1
|
Monk PD, Brookes JL, Tear VJ, Batten TN, Newall C, Mankowski M, Crooks MG, Singh D, Chaudhuri R, Leaker B, Lunn K, Reynolds S, Dudley S, Gabbay FJ, Holgate ST, Djukanovic R, Wilkinson TM. Nebulised interferon beta-1a (SNG001) in the treatment of viral exacerbations of COPD. Respir Res 2024; 25:228. [PMID: 38811970 PMCID: PMC11138078 DOI: 10.1186/s12931-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-β is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-β1a (SNG001) in COPD. Part 1 assessed the effects of SNG001 on induced sputum antiviral interferon-stimulated gene expression, sputum differential cell count, and respiratory function. Part 2 compared SNG001 and placebo on clinical efficacy, sputum and serum biomarkers, and viral clearance. METHODS In Part 1, patients (N = 13) with stable COPD were randomised 4:1 to SNG001 or placebo once-daily for three days. In Part 2, patients (N = 109) with worsening symptoms and a positive respiratory viral test were randomised 1:1 to SNG001 or placebo once-daily for 14 days in two Groups: A (no moderate exacerbation); B (moderate COPD exacerbation [i.e., acute worsening of respiratory symptoms treated with antibiotics and/or oral corticosteroids]). RESULTS In Part 1, SNG001 upregulated sputum interferon gene expression. In Part 2, there were minimal SNG001-placebo differences in the efficacy endpoints; however, whereas gene expression was initially upregulated by viral infection, then declined on placebo, levels were maintained with SNG001. Furthermore, the proportion of patients with detectable rhinovirus (the most common virus) on Day 7 was lower with SNG001. In Group B, serum C-reactive protein and the proportion of patients with purulent sputum increased with placebo (suggesting bacterial infection), but not with SNG001. The overall adverse event incidence was similar with both treatments. CONCLUSIONS Overall, SNG001 was well-tolerated in patients with COPD, and upregulated lung antiviral defences to accelerate viral clearance. These findings warrant further investigation in a larger study. TRIAL REGISTRATION EU clinical trials register (2017-003679-75), 6 October 2017.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Mankowski
- Synairgen Research Ltd, Southampton, UK
- tranScrip Ltd, Wokingham, UK
| | - Michael G Crooks
- Respiratory Research Group, Hull York Medical School, University of Hull, Kingston Upon Hull, Hull, UK
| | - Dave Singh
- Medicines Evaluation Unit, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rekha Chaudhuri
- Gartnavel General Hospital, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Brian Leaker
- Respiratory Clinical Trials Ltd, Fitzrovia Hospital, London, UK
| | | | | | | | | | - Stephen T Holgate
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Thomas Ma Wilkinson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Francis NA, Monk PD, Nuttall J, Oliver T, Simpson C, Brookes JL, Tear VJ, Thompson AG, Batten TN, Mankowski M, Wilkinson TM. Feasibility of home administration of nebulised interferon ß-1a (SNG001) for COVID-19: a remote study. BJGP Open 2023; 7:BJGPO.2023.0089. [PMID: 37669805 PMCID: PMC11176681 DOI: 10.3399/bjgpo.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Effective therapeutics given early to high-risk ambulatory patients with coronavirus disease 2019 (COVID-19) could improve outcomes and reduce overall healthcare burden. However, conducting site visits in non-hospitalised patients, who should remain isolated, is problematic. AIM To evaluate the feasibility of a purely remote (virtual) study in non-hospitalised patients with COVID-19; and the efficacy and safety of nebulised recombinant interferon-β1a (SNG001) in this setting. DESIGN & SETTING Randomised, double-blind, parallel-group study, which was conducted remotely. METHOD Eligible patients aged ≥65 years (or ≥50 years with risk factors) with COVID-19 and not requiring hospital admission were recruited remotely. They were randomised to SNG001 or placebo once-daily via nebuliser for 14 days. The main outcomes were assessments of feasibility and safety, which were all conducted remotely. RESULTS Of 114 patients treated, 111 (97.4%) completed 28 days of follow-up. Overall compliance to study medication was high, with ≥13 doses taken by 89.7% and 92.9% of treated patients in the placebo and SNG001 groups, respectively. Over the course of the study, only two patients were hospitalised, both in the placebo group; otherwise there were no notable differences between treatments for the efficacy parameters. No patients withdrew owing to an adverse event, and a similar proportion of patients experienced on-treatment adverse events in the two treatment groups (64.3% and 67.2% with SNG001 and placebo, respectively); most were mild or moderate and not treatment-related. CONCLUSION This study demonstrated that it is feasible to conduct a purely virtual study in community-based patients with COVID-19, when the study included detailed daily assessments and with medication administered via nebuliser.
Collapse
Affiliation(s)
- Nick A Francis
- Primary Care Research Centre, Faculty of Medicine, University of Southampton, Aldermoor Health Centre, Southampton, UK
| | | | - Jacqueline Nuttall
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Thomas Oliver
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Catherine Simpson
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | | | | | - Thomas Ma Wilkinson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Shi W, Yao X, Fu Y, Wang Y. Interferon‑α and its effects on cancer cell apoptosis (Review). Oncol Lett 2022; 24:235. [PMID: 35720476 PMCID: PMC9185151 DOI: 10.3892/ol.2022.13355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN)-α is a cytokine that exhibits a wide range of biological activities and is used in various cancer treatments. It regulates numerous genes that serve roles in antiviral, antiproliferative and proapoptotic activities. For decades, one of the main aspects of clinical oncology has been the development of anticancer therapeutics that promote the effective elimination of cancer cells via apoptosis. However, the updated available information concerning IFN-α-induced cancer cell apoptosis needs to be assembled, so as to provide an improved theoretical reference for the basic scientific research and clinical treatment of malignant tumors. Therefore, the present review focuses on the potential effects of IFN-α in inducing cancer cell apoptosis. The biological characteristics of IFN-α, the apoptotic signaling pathways and molecular mechanisms of apoptosis caused by IFN-α are discussed in different types of cancer cells. The present review provided a comprehensive understanding of the effects of IFN-α on cancer cell apoptosis, which will aid in developing more efficient strategies to effectively control the progression of certain cancers.
Collapse
Affiliation(s)
- Weiye Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Xu Yao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
4
|
Tuli HS, Sak K, Aggarwal P, Iqubal A, Upadhaya SK, Kaur J, Kaur G, Aggarwal D. Molecular Evolution of Severe Acute Respiratory Syndrome Coronavirus 2: Hazardous and More Hazardous Strains Behind the Coronavirus Disease 2019 Pandemic and Their Targeting by Drugs and Vaccines. Front Cell Infect Microbiol 2021; 11:763687. [PMID: 34970505 PMCID: PMC8712944 DOI: 10.3389/fcimb.2021.763687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Within almost the last 2 years, the world has been shaken by the coronavirus disease 2019 (COVID-19) pandemic, which has affected the lives of all people. With nearly 4.92 million deaths by October 19, 2021, and serious health damages in millions of people, COVID-19 has been the most serious global challenge after the Second World War. Besides lost lives and long-term health problems, devastating impact on economics, education, and culture will probably leave a lasting impression on the future. Therefore, the actual extent of losses will become obvious only after years. Moreover, despite the availability of different vaccines and vaccination programs, it is still impossible to forecast what the next steps of the virus are or how near we are to the end of the pandemic. In this article, the route of molecular evolution of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is thoroughly compiled, highlighting the changes that the virus has undergone during the last 2 years and discussing the approaches that the medical community has undertaken in the fight against virus-induced damages.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Katrin Sak
- Non-Governmental Organization (NGO) Praeventio, Tartu, Estonia
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Sushil K. Upadhaya
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies (SVKM’S NMIMS), Mumbai, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| |
Collapse
|