1
|
Ertel A, Anderegg U, Franz S, Saalbach A. Dermal White Adipose Tissue-Derived Il-33 Regulates Il-4/13 Expression in Myeloid Cells during Inflammation. J Invest Dermatol 2025; 145:370-382. [PMID: 38909842 DOI: 10.1016/j.jid.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Effective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT. Therefore, we investigated the impact of dWAT in the control of an acute skin inflammation. Skin inflammation triggers the activation of dWAT. In turn, soluble mediators of activated dWAT stimulate the expression of numerous genes controlling skin inflammation, including the T helper 2 cell cytokines Il4 and Il13, in myeloid cells in vitro. Consistently, myeloid cells isolated from inflamed skin showed a significant upregulation of Il-4/13 expression compared with those isolated from healthy skin. Mechanistically, we demonstrate that IL-33 released from activated dWAT is responsible for IL-4/13 stimulation in myeloid cells. Interestingly, obesity attenuates IL-33 secretion in dWAT during inflammation, resulting in decreased Il-4 and Il-13 expressions in myeloid cells. Our data reveal an IL-33-IL-4/13 signaling cascade initiated from dWAT in a T helper 2-independent context of inflammation that may contribute to limitation of inflammation. This cascade seems to be disturbed in individuals with obesity with prolonged inflammation.
Collapse
Affiliation(s)
- Anastasia Ertel
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
2
|
Sun X, Zhang C, Sun F, Li S, Wang Y, Wang T, Li L. IL-33 promotes double negative T cell survival via the NF-κB pathway. Cell Death Dis 2023; 14:242. [PMID: 37019882 PMCID: PMC10076344 DOI: 10.1038/s41419-023-05766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
IL-33, which is a crucial modulator of adaptive immune responses far beyond type 2 response, can enhance the function of several T cell subsets and maintain the immune homeostasis. However, the contribution of IL-33 to double negative T (DNT) cell remains unappreciated. Here, we demonstrated that the IL-33 receptor ST2 was expressed on DNT cells, and that IL-33 stimulation increased DNT cells proliferation and survival in vivo and in vitro. Transcriptome sequencing analysis also demonstrated that IL-33 enhanced the biological function of DNT cells, especially effects on proliferation and survival. IL-33 promoted DNT cells survival by regulating Bcl-2, Bcl-xl and Survivin expression. IL-33-TRAF4/6-NF-κB axis activation promoted the transmission of essential division and survival signals in DNT cells. However, IL-33 failed to enhance the expression of immunoregulatory molecules in DNT cells. DNT cells therapy combined with IL-33 inhibited T cells survival and further ameliorated ConA-induced liver injury, which mainly depended on the proliferative effect of IL-33 on DNT cells in vivo. Finally, we stimulated human DNT cells with IL-33, and similar results were observed. In conclusion, we revealed a cell intrinsic role of IL-33 in the regulation of DNT cells, thereby identifying a previously unappreciated pathway supporting the expansion of DNT cells in the immune environment.
Collapse
Affiliation(s)
- Xiaojing Sun
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunpan Zhang
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fanqi Sun
- Capital Medical University Forth Clinical School, Beijing, China
| | - Shuxiang Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medical On Liver Cirrhosis, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yaning Wang
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Wang
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Li Li
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Sun H, Wang XK, Li JR, Tang M, Li H, Lei L, Li HY, Jiang J, Li JY, Dong B, Jiang JD, Peng ZG. Establishment and application of a high-throughput screening model for cell adhesion inhibitors. Front Pharmacol 2023; 14:1140163. [PMID: 36909195 PMCID: PMC9995855 DOI: 10.3389/fphar.2023.1140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The cell adhesion between leukocytes and endothelial cells plays an important balanced role in the pathophysiological function, while excessive adhesion caused by etiological agents is associated with the occurrence and development of many acute and chronic diseases. Cell adhesion inhibitors have been shown to have a potential therapeutic effect on these diseases, therefore, efficient and specific inhibitors against cell adhesion are highly desirable. Here, using lipopolysaccharide-induced human umbilical vein endothelial cells (HUVECs) and calcein-AM-labeled human monocytic cell THP-1, we established a high-throughput screening model for cell adhesion inhibitors with excellent model evaluation parameters. Using the drug repurposing strategy, we screened out lifitegrast, a potent cell adhesion inhibitor, which inhibited cell adhesion between HUVEC and THP-1 cells by directly interrupting the adhesion interaction between HUVEC and THP-1 cells and showed a strong therapeutic effect on the mouse acute liver injury induced by poly (I:C)/D-GalN. Therefore, the screening model is suitable for screening and validating cell adhesion inhibitors, which will promote the research and development of inhibitors for the treatment of diseases caused by excessive cell adhesion.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Li JZ, Zhou XX, Wu WY, Qiang HF, Xiao GS, Wang Y, Li G. Concanavalin A promotes angiogenesis and proliferation in endothelial cells through the Akt/ERK/Cyclin D1 axis. PHARMACEUTICAL BIOLOGY 2022; 60:65-74. [PMID: 34913414 PMCID: PMC8725916 DOI: 10.1080/13880209.2021.2013259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Concanavalin A (Con A) exhibited multiple roles in cancer cells. However, the role of Con A in endothelial cells was not reported. OBJECTIVE Our present study investigated the potential angiogenic role of Con A in endothelial cells and ischaemic hind-limb mice. MATERIALS AND METHODS Human umbilical vein endothelial cells and Ea.hy926 cells were employed to determine the effect of Con A (0.3, 1, and 3 μg/mL) or vehicle on angiogenesis and cell proliferation with tube formation, ELISA, flow cytometry, EdU, and western blot. Hind-limb ischaemic mice were conducted to determine the pro-angiogenic effect of Con A (10 mg/kg) for 7 days. RESULTS Con A promoted tube formation to about three-fold higher than the control group and increased the secretion of VEGFa, PDGFaa, and bFGF in the medium. The cell viability was promoted to 1.3-fold by Con A 3 μg/mL, and cell cycle progression of G0G1 phase was decreased from 77% in the vehicle group to 70% in Con A 3 μg/mL, G2M was promoted from 15 to 19%, and S-phase was from 7 to 10%. Con A significantly stimulated phosphorylation of Akt and ERK1/2 and expression of cyclin D1 and decreased the expression of p27. These effects of Con A were antagonised by the PI3K inhibitor LY294002 (10 μM) and MEK pathway antagonist PD98059 (10 μM). Moreover, Con A (10 mg/kg) exhibited a repair effect in ischaemic hind-limb mice. DISCUSSION AND CONCLUSIONS This study will provide a new option for treating ischaemic disease by local injection with Con A.
Collapse
Affiliation(s)
- Jing-Zhou Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Xia Zhou
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Hai-Feng Qiang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
- CONTACT Gang Li ; Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Li N, Wu JJ, Qi M, Wang ZY, Zhang SN, Li XQ, Chen TT, Wang MF, Zhang LL, Wei W, Sun WY. CP-25 exerts a protective effect against ConA-induced hepatitis via regulating inflammation and immune response. Front Pharmacol 2022; 13:1041671. [DOI: 10.3389/fphar.2022.1041671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis is a complex multifactorial pathological disorder, which can eventually lead to liver failure and even potentially be life threatening. Paeoniflorin-6′-O-benzene sulfonate (CP-25) has proven to have critical anti-inflammatory effects in arthritis. However, the effects of CP-25 in the pathogenesis of hepatitis remains unclear. In this experiment, mice were intragastrically administered with CP-25 (25, 50 and 100 mg/kg), and then ConA (25 mg/kg) was intravenous injected to establish hepatitis model in vivo. CP-25 administration attenuated liver damage and decreased ALT and AST activities in mice with hepatitis. Besides, CP-25 modulated immune responses including down-regulated the proportions of activated CD4+, activated CD8+ T cells, and ratio of Th1/Th2 in ConA-injected mice. Furthermore, ConA-mediated production of reactive oxygen species (ROS), release of inflammatory cytokines including IFN-γ, TNF-α, activation of MAPK pathways and nuclear translocation of nuclear factor-kappaB (NF-κB) were significantly decreased in CP-25 administrated mice. In ConA-stimulated RAW264.7 cells, CP-25 suppressed inflammatory cytokines secretion and reduced ROS level, which were consistent with animal experiments. Otherwise, the data showed that CP-25 restrained phosphorylation of ERK, JNK and p38 MAPK pathways influenced by ROS, accompanied with inhibiting NF-κB nuclear translocation. In conclusion, our findings indicated that CP-25 protected against ConA-induced hepatitis may through modulating immune responses and attenuating ROS-mediated inflammation via the MAPK/NF-κB signaling pathway.
Collapse
|