1
|
Buzilă ER, Dorneanu OS, Trofin F, Sima CM, Iancu LS. Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever. Int J Mol Sci 2025; 26:3981. [PMID: 40362220 PMCID: PMC12071698 DOI: 10.3390/ijms26093981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Enteric fever is caused by Salmonella enterica serovar Typhi (S. Typhi) and Salmonella enterica serovar Paratyphi (S. Paratyphi) A, B, and C. Globally, an estimated 11 to 21 million cases of typhoid and paratyphoid fever occur annually, with approximately 130,000-160,000 deaths, most of which are reported in South/Southeast Asia and sub-Saharan Africa. The antibiotic susceptibility of S. Typhi strains varies between countries within broad limits, from 3% to 97% for ampicillin, 9% to 95% for ciprofloxacin, 4% to 94% for chloramphenicol (India vs. Pakistan), and 0% to 99% for ceftriaxone (India vs. Iraq). With S. Typhi increasingly exhibiting resistance to antibiotics, vaccination becomes an essential preventive measure. Currently, three vaccines are licensed for typhoid fever: the typhoid conjugate vaccine (TCV), live-attenuated oral vaccine Ty21a (Ty21a), and Vi capsular polysaccharide vaccine (Vi-CPS). While no specific vaccine exists for paratyphoid fever, the genetic and antigenic similarities between S. Paratyphi and S. Typhi offer potential for the development of such a vaccine. Early studies show promising results, demonstrating both safety and immunogenicity in preclinical trials. Whole genome sequencing (WGS) provides a powerful tool for assigning genotypes, identifying plasmids, comparing genetic elements, and investigating molecular factors that contribute to antibiotic resistance and virulence.
Collapse
Affiliation(s)
- Elena Roxana Buzilă
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania
| | - Felicia Trofin
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Sima
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania
| | - Luminița Smaranda Iancu
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| |
Collapse
|
2
|
Guo J, He X, Bai Y, Sun H, Yang J. Virulence factors of Salmonella Typhi: interplay between the bacteria and host macrophages. Arch Microbiol 2025; 207:89. [PMID: 40095029 DOI: 10.1007/s00203-025-04297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Salmonella Typhi (S. Typhi) is a Gram-negative bacterium that exclusively infects humans and causes typhoid fever- a major global public health concern responsible for approximately 9 million infections and 110,000 deaths annually. Macrophages, a key component of the innate immune system, play essential roles in pathogen clearance, antigen presentation, immune regulation, and tissue repair. As one of the primary targets of S. Typhi infection, macrophages significantly influence disease onset and progression. S. Typhi expresses a range of virulence factors, including the virulence-associated (Vi) capsule, outer membrane proteins (OMPs), flagella, fimbriae, type III secretion systems (T3SSs) and other genes encoded on Salmonella pathogenicity islands (SPIs), as well as toxins, regulatory factors, and virulence plasmids. These virulence factors facilitate S. Typhi's intracellular survival within macrophages by mediating processes such as adhesion, invasion, nutrient acquisition and immune evasion, ultimately enabling systemic infection. This review explores the role and molecular mechanisms of S. Typhi virulence factors in counteracting macrophage antimicrobial functions, providing insights for future research on typhoid pathogenesis and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
3
|
Chen L, Shi Y, Wang M, Li Y, Si Z. Comprehensive epidemiological profiling of poultry-derived Salmonella spp. in Shandong, China, 2019-2022: a longitudinal study of prevalence, antibiotic resistances, virulence factors and molecular characteristics. Front Microbiol 2025; 16:1541084. [PMID: 40109969 PMCID: PMC11920138 DOI: 10.3389/fmicb.2025.1541084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Salmonella spp., as a major foodborne pathogen, pose significant threats to public health globally and has been an important zoonotic contamination for poultry industry that should receive increasing attentions. This study aimed to comprehensively investigate the prevalence, antimicrobial resistances, virulence factors, and plasmid types of Salmonella isolates collected from chickens, ducks, and geese across eight cities in Shandong between 2019 and 2022. Out of 300 samples, 53 Salmonella strains (17.67%) were isolated, with varied prevalence from 8.33% to 25.00% in different cities of Shandong. A total of seven serotypes were identified among the 53 Salmonella isolates, wherein the S. Enteritidis (45.28%), S. Pullorum (22.64%) and S. Typhimurium (16.98%) were identified as the most prevalent. Whole-genome sequencing analysis revealed that ST11, ST92, and ST19 were the predominant sequence types for S. Enteritidis, S. Pullorum, and S. Typhimurium, respectively. Phylogenetic analysis indicated that potential clonal spread of S. Enteritidis, S. Pullorum, and S. Typhimurium occurred across different regions, particularly the evidences supported that the S. Typhimurium isolates were dispersed in a cross-species manner. Finally, the phenotypic and genotypic profiling of antibiotic resistance among the isolates revealed that these isolates were multidrug resistant with corresponding antibiotic resistance genes (ARGs) including bla TEM, aac, aph, tet(A), and tet(B) to confer them with resistances to commonly-used veterinary drugs such as β-lactams, quinolones, macrolides. To sum, this study provides valuable insights into the current epidemiology of Salmonella in poultry industry in one of the biggest provinces in China, and shedding the light on the urgent necessity for further approaches to prevent and decontaminate such MDR Salmonella in livestock under One Health concept.
Collapse
Affiliation(s)
- Lele Chen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Yuxia Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Minge Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Zhenshu Si
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Baqir SM, Sharma N, Lutaf A, Ghitan M, Lin YS. Typhoid Fever as a Cause of Liver Failure in the United States: A Case Report. Case Rep Gastrointest Med 2025; 2025:3087201. [PMID: 39840122 PMCID: PMC11745548 DOI: 10.1155/crgm/3087201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Background: Typhoid fever is a multisystemic illness caused by Salmonella typhi and Salmonella paratyphi, transmitted fecal orally through contaminated water and food. It is a rare diagnosis in the US, with most cases reported in returning travelers. Hepatitis and cholestasis are rare sequelae of salmonella infection. However, acute liver failure (ALF) is exceptionally uncommon. We report a case of typhoid fever in a returning traveler to the US progressing to ALF. Case Presentation: A 48-year-old man presented with high-grade fever, abdominal pain, vomiting, acholic stools, dark urine, and yellowish discoloration of skin and sclera for one week. He was immune to hepatitis A and B, with no recent change in medications. He had no history of alcohol consumption. On presentation, the patient was tachycardic but well perfused with diffuse abdominal tenderness. Laboratory results showed leukocytosis, elevated creatinine, mixed hepatocellular and cholestatic pattern of raised liver enzymes, elevated ammonia levels, and negative hemolytic parameters. Viral, autoimmune, and metabolic causes of hepatitis were negative. Ultrasound of the abdomen revealed a normal biliary system and a computerized tomography (CT) scan of the abdomen showed multiple liver cysts, mesenteric and porta-hepatis lymphadenopathy, and mild thickening of the terminal ileum. Intravenous (IV) ceftriaxone and metronidazole were initiated. Blood cultures grew S. typhi. The patient clinically deteriorated and developed altered mental status, respiratory distress, and an up-trending Model for End-Stage Liver Disease (MELD) score and was upgraded to the intensive care unit. IV meropenem was initiated, resulting in clinical recovery and negative repeat blood cultures. The patient completed 2 weeks of meropenem and was discharged. Conclusion: Typhoid fever can cause life-threatening liver failure which is rare. Clinicians should be aware of this due to the rapid progression and life-threatening clinical course, as well as the rise of multidrug-resistant and extensively drug-resistant typhoid causing delays in starting the right antibiotic.
Collapse
Affiliation(s)
- Syed Mujtaba Baqir
- Department of Medicine, Maimonides Medical Center, Brooklyn, New York 11219, USA
| | - Neha Sharma
- Department of Gastroenterology, Maimonides Medical Center, Brooklyn, New York 11219, USA
| | - Aruge Lutaf
- Department of Cardiology, Maimonides Medical Center, Brooklyn, New York 11219, USA
| | - Monica Ghitan
- Department of Infectious Diseases, Maimonides Medical Center, Brooklyn, New York 11219, USA
| | - Yu Shia Lin
- Department of Infectious Diseases, Maimonides Medical Center, Brooklyn, New York 11219, USA
| |
Collapse
|
5
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
6
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
7
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Vij S, Thakur R, Singh RP, Kumar R, Pathania P, Gupta V, Suri CR, Rishi P. Dual immunization with CdtB protein and flagellin epitope offers augmented protection against enteric fever in mice. Life Sci 2023; 334:122216. [PMID: 37918629 DOI: 10.1016/j.lfs.2023.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
AIMS Present study has explored the protective response of dual immunization using two different antigenic entities (i.e. flagellin epitope and cytolethal distending toxin subunit B (CdtB) protein) against lethal challenge of typhoidal serovars in a murine model. MAIN METHODS In-vitro immunogenicity of flagellin epitope-BSA conjugate and CdtB protein was confirmed using Indirect ELISA of typhoid positive patients' sera. Further, both entities were administered intraperitoneally in mice individually or in combination, followed by lethal challenge of typhoidal Salmonellae. Various parameters were analysed such as bacterial burden, mice survival, histopathological analysis, cytokine analysis and immunophenotyping. Serum samples obtained from the immunized mice were used for passive immunization studies, wherein mice survival and mechanism of action of the generated antibodies was studied. KEY FINDINGS Active immunization studies using the combination of both entities demonstrated improved mice survival after lethal challenge with typhoidal Salmonellae, reduced bacterial burden in organs, expression of immunophenotypic markers in splenocytes and restored tissue histoarchitecture. When used in combination, the effective doses of both the candidates reduced which may be attributed to multiprong approach used by the immune system to recognize Salmonella. Passive immunization studies further determined the protective efficacy of generated antibodies by different mechanisms such as complement mediated bactericidal action, swarming inhibition and increased phagocytic uptake. SIGNIFICANCE Present study is the first phase of the proof-of-concept which may prove to be beneficial in developing an effective bi-functional vaccine candidate to render protection against both Vi-positive as well as Vi-negative Salmonella strains.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | | | - Rashmi Kumar
- CSIR-Institute of Microbial Technology (IMTech), Chandigarh 160036, India
| | - Preeti Pathania
- CSIR-Institute of Microbial Technology (IMTech), Chandigarh 160036, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital (GMCH), Sector 32, Chandigarh 160030, India
| | - Chander Raman Suri
- CSIR-Institute of Microbial Technology (IMTech), Chandigarh 160036, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
9
|
Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM, Albar AH, Khormi MA, Bhunia AK. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023; 12:foods12091756. [PMID: 37174295 PMCID: PMC10178548 DOI: 10.3390/foods12091756] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashail A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani A R Filimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al Mutiri
- Laboratory Department, Saudi Food and Drug Authority, Riyadh 12843, Saudi Arabia
| | - Abdullah M Al-Alyani
- Laboratory Department, Saudi Food and Drug Authority, Jeddah 22311, Saudi Arabia
| | - Mazen S Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulaziz M Almaneea
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulgader H Albar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, Jeddah University, Jeddah 23218, Saudi Arabia
| | - Mohsen A Khormi
- Department of Biological Sciences, Faculty of Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Vij S, Thakur R, Rishi P. Reverse engineering approach: a step towards a new era of vaccinology with special reference to Salmonella. Expert Rev Vaccines 2022; 21:1763-1785. [PMID: 36408592 DOI: 10.1080/14760584.2022.2148661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Salmonella is responsible for causing enteric fever, septicemia, and gastroenteritis in humans. Due to high disease burden and emergence of multi- and extensively drug-resistant Salmonella strains, it is becoming difficult to treat the infection with existing battery of antibiotics as we are not able to discover newer antibiotics at the same pace at which the pathogens are acquiring resistance. Though vaccines against Salmonella are available commercially, they have limited efficacy. Advancements in genome sequencing technologies and immunoinformatics approaches have solved the problem significantly by giving rise to a new era of vaccine designing, i.e. 'Reverse engineering.' Reverse engineering/vaccinology has expedited the vaccine identification process. Using this approach, multiple potential proteins/epitopes can be identified and constructed as a single entity to tackle enteric fever. AREAS COVERED This review provides details of reverse engineering approach and discusses various protein and epitope-based vaccine candidates identified using this approach against typhoidal Salmonella. EXPERT OPINION Reverse engineering approach holds great promise for developing strategies to tackle the pathogen(s) by overcoming the limitations posed by existing vaccines. Progressive advancements in the arena of reverse vaccinology, structural biology, and systems biology combined with an improved understanding of host-pathogen interactions are essential components to design new-generation vaccines.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|