyon.2023.e17703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Background Essential oils are thought as potential therapies in managing coronavirus disease 2019 (COVID-19). Many researchers have put their efforts to tackle the pandemic by exploring antiviral candidates which consequently changes the research landscape. Herein, we aimed to assess the effect of COVID-19 pandemic toward the landscape of essential oil research. Methods This study employed bibliometric analysis based on the metadata of published literature indexed in the Scopus database. The search was performed on December 15th, 2022 by using keyword 'essential oil' and its synonyms. We grouped the data based on publication year; pre-COVID-19 (2014-2019) and during COVID-19 (2020-2024, some studies have been published earlier). Further, we separated the COVID-19-focused research from COVID-19 (2020-2024) by introducing a new keyword 'COVID-19' during the search. All metadata were processed using VoSviewer and Biblioshiny for network visualization analysis. Selections of frequently occurring keywords, clusters of keyword co-occurrence, and the list of most impactful papers were performed by two independent reviewers. Results Metadata from a total of 35,262 publications were included for bibliometric analysis, comprised of three groups of datasets namely pre-COVID-19 (n = 18,670), COVID-19 (n = 16,592), and COVID-19-focused (n = 281). Five research topics clusters were found from pre-COVID-19 dataset, eight - from COVID-19 dataset, and nine - from COVID-19-focused dataset. COVID-19 cluster containing the keyword 'antiviral' emerged in the COVID-19 dataset, whereas none of the previous research topic clusters contained the keyword 'antiviral'. Antiviral, angiotensin-converting enzyme 2 (ACE2) inhibitory, and anti-inflammation activities were among the top occurring keywords in studies covering both essential oil and COVID-19. Studies on essential oil used for managing COVID-19 were most reported by authors from the United States (documents = 37, citations = 405), Australia (documents = 16, citations = 115) and Italy (documents = 23, citations = 366). Conclusion A significant increase was found during COVID-19 pandemic for publications covering essential oil themes, but only a small portion was occupied by COVID-19 research. The COVID-19 pandemic does not alter the ongoing progress of essential oil research but rather offers a new spotlight on the antiviral potential of essential oils. Hence, the COVID-19 pandemic has provided an opportunity to investigate deeper the antiviral potential of essential oils.
Collapse
Affiliation(s)
- Binawati Ginting
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Williams Chiari
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
| | - Teuku Fais Duta
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Syihaabul Hudaa
- Department of Management, Institut Teknologi dan Bisnis Ahmad Dahlan Jakarta, Banten, 15419, Indonesia
| | - Agnia Purnama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Diva Rayyan Rizki
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kana Puspita
- Department of Chemistry Education, Faculty of Education and Teacher Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Herbal Medicine Research Center, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Meriatna Meriatna
- Department of Chemical Engineering, Faculty of Engineering, Universitas Malikussaleh, Aceh Utara, 24355, Indonesia
| | - Muhammad Iqhrammullah
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
- Faculty of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, 23245, Indonesia
| |
Collapse
|
39
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
40
|
da S Ferreira G, da Silva DJ, Souza AG, Yudice EDC, de Campos IB, Col RD, Mourão A, Martinho HS, Rosa DS. Eco-friendly and effective antimicrobial Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils against bacteria and SARS-CoV-2. Int J Biol Macromol 2023:125228. [PMID: 37290544 DOI: 10.1016/j.ijbiomac.2023.125228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.
Collapse
Affiliation(s)
- Greiciele da S Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Alana G Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Eliana D C Yudice
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Ivana B de Campos
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Rute Dal Col
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Andre Mourão
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Herculano S Martinho
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil.
| |
Collapse
|
41
|
Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154781. [PMID: 37028250 DOI: 10.1016/j.phymed.2023.154781] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bornyl acetate (BA), as a bicyclic monoterpene, is an active volatile component widely found in plants across the globe. BA can be used as essence and food flavor agent and is widely used in perfumes and food additives. It remains a key component in several proprietary Chinese medicines. PURPOSE This review summarized the pharmacological activity and research prospects of BA, making it the first of its kind to do so. Our aim is to provide a valuable resource for those pursuing research on BA. METHODS Databases including PubMed, Web of Science, and CNKI were used based on search formula "(bornyl acetate) NOT (review)" from 1967 to 2022. For the relevant knowledge of TCM, we quoted Chinese literature. Articles related to agriculture, industry, and economics were excluded. RESULTS BA showed rich pharmacological activities: It inhibits the NF-κB signal pathway via affecting the phosphorylation of IKB and the production of IKKs, inhibits the MAPK signal pathway via inhibiting the phosphorylation of ERK, JNK, and p38, down-regulates pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, up-regulates IL-11, reduces NO production, regulates immune response via up-regulating CD86+, decreases catecholamine secretion, and reduces tau protein phosphorylation. In addition to the pharmacological activities of BA, its toxicity and pharmacokinetics were also discussed in this paper. CONCLUSION BA has promising pharmacological properties, especially anti-inflammatory and immunomodulatory effects. It also has sedative properties and potential for use in aromatherapy. Compared to traditional NSAIDs, it has a more favorable safety profile while maintaining efficacy. BA has potential for developing novel drugs for treating various conditions.
Collapse
Affiliation(s)
- Zhe-Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
42
|
Parra-Acevedo V, Ocazionez RE, Stashenko EE, Silva-Trujillo L, Rondón-Villarreal P. Comparative Virucidal Activities of Essential Oils and Alcohol-Based Solutions against Enveloped Virus Surrogates: In Vitro and In Silico Analyses. Molecules 2023; 28:molecules28104156. [PMID: 37241897 DOI: 10.3390/molecules28104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The large-scale use of alcohol (OH)-based disinfectants to control pathogenic viruses is of great concern because of their side effects on humans and harmful impact on the environment. There is an urgent need to develop safe and environmentally friendly disinfectants. Essential oils (EOs) are generally recognized as safe (GRAS) by the FDA, and many exhibit strong antiviral efficacy against pathogenic human enveloped viruses. The present study investigated the virucidal disinfectant activity of solutions containing EO and OH against DENV-2 and CHIKV, which were used as surrogate viruses for human pathogenic enveloped viruses. The quantitative suspension test was used. A solution containing 12% EO + 10% OH reduced > 4.0 log10 TCID50 (100% reduction) of both viruses within 1 min of exposure. In addition, solutions containing 12% EO and 3% EO without OH reduced > 4.0 log10 TCID50 of both viruses after 10 min and 30 min of exposure, respectively. The binding affinities of 42 EO compounds and viral envelope proteins were investigated through docking analyses. Sesquiterpene showed the highest binding affinities (from -6.7 to -8.0 kcal/mol) with DENV-2 E and CHIKV E1-E2-E3 proteins. The data provide a first step toward defining the potential of EOs as disinfectants.
Collapse
Affiliation(s)
- Valentina Parra-Acevedo
- Centro de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Raquel E Ocazionez
- Centro de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Centro de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Lina Silva-Trujillo
- Centro de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Paola Rondón-Villarreal
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia
| |
Collapse
|
43
|
Martínez-Aguilar V, Peña-Juárez MG, Carrillo-Sanchez PC, López-Zamora L, Delgado-Alvarado E, Gutierrez-Castañeda EJ, Flores-Martínez NL, Herrera-May AL, Gonzalez-Calderon JA. Evaluation of the Antioxidant and Antimicrobial Potential of SiO 2 Modified with Cinnamon Essential Oil ( Cinnamomum Verum) for Its Use as a Nanofiller in Active Packaging PLA Films. Antioxidants (Basel) 2023; 12:antiox12051090. [PMID: 37237956 DOI: 10.3390/antiox12051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO2) nanoparticles (NPs) (0.1% w/w) chemically modified with cinnamon essential oil (CEO). For the modification of the NPs, two methods (M1 and M2) were tested, and their effects on the chemical, mechanical, and physical properties of the polymer matrix were evaluated. The results showed that CEO conferred to SiO2 NPs had a high percentage of 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical inhibition (>70%), cell viability (>80%), and strong inhibition to E. coli, at 45 and 11 µg/mL for M1 and M2, respectively, and thermal stability. Films were prepared with these NPs, and characterizations and evaluations on apple storage were performed for 21 days. The results show that the films with pristine SiO2 improved tensile strength (28.06 MPa), as well as Young's modulus (0.368 MPa) since PLA films only presented values of 27.06 MPa and 0.324 MPa, respectively; however, films with modified NPs decreased tensile strength values (26.22 and 25.13 MPa), but increased elongation at break (from 5.05% to 10.32-8.32%). The water solubility decreased from 15% to 6-8% for the films with NPs, as well as the contact angle, from 90.21° to 73° for the M2 film. The water vapor permeability increased for the M2 film, presenting a value of 9.50 × 10-8 g Pa-1 h-1 m-2. FTIR analysis indicated that the addition of NPs with and without CEO did not modify the molecular structure of pure PLA; however, DSC analysis indicated that the crystallinity of the films was improved. The packaging prepared with M1 (without Tween 80) showed good results at the end of storage: lower values in color difference (5.59), organic acid degradation (0.042), weight loss (24.24%), and pH (4.02), making CEO-SiO2 a good component to produce active packaging.
Collapse
Affiliation(s)
- Verónica Martínez-Aguilar
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico
| | - Mariana G Peña-Juárez
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico
| | - Perla C Carrillo-Sanchez
- Maestría en Ingeniería y Tecnología de Materiales, Universidad de La Salle Bajío, Av. Universidad 602, Lomas del Campestre, León 37150, Mexico
| | - Leticia López-Zamora
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de Méxicoen Orizaba, Oriente 9 No. 852 Emiliano Zapata, Orizaba 94320, Mexico
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
| | - Emmanuel J Gutierrez-Castañeda
- Cátedras CONACYT-Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550 Lomas 2da Sección, San Luis Potosí 78210, Mexico
| | - Norma L Flores-Martínez
- Ingeniería Agroindustrial, Universidad Politécnica de Guanajuato, Avenida Universidad Sur #1001 Comunidad Juan Alonso, Cortazar 38496, Mexico
| | - Agustín L Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Mexico
| | - Jose Amir Gonzalez-Calderon
- Cátedras CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #64, Zona Universitaria, San Luis Potosí 78290, Mexico
| |
Collapse
|
44
|
Chen S, Lai H, Su X, Yu H, Li B, Wei S, Yang M, Wang Y, Shen B, Yue P. Rambutan-liked Pickering emulsion stabilized by cellulose nanocrystals for enhancing anti-bacterial activity and anti-inflammatory effect of Chimonanthus nitens Oliv. essential oil. Int J Biol Macromol 2023; 242:124665. [PMID: 37121421 DOI: 10.1016/j.ijbiomac.2023.124665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Owing to volatility and poor water solubility, the medical application of Chimonanthus nitens Oliv. essential oil (CEO) in the fields of medicine was strictly limited. To tackle this problem, a novel CEO loaded rambutan-liked Pickering emulsion (CEO-RPE) with a spiky surface was effectively designed by coating with carboxymethyl cellulose sodium modified cellulose nanocrystals (CCN) as stabilizer. The effect of CCN concentration on the formation and stabilization of CEO-RPE was investigated. The results showed that CEO-RPE stabilized by 1 % CCN had a smaller droplet size and exhibited a rambutan-liked surface, and was stabilized against concentrated salt and high pH condition due to the steric barrier of CCN that covered in the droplet surface. Subsequently, the antibacterial performance of CEO-RPE was investigated against E. coli, S. aureus, P. aeruginosa, and S. pneumoniae by determining the minimum inhibitory concentration (MIC). The results showed that the CEO-RPE exhibited higher antibacterial activity compared to CEO, which could be attributed to its effective adhesion to the cell membrane of bacteria. In addition, the results of anti-inflammatory experiments showed that CEO-RPE also exhibited strong anti-inflammatory effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. Therefore, the CCN stabilized rambutan-liked Pickering emulsion seemed to be a promising strategy to increase the antibacterial and anti-inflammatory activity of CEO.
Collapse
Affiliation(s)
- Shuiyan Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Huazhang Lai
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Xiaoyu Su
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Huaping Yu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Biao Li
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Shaofeng Wei
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China
| | - Yongping Wang
- Jiangxi Youmei Pharmaceutical Co., Ltd, Nanchang 330004, China
| | - Baode Shen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| |
Collapse
|
45
|
Saeed Z, Alkheraije KA. Botanicals: A promising approach for controlling cecal coccidiosis in poultry. Front Vet Sci 2023; 10:1157633. [PMID: 37180056 PMCID: PMC10168295 DOI: 10.3389/fvets.2023.1157633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/15/2023] Open
Abstract
Avian species have long struggled with the problem of coccidiosis, a disease that affects various parts of the intestine, including the anterior gut, midgut, and hindgut. Among different types of coccidiosis, cecal coccidiosis is particularly dangerous to avian species. Chickens and turkeys are commercial flocks; thus, their parasites have remained critical due to their economic importance. High rates of mortality and morbidity are observed in both chickens and turkeys due to cecal coccidiosis. Coccidiostats and coccidiocidal chemicals have traditionally been added to feed and water to control coccidiosis. However, after the EU banned their use because of issues of resistance and public health, alternative methods are being explored. Vaccines are also being used, but their efficacy and cost-effectiveness remain as challenges. Researchers are attempting to find alternatives, and among the alternatives, botanicals are a promising choice. Botanicals contain multiple active compounds such as phenolics, saponins, terpenes, sulfur compounds, etc., which can kill sporozoites and oocysts and stop the replication of Eimeria. These botanicals are primarily used as anticoccidials due to their antioxidant and immunomodulatory activities. Because of the medicinal properties of botanicals, some commercial products have also been developed. However, further research is needed to confirm their pharmacological effects, mechanisms of action, and methods of concentrated preparation. In this review, an attempt has been made to summarize the plants that have the potential to act as anticoccidials and to explain the mode of action of different compounds found within them.
Collapse
Affiliation(s)
- Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
46
|
Feng S, Xu G, Fu Y, Ding Q, Shi Y. Exploring the Mechanism of Bergamot Essential Oil against Asthma Based on Network Pharmacology and Experimental Verification. ACS OMEGA 2023; 8:10202-10213. [PMID: 36969419 PMCID: PMC10034984 DOI: 10.1021/acsomega.2c07366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Asthma is a chronic respiratory disease. Bergamot essential oil (BEO) is extracted from the bergamot peel, which is widely used as a medicinal and food plant in China. Modern pharmacological studies have confirmed that BEO has anti-inflammatory properties, suggesting potential in treating asthma. First, the main active ingredients of BEO were detected and analyzed by gas chromatography-mass spectrometry (GC-MS). Network pharmacology methods were used to explore the possible core targets and main pathways of BEO in asthma treatment. Then ovalbumin (OVA)-induced in vivo and lipopolysaccharide (LPS)-induced in vitro models were established to investigate the antiasthmatic effects of BEO. BEO showed a good antiasthmatic effect by improving lung inflammation and inhibiting collagen deposition. Then, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) were used to explore the possible mechanism of BEO in asthma treatment. Furthermore, experimental verification showed that BEO could suppress the release of inflammatory factors in vitro and inhibit the activation of MAPK and JAK-STAT signaling pathways. This study demonstrated the anti-inflammatory effects of BEO against asthma. Moreover, it supplies a theoretical basis for the clinical application of BEO.
Collapse
Affiliation(s)
- Siwen Feng
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100029, China
| | - Gonghao Xu
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100029, China
| | - Yuchen Fu
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100029, China
| | - Qi Ding
- Shenzhen
Research Institute, Beijing University of
Chinese Medicine, Shenzhen 518118, China
| | - Yuanyuan Shi
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100029, China
- Shenzhen
Research Institute, Beijing University of
Chinese Medicine, Shenzhen 518118, China
| |
Collapse
|
47
|
In Vitro Antiviral Potential, Antioxidant, and Chemical Composition of Clove (Syzygium aromaticum) Essential Oil. Molecules 2023; 28:molecules28062421. [PMID: 36985392 PMCID: PMC10058340 DOI: 10.3390/molecules28062421] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Viral infections are spread all around the world. Although there are available therapies, their safety and effectiveness are constrained by their adverse effects and drug resistance. Therefore, new natural antivirals have been used such as essential oils, which are natural products with promising biological activity. Accordingly, the present study aimed to identify the components of clove (Syzygium aromaticum) essential oil (EOCa) and verify its antioxidant and antiviral activity. The oil was analyzed using GC/MS, and the antioxidant capacity was evaluated as a function of the radical scavenging activity. A plaque reduction test was used to measure the antiviral activity against herpes simplex virus (HSV-1), hepatitis A virus (HAV), and an adenovirus. GC/MS analysis confirmed the presence of eugenol as the main component (76.78%). Moreover, EOCa had powerful antioxidant activity with an IC50 of 50 µg/mL. The highest antiviral potential was found against HAV, with a selectivity index (SI) of 14.46, while showing poor selectivity toward HSV-1 with an SI value of 1.44. However, no relevant effect was detected against the adenovirus. The antiviral activity against HAV revealed that its effect was not related to host cytotoxicity. The findings imply that EOCa can be utilized to treat diseases caused by infections and free radicals.
Collapse
|
48
|
Egner P, Pavlačková J, Sedlaříková J, Pleva P, Mokrejš P, Janalíková M. Non-Alcohol Hand Sanitiser Gels with Mandelic Acid and Essential Oils. Int J Mol Sci 2023; 24:ijms24043855. [PMID: 36835267 PMCID: PMC9961504 DOI: 10.3390/ijms24043855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Antimicrobial hand gels have become extremely popular in recent years due to the COVID-19 pandemic. Frequent use of hand sanitising gel can lead to dryness and irritation of the skin. This work focuses on the preparation of antimicrobial acrylic acid (Carbomer)-based gels enhanced by non-traditional compounds-mandelic acid and essential oils-as a substitute for irritating ethanol. Physicochemical properties (pH and viscosity), stability and sensory attributes of the prepared gels were investigated. Antimicrobial activity against representative Gram-positive and Gram-negative bacteria and yeasts was determined. The prepared gels with mandelic acid and essential oil (cinnamon, clove, lemon, and thyme) proved to have antimicrobial activity and even better organoleptic properties than commercial ethanol-based antimicrobial gel. Further, results confirmed that the addition of mandelic acid had a desirable effect on gel properties (antimicrobial, consistency, stability). It has been shown that the essential oil/mandelic acid combination can be a dermatologically beneficial hand sanitiser compared to commercial products. Thus, the produced gels can be used as a natural alternative to alcohol-based daily hand hygiene sanitisers.
Collapse
Affiliation(s)
- Pavlína Egner
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Correspondence: (P.E.); (M.J.)
| | - Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Correspondence: (P.E.); (M.J.)
| |
Collapse
|
49
|
Pellegrini F, Camero M, Catella C, Fracchiolla G, Sblano S, Patruno G, Trombetta CM, Galgano M, Pratelli A, Tempesta M, Martella V, Lanave G. Virucidal Activity of Lemon Essential Oil against Feline Calicivirus Used as Surrogate for Norovirus. Antibiotics (Basel) 2023; 12:antibiotics12020322. [PMID: 36830233 PMCID: PMC9952628 DOI: 10.3390/antibiotics12020322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Norovirus (NoV) is regarded as a common cause of acute gastrointestinal illness worldwide in all age groups, with substantial morbidity across health care and community settings. The lack of in vitro cell culture systems for human NoV has prompted the use of cultivatable caliciviruses (such as feline calicivirus, FCV, or murine NoV) as surrogates for in vitro evaluation of antivirals. Essential oils (EOs) may represent a valid tool to counteract viral infections, particularly as food preservatives. In the present study, the virucidal efficacy of lemon EO (LEO) against FCV was assessed in vitro. The gas chromatography hyphenated with mass spectrometry (GC/MS) technique was used to reveal the chemical composition of LEO. The following small molecules were detected as major components of LEO: limonene (53%), β-pinene (14.5%), γ-terpinene (5.9%), citral (3.8%), α-pinene (2.4%), and β-thujene (1.94%). LEO at 302.0 μg/mL, exceeding the maximum non cytotoxic limit, significantly decreased viral titre of 0.75 log10 TCID50/50 μL after 8 h. Moreover, virucidal activity was tested using LEO at 3020.00 μg/mL, determining a reduction of viral titre as high as 1.25 log10 TCID50/50 μL after 8 h of time contact. These results open up perspectives for the development of alternative prophylaxis approaches for the control of NoV infection.
Collapse
Affiliation(s)
- Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
- Correspondence:
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Aldo Moro of Bari, 70125 Bari, Italy
| | - Sabina Sblano
- Department of Pharmacy-Drug Sciences, University of Aldo Moro of Bari, 70125 Bari, Italy
| | - Giovanni Patruno
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | | | - Michela Galgano
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| |
Collapse
|
50
|
Liang T, Huo G, Chen L, Ding L, Wu J, Zhang J, Wang R. Antibacterial activity and metabolomic analysis of linalool against bovine mastitis pathogen Streptococcus agalactiae. Life Sci 2023; 313:121299. [PMID: 36535400 DOI: 10.1016/j.lfs.2022.121299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Streptococcus agalactiae is among the major causative pathogens of bovine mastitis, as well as crucial pathogen leading to human morbidity and mortality. Being a promising natural antibacterial agent, linalool has been broadly applied in medicine and food processing. However, its antibacterial effect against S. agalactiae has barely been elucidated. This study is the first to investigate the antibacterial activity and action mechanism of linalool against S. agalactiae causing bovine mastitis. Linalool exhibited significant antibacterial activity against S. agalactiae, with an inhibition zone diameter of 23 mm and a minimum inhibitory concentration of 1.875 μL/mL. In addition, linalool damaged cell structural integrity of S. agalactiae, leading to the leakage of intracellular components (alkaline phosphatase, nucleic acids and protein). Linalool also exhibited a scavenging effect on biofilm. Moreover, untargeted metabolomics analysis revealed that linalool stress substantially disrupted intracellular metabolism of S. agalactiae. Linalool caused energy metabolism disorder, and obstructed nucleic acid synthesis in S. agalactiae. Furthermore, downregulation of amino acids (e.g., proline, alanine) and upregulation of saturated fatty acids provide strong evidence for linalool induced cell wall and membrane damage. Overall, linalool exhibited strong antibacterial activity against S. agalactiae by destroying the cell structure and disrupting intracellular metabolism. This study provides a new insight and theoretical foundation for linalool application in preventing S. agalactiae infection.
Collapse
Affiliation(s)
- Tingyu Liang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China
| | - Guiguo Huo
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Jianping Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China.
| | - Rongmin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|