1
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Farzand R, Kimani MW, Mourkas E, Jama A, Clark JL, De Ste Croix M, Monteith WM, Lucidarme J, Oldfield NJ, Turner DPJ, Borrow R, Martinez-Pomares L, Sheppard SK, Bayliss CD. High-throughput phenotype-to-genotype testing of meningococcal carriage and disease isolates detects genetic determinants of disease-relevant phenotypic traits. mBio 2024; 15:e0305924. [PMID: 39475240 PMCID: PMC11633189 DOI: 10.1128/mbio.03059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Genome-wide association studies (GWAS) with binary or single phenotype data have successfully identified disease-associated genotypes and determinants of antimicrobial resistance. We describe a novel phenotype-to-genotype approach for a major bacterial pathogen that involves simultaneously testing for associations among multiple disease-related phenotypes and linkages between phenotypic variation and genetic determinants. High-throughput assays quantified variation among 163 Neisseria meningitidis serogroup W ST-11 clonal complex isolates for 11 phenotypic traits. A comparison of carriage and two disease subgroups detected significant differences between groups for eight phenotypic traits. Candidate genotypic testing indicated that indels in csw, a capsular biosynthesis gene, were associated with reduced survival in antibody-depleted heat-inactivated serum. GWAS testing detected 341 significant genetic variants (3 single-nucleotide polymorphisms and 338 unitigs) across all traits except serum bactericidal antibody-depleted assays. Growth traits were associated with variants of capsular biosynthesis genes, carbonic anhydrase, and an iron-uptake system while adhesion-linked variation was in pilC2, marR, and mutS. Multiple phase variation states or combinatorial phasotypes were associated with significant differences in multiple phenotypes. Controlling for group effects through regression and recursive random forest approaches detected group-independent effects for nalP with biofilm formation and fetA with a growth trait. Through random forest testing, nine phenotypes were weakly predictive of MenW:cc11 sub-lineage, original or 2013, for disease isolates while three characteristics separated carriage and disease isolates with >80% accuracy. This study demonstrates the power of combining high-throughput phenotypic testing of pathogenically relevant isolate collections with genomics for identifying genetic determinants of specific disease-relevant phenotypes and the pathobiology of microbial pathogens.IMPORTANCENext-generation sequencing technologies have led to the creation of extensive microbial genome sequence databases for several bacterial pathogens. Mining of these databases is now imperative for unlocking the maximum benefits of these resources. We describe a high-throughput methodology for detecting associations between phenotypic variation in multiple disease-relevant traits and a range of genetic determinants for Neisseria meningitidis, a major causative agent of meningitis and septicemia. Phenotypic variation in 11 disease-related traits was determined for 163 isolates of the hypervirulent ST-11 lineage and linked to specific single-nucleotide polymorphisms, short sequence variants, and phase variation states. Application of machine learning algorithms to our data outputs identified combinatorial phenotypic traits and genetic variants predictive of a disease association. This approach overcomes the limitations of generic meta-data, such as disease versus carriage, and provides an avenue to explore the multi-faceted nature of bacterial disease, carriage, and transmissibility traits.
Collapse
Affiliation(s)
- Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mercy W. Kimani
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Evangelos Mourkas
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abdullahi Jama
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jack L. Clark
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - William M. Monteith
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Milner Centre of Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P. J. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | | | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
3
|
Youse MS, Abutaleb NS, Nocentini A, S Abdelsattar A, Ali F, Supuran CT, Seleem MN, Flaherty DP. Optimization of Ethoxzolamide Analogs with Improved Pharmacokinetic Properties for In Vivo Efficacy against Neisseria gonorrhoeae. J Med Chem 2024; 67:15537-15556. [PMID: 39141375 DOI: 10.1021/acs.jmedchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-resistant gonorrhea is caused by the bacterial pathogen Neisseria gonorrhoeae, for which there is no recommended oral treatment. We have demonstrated that the FDA-approved human carbonic anhydrase inhibitor ethoxzolamide potently inhibits N. gonorrhoeae; however, is not effective at reducing N. gonorrhoeae bioburden in a mouse model. Thus, we sought to optimize the pharmacokinetic properties of the ethoxzolamide scaffold. These efforts resulted in analogs with improved activity against N. gonorrhoeae, increased metabolic stability in mouse liver microsomes, and improved Caco-2 permeability compared to ethoxzolamide. Improvement in these properties resulted in increased plasma exposure in vivo after oral dosing. Top compounds were investigated for in vivo efficacy in a vaginal mouse model of gonococcal genital tract infection, and they significantly decreased the gonococcal burden compared to vehicle and ethoxzolamide controls. Altogether, results from this study provide evidence that ethoxzolamide-based compounds have the potential to be effective oral therapeutics against gonococcal infection.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Farman Ali
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
5
|
Nocentini A. Sulfonamide inhibitors of bacterial carbonic anhydrases. Enzymes 2024; 55:143-191. [PMID: 39222990 DOI: 10.1016/bs.enz.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The increasing prevalence of antibiotic-resistant bacteria necessitates the exploration of novel therapeutic targets. Bacterial carbonic anhydrases (CAs) have been known for decades, but only in the past ten years they have garnered significant interest as drug targets to develop antibiotics having a diverse mechanism of action compared to the clinically used drugs. Significant progress has been made in the field in the past three years, with the validation in vivo of CAs from Neisseria gonorrhoeae, and vancomycin-resistant enterococci as antibiotic targets. This chapter compiles the state-of-the-art research on sulfonamide derivatives described as inhibitors of all known bacterial CAs. A section delves into the mechanisms of action of sulfonamide compounds with the CA classes identified in pathogenic bacteria, specifically α, β, and γ classes. Therefore, the inhibitory profiling of the bacterial CAs with classical and clinically used sulfonamide compounds is reported and analyzed. Another section covers various other series of sulfonamide CA inhibitors studied for the development of new antibiotics. By synthesizing current research findings, this chapter highlights the potential of sulfonamide inhibitors as a novel class of antibacterial agents and paves the way for future drug design strategies.
Collapse
Affiliation(s)
- Alessio Nocentini
- Sezione di Scienze Farmaceutiche, NEUROFARBA Department, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Supuran CT. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024; 55:383-411. [PMID: 39222998 DOI: 10.1016/bs.enz.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acetazolamide, methazolamide, ethoxzolamide and dorzolamide, classical sulfonamide carbonic anhydrase (CA) inhibitors (CAIs) designed for targeting human enzymes, were also shown to effectively inhibit bacterial CAs and were proposed for repurposing as antibacterial agents against several infective agents. CAs belonging to the α-, β- and/or γ-classes from pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, vacomycin resistant enterococci (VRE), Vibrio cholerae, Mycobacterium tuberculosis, Pseudomonas aeruginosa and other bacteria were considered as drug targets for which several classes of potent inhibitors have been developed. Treatment of some of these pathogens with various classes of such CAIs led to an impairment of the bacterial growth, reduced virulence and for drug resistant bacteria, a resensitization to clinically used antibiotics. Here I will discuss the strategies and challenges for obtaining CAIs with enhanced selectivity for inhibiting bacterial versus human enzymes, which may constitute an important weapon for addressing the drug resistance to β-lactams and other clinically used antibiotics.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Gheibzadeh MS, Capasso C, Supuran CT, Zolfaghari Emameh R. Antibacterial carbonic anhydrase inhibitors targeting Vibrio cholerae enzymes. Expert Opin Ther Targets 2024; 28:623-635. [PMID: 39028535 DOI: 10.1080/14728222.2024.2369622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Cholera is a bacterial diarrheal disease caused by pathogen bacteria Vibrio cholerae, which produces the cholera toxin (CT). In addition to improving water sanitation, oral cholera vaccines have been developed to control infection. Besides, rehydration and antibiotic therapy are complementary treatment strategies for cholera. ToxT regulatory protein activates transcription of CT gene, which is enhanced by bicarbonate (HCO3-). AREAS COVERED This review delves into the genomic blueprint of V. cholerae, which encodes for α-, β-, and γ- carbonic anhydrases (CAs). We explore how the CAs contribute to the pathogenicity of V. cholerae and discuss the potential of CA inhibitors in mitigating the disease's impact. EXPERT OPINION CA inhibitors can reduce the virulence of bacteria and control cholera. Here, we reviewed all reported CA inhibitors, noting that α-CA from V. cholerae (VchCAα) was the most effective inhibited enzyme compared to the β- and γ-CA families (VchCAβ and VchCAγ). Among the CA inhibitors, acyl selenobenzenesulfonamidenamides and simple/heteroaromatic sulfonamides were the best VchCA inhibitors in the nM range. It was noted that some antibacterial compounds show good inhibitory effects on all three bacterial CAs. CA inhibitors belonging to other classes may be synthesized and tested on VchCAs to harness cholera.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
Bonardi A, Nocentini A, Giovannuzzi S, Paoletti N, Ammara A, Bua S, Abutaleb NS, Abdelsattar AS, Capasso C, Gratteri P, Flaherty DP, Seleem MN, Supuran CT. Development of Penicillin-Based Carbonic Anhydrase Inhibitors Targeting Multidrug-Resistant Neisseria gonorrhoeae. J Med Chem 2024; 67:9613-9627. [PMID: 38776401 DOI: 10.1021/acs.jmedchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of antibacterial drugs with new mechanisms of action is crucial in combating the rise of antibiotic-resistant infections. Bacterial carbonic anhydrases (CAs, EC 4.2.1.1) have been validated as promising antibacterial targets against pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, and vancomycin-resistant enterococci. A multitarget strategy is proposed to design penicillin-based CA inhibitor hybrids for tackling resistance by targeting multiple bacterial pathways, thereby resensitizing drug-resistant strains to clinical antibiotics. The sulfonamide derivatives potently inhibited the CAs from N. gonorrhoeae and Escherichia coli with KI values in the range of 7.1-617.2 nM. Computational simulations with the main penicillin-binding protein (PBP) of N. gonorrhoeae indicated that these hybrid derivatives maintained the mechanism of action of the lead β-lactams. A subset of derivatives showed potent PBP-related antigonococcal effects against multidrug-resistant N. gonorrhoeae strains, with several compounds significantly outperforming both the lead β-lactam and CA inhibitor drugs (MIC values in the range 0.25 to 0.5 μg/mL).
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Niccolò Paoletti
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Ammara
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Silvia Bua
- Research Institute of the University of Bucharest (ICUB), Bucharest 050663, Romania
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
9
|
Pisano L, Giovannuzzi S, Supuran CT. Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing. Expert Opin Ther Pat 2024; 34:511-524. [PMID: 38856987 DOI: 10.1080/13543776.2024.2367005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.
Collapse
Affiliation(s)
- Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Supuran CT. Novel carbonic anhydrase inhibitors for the treatment of Helicobacter pylori infection. Expert Opin Investig Drugs 2024; 33:523-532. [PMID: 38517734 DOI: 10.1080/13543784.2024.2334714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Helicobacter pylori, the causative agent of peptic ulcer, gastritis, and gastric cancer encodes two carbonic anhydrases (CA, EC 4.2.1.1) belonging to the α- and β-class (HpCAα/β), which have been validated as antibacterial drug targets. Acetazolamide and ethoxzolamide were also clinically used for the management of peptic ulcer. AREAS COVERED Sulfonamides were the most investigated HpCAα/β compounds, with several low nanomolar inhibitors identified, some of which also crystallized as adducts with HpCAα, allowing for the rationalization of the structure-activity relationship. Few data are available for other classes of inhibitors, such as phenols, sulfamides, sulfamates, dithiocarbamates, arylboronic acids, some of which showed effective in vitro inhibition and for phenols, also inhibition of planktonic growth, biofilm formation, and outer membrane vesicles spawning. EXPERT OPINION Several recent drug design studies reported selenazoles incorporating seleno/telluro-ethers attached to benzenesulfonamides, hybrids incorporating the EGFR inhibitor erlotinib and benzenesulfonamides, showing KIs < 100 nM against HpCAα and MICs in the range of 8-16 µg/mL for the most active derivatives. Few drug design studies for non-sulfonamide inhibitors were performed to date, although inhibition of these enzymes may help the fight of multidrug resistance to classical antibiotics which emerged in the last decades also for this bacterium.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Supuran CT. Drug interactions of carbonic anhydrase inhibitors and activators. Expert Opin Drug Metab Toxicol 2024; 20:143-155. [PMID: 38450431 DOI: 10.1080/17425255.2024.2328152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) have been established drug targets for decades, with their inhibitors and activators possessing relevant pharmacological activity and applications in various fields. At least 11 sulfonamides/sulfamates are clinically used as diuretics, antiglaucoma, antiepileptic, or antiobesity agents and one derivative, SLC-0111, is in clinical trials as antitumor/antimetastatic agent. The activators were less investigated with no clinically used agent. AREAS COVERED Drug interactions between CA inhibitors/activators and various other agents are reviewed in publications from the period March 2020 - January 2024. EXPERT OPINION Drug interactions involving these agents revealed several interesting findings. Acetazolamide plus loop diuretics is highy effective in acute decompensated heart failure, whereas ocular diseases such as X-linked retinoschisis and macular edema were treated by acetazolamide plus bevacizumab or topical NSAIDs. Potent anti-infective effects of acetazolamide and other CAIs, alone or in combination with other agents were demonstrated for the management of Neisseria gonorrhoea, vancomycin resistant enterococci, Acanthamoeba castellanii, Trichinella spiralis, and Cryptococcus neoformans infections. Topiramate, in combination with phentermine is incresingly used for the management of obesity, whereas zonisamide plus levodopa is highly effective for Parkinson's disease. Acetazolamide, methazolamide, ethoxzolamide, and SLC-0111 showed synergistic antitumor/antimetastatic action in combination with many other antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, FI, Italy
| |
Collapse
|
12
|
Bua S, Bonardi A, Mük GR, Nocentini A, Gratteri P, Supuran CT. Benzothiadiazinone-1,1-Dioxide Carbonic Anhydrase Inhibitors Suppress the Growth of Drug-Resistant Mycobacterium tuberculosis Strains. Int J Mol Sci 2024; 25:2584. [PMID: 38473830 DOI: 10.3390/ijms25052584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA) inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD derivatives meet the criteria for a potent inhibition of β-class CA isozymes. BTD derivatives show chemical features meeting the criteria for a potent inhibition of β-class CA isozymes. Specifically, three β-CAs (MtCA1, MtCA2, and MtCA3) were identified in Mycobacterium tuberculosis and their inhibition was shown to exert an antitubercular action. BTDs derivatives 2a-q effectively inhibited the mycobacterial CAs, especially MtCA2 and MtCA3, with Ki values up to a low nanomolar range (MtCA3, Ki = 15.1-2250 nM; MtCA2, Ki = 38.1-4480 nM) and with a significant selectivity ratio over the off-target human CAs I and II. A computational study was conducted to elucidate the compound structure-activity relationship. Importantly, the most potent MtCA inhibitors demonstrated efficacy in inhibiting the growth of M. tuberculosis strains resistant to both rifampicin and isoniazid-standard reference drugs for Tuberculosis treatment.
Collapse
Affiliation(s)
- Silvia Bua
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania
| | - Alessandro Bonardi
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Georgiana Ramona Mük
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
- St. Stephen's Pneumoftiziology Hospital, Șoseaua Ștefan cel Mare 11, 020122 Bucharest, Romania
| | - Alessio Nocentini
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
13
|
Giovannuzzi S, De Luca V, Capasso C, Supuran CT. Inhibition studies with simple and complex (in)organic anions of the γ-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri, MscCAγ. J Enzyme Inhib Med Chem 2023; 38:2173748. [PMID: 36719031 PMCID: PMC9891171 DOI: 10.1080/14756366.2023.2173748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
The γ-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium, Mammaliicoccus (Staphylococcus) sciuri (MscCAγ) was recently cloned and purified by our groups. Here we investigated inhibition of this enzyme with (in)organic simple and complex anions, in the search of inhibitors with potential applications. The most effective inhibitors (KIs in the micromolar range) were peroxydisulfate and trithiocarbonate, whereas submillimolar inhibition was observed with N,N-diethyldithiocarbamate and phenylboronic acid (KIs of 0.5-0.9 mM). Thiocyanate, hydrogensulfide, bisulphite, stannate, divanadate, tetraborate, perrhenate, perruthenate, hexafluorophosphate, triflate and iminodisulfonate showed KIs of 1.0-13.7 mM. Cyanate, cyanide, azide, carbonate, nitrate, tellurate, selenocyanide, tetrafluoroborate, sulfamide, sulphamic acid and phenylarsonic acid were weaker inhibitors, with KIs in the range of 25.2-95.5 mM, whereas halides, bicarbonate, nitrite, sulphate, perchlorate and fluorosulfonate did not show inhibitory action up until 100 mM concentrations in the assay system. Finding more effective MscCAγ inhibitors may be helpful to fight drug resistance to antibiotics.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
14
|
Giovannuzzi S, Marapaka AK, Abutaleb NS, Carta F, Liang HW, Nocentini A, Pisano L, Seleem MN, Flaherty DP, Supuran CT. Inhibition of pathogenic bacterial carbonic anhydrases by monothiocarbamates. J Enzyme Inhib Med Chem 2023; 38:2284119. [PMID: 37994421 PMCID: PMC11003479 DOI: 10.1080/14756366.2023.2284119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023] Open
Abstract
Carbonic anhydrases (CAs) from the pathogenic bacteria Nesseria gonorrhoeae and vancomycin-resistant enterococci (VRE) have recently been validated as antibacterial drug targets. Here we explored the inhibition of the α-CA from N. gonorrhoeae (α-NgCA), of α- and γ-class enzymes from Enterococcus faecium (α-EfCA and γ-EfCA) with a panel of aliphatic, heterocyclic and aryl-alkyl primary/secondary monothiocarbamates (MTCs). α-NgCA was inhibited in vitro with KIs ranging from 0.367 to 0.919 µM. The compounds inhibited the α-EfCA and γ-EfCA with KI ranges of 0.195-0.959 µM and of 0.149-1.90 µM, respectively. Some MTCs were also investigated for their inhibitory effects on the growth of clinically-relevant N. gonorrhoeae and VRE strains. No inhibitory effects on the growth of VRE were noted for all MTCs, whereas one compound (13) inhibited the growth N. gonorrhoeae strains at concentrations ranging from 16 to 64 µg/mL. This suggests that compound 13 may be a potential antibacterial agent against N. gonorrhoeae.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Anil Kumar Marapaka
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, USA
| | - Nader S. Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Hsin-Wen Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| |
Collapse
|
15
|
Almolhim H, Elhassanny AEM, Abutaleb NS, Abdelsattar AS, Seleem MN, Carlier PR. Substituted salicylic acid analogs offer improved potency against multidrug-resistant Neisseria gonorrhoeae and good selectivity against commensal vaginal bacteria. Sci Rep 2023; 13:14468. [PMID: 37660222 PMCID: PMC10475031 DOI: 10.1038/s41598-023-41442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
Drug-resistant Neisseria gonorrhoeae represents a major threat to public health; without new effective antibiotics, untreatable gonococcal infections loom as a real possibility. In a previous drug-repurposing study, we reported that salicylic acid had good potency against azithromycin-resistant N. gonorrhoeae. We now report that the anti-gonococcal activity in this scaffold is easily lost by inopportune substitution, but that select substituted naphthyl analogs (3b, 3o and 3p) have superior activity to salicylic acid itself. Furthermore, these compounds retained potency against multiple ceftriaxone- and azithromycin-resistant strains, exhibited rapid bactericidal activity against N. gonorrhoeae, and showed high tolerability to mammalian cells (CC50 > 128 µg/mL). Promisingly, these compounds also show very weak growth inhibition of commensal vaginal bacteria.
Collapse
Affiliation(s)
- Hanan Almolhim
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ahmed E M Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Paul R Carlier
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood St, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets 2023; 27:897-910. [PMID: 37747071 DOI: 10.1080/14728222.2023.2263914] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Four different genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) are present in bacteria, α-, β-, γ- and ι-CAs. They play relevant functions related to CO2, HCO3-/H+ ions homeostasis, being involved in metabolic biosynthetic pathways, pH regulation, and represent virulence and survival factors for bacteria in various niches. Bacterial CAs started to be considered druggable targets in the last decade, as their inhibition impairs survival, growth, and virulence of these pathogens. AREAS COVERED Significant advances were registered in the last years for designing effective inhibitors of sulfonamide type for Helicobacter pylori α-CA, Neisseria gonorrhoeae α-CA, vacomycin-resistant enterococci (VRE) α- and γ-CAs, for which the in vivo validation has also been achieved. MIC-s in the range of 0.25-4.0 µg/mL for wild type and drug resistant N. gonorrhoeae strains, and of 0.007-2.0 µg/mL for VRE were observed for some 1,3,4-thiadiazole-2-sulfonamides, and acetazolamide was effective in gut decolonization from VRE. EXPERT OPINION Targeting bacterial CAs from other pathogens, among which Vibrio cholerae, Mycobacterium tuberculosis, Brucella suis, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Porphyromonas gingivalis, Clostridium perfringens, Streptococcus mutans, Burkholderia pseudomallei, Francisella tularensis, Escherichia coli, Mammaliicoccus (Staphylococcus) sciuri, Pseudomonas aeruginosa, may lead to novel antibacterials devoid of drug resistance problems.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
17
|
Carradori S, Angeli A, Sfragano PS, Yzeiri X, Calamante M, Tanini D, Capperucci A, Kunstek H, Varbanov M, Capasso C, Supuran CT. Photoactivatable Heptamethine-Based Carbonic Anhydrase Inhibitors Leading to New Anti-Antibacterial Agents. Int J Mol Sci 2023; 24:ijms24119610. [PMID: 37298561 DOI: 10.3390/ijms24119610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
With the aim to propose innovative antimicrobial agents able to not only selectively inhibit bacterial carbonic anhydrases (CAs) but also to be photoactivated by specific wavelengths, new heptamethine-based compounds decorated with a sulfonamide moiety were synthesized by means of different spacers. The compounds displayed potent CA inhibition and a slight preference for bacterial isoforms. Furthermore, minimal inhibitory and bactericidal concentrations and the cytotoxicity of the compounds were assessed, thus highlighting a promising effect under irradiation against S. epidermidis. The hemolysis activity test showed that these derivatives were not cytotoxic to human red blood cells, further corroborating their favorable selectivity index. This approach led to the discovery of a valuable scaffold for further investigations.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Patrick S Sfragano
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Xheila Yzeiri
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
- CNR-Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Massimo Calamante
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
- CNR-Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Hannah Kunstek
- Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
- L2CM, Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, 54000 Nancy, France
| | - Mihayl Varbanov
- L2CM, Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, Centres Hospitaliers Régionaux Universitaires (CHRU) de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
18
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
19
|
Dokla EME, Abutaleb NS, Milik SN, Kandil EAEA, Qassem OM, Elgammal Y, Nasr M, McPhillie MJ, Abouzid KAM, Seleem MN, Imming P, Adel M. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against Gram-negative bacteria. Eur J Med Chem 2023; 247:115040. [PMID: 36584632 DOI: 10.1016/j.ejmech.2022.115040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need. In an effort to discover new therapeutics against Gram-negative bacteria, we previously reported a structure-activity-relationship (SAR) study on 1,2-disubstituted benzimidazole derivatives. Compound III showed a potent activity against tolC-mutant Escherichia coli with an MIC value of 2 μg/mL, representing a promising lead for further optimization. Building upon this study, herein, 49 novel benzimidazole compounds were synthesized to investigate their antibacterial activity against Gram-negative bacteria. Our design focused on three main goals, to address the low permeability of our compounds and improve their cellular accumulation, to expand the SAR study to the unexplored ring C, and to optimize the lead compound (III) by modification of the methanesulfonamide moiety. Compounds (25a-d, 25f-h, 25k, 25l, 25p, 25r, 25s, and 26b) exhibited potent activity against tolC-mutant E. coli with MIC values ranging from 0.125 to 4 μg/mL, with compound 25d displaying the highest potency among the tested compounds with an MIC value of 0.125 μg/mL. As its predecessor, III, compound 25d exhibited an excellent safety profile without any significant cytotoxicity to mammalian cells. Time-kill kinetics assay indicated that 25d exhibited a bacteriostatic activity and significantly reduced E. coli JW55031 burden as compared to DMSO. Additionally, combination of 25d with colistin partially restored its antibacterial activity against Gram-negative bacterial strains (MIC values ranging from 4 to 16 μg/mL against E. coli BW25113, K. pneumoniae, A. baumannii, and P. aeruginosa). Furthermore, formulation of III and 25d as lipidic nanoparticles (nanocapsules) resulted in moderate enhancement of their antibacterial activity against Gram-negative bacterial strains (A. Baumannii, N. gonorrhoeae) and compound 25d demonstrated superior activity to the lead compound III. These findings establish compound 25d as a promising candidate for treatment of Gram-negative bacterial infections and emphasize the potential of nano-formulations in overcoming poor cellular accumulation in Gram-negative bacteria where further optimization and investigation are warranted to improve the potency and broaden the spectrum of our compounds.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany.
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Zagazig University, Zagazig, 44519, Egypt
| | - Sandra N Milik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ezzat A E A Kandil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Omar M Qassem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Purdue University Institute of Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Martin J McPhillie
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Peter Imming
- Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
20
|
Kikiowo B, Bandara AB, Abutaleb NS, Seleem MN. Colonization efficiency of multidrug-resistant Neisseria gonorrhoeae in a female mouse model. Pathog Dis 2023; 81:ftad030. [PMID: 37852672 DOI: 10.1093/femspd/ftad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.
Collapse
Affiliation(s)
- Babatomiwa Kikiowo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| | - Aloka B Bandara
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| |
Collapse
|
21
|
Nocentini A, Capasso C, Supuran CT. Carbonic Anhydrase Inhibitors as Novel Antibacterials in the Era of Antibiotic Resistance: Where Are We Now? Antibiotics (Basel) 2023; 12:antibiotics12010142. [PMID: 36671343 PMCID: PMC9854953 DOI: 10.3390/antibiotics12010142] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Resistance to antibiotic treatment developed by bacteria in humans and animals occurs when the microorganisms resist treatment with clinically approved antibiotics. Actions must be implemented to stop the further development of antibiotic resistance and the subsequent emergence of superbugs. Medication repurposing/repositioning is one strategy that can help find new antibiotics, as it speeds up drug development phases. Among them, the Zn2+ ion binders, such as sulfonamides and their bioisosteres, are considered the most promising compounds to obtain novel antibacterials, thus avoiding antibiotic resistance. Sulfonamides and their bioisosteres have drug-like properties well-known for decades and are suitable lead compounds for developing new pharmacological agent families for inhibiting carbonic anhydrases (CAs). CAs are a superfamily of metalloenzymes catalyzing the reversible reaction of CO2 hydration to HCO3- and H+, being present in most bacteria in multiple genetic families (α-, β-, γ- and ι-classes). These enzymes, acting as CO2 transducers, are promising drug targets because their activity influences microbe proliferation, biosynthetic pathways, and pathogen persistence in the host. In their natural or slightly modified scaffolds, sulfonamides/sulfamates/sulamides inhibit CAs in vitro and in vivo, in mouse models infected with antibiotic-resistant strains, confirming thus their role in contrasting bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Alessio Nocentini
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, 80131 Napoli, Italy
- Correspondence: (C.C.); (C.T.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Firenze, Italy
- Correspondence: (C.C.); (C.T.S.)
| |
Collapse
|
22
|
Nyambe MM, Archibong EF, Chinsembu KC. A DFT and molecular docking study of xerantholide and its interaction with Neisseria gonorrhoeae carbonic anhydrase. Comput Biol Chem 2022; 101:107779. [DOI: 10.1016/j.compbiolchem.2022.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
|
23
|
The Optimal Management of Neisseria gonorrhoeae Infections. Microorganisms 2022; 10:microorganisms10122388. [PMID: 36557641 PMCID: PMC9784239 DOI: 10.3390/microorganisms10122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most frequent etiologic agents of STDs (sexually transmitted diseases). Untreated asymptomatic gonococcal infection in women can lead to spreading of the infection in the sexually active population and could lead to late consequences, such as sterility or ectopic pregnancies. One important issue about N. gonorrhoeae is its increasing resistance to antibiotics. This paper summarized the newest molecular antimicrobial resistance (AMR) detection assays for Neisseria gonorrhoeae connected with the latest therapeutic antimicrobials and gonococcal vaccine candidates. The assays used to detect AMR varied from the classical minimal inhibitory concentration (MIC) detection to whole-genome sequencing. New drugs against multi drug resistant (MDR) N. gonorrhoeae have been proposed and were evaluated in vivo and in vitro as being efficient in decreasing the N. gonorrhoeae burden. In addition, anti-N. gonorrhoeae vaccine candidates are being researched, which have been assessed by multiple techniques. With the efforts of many researchers who are studying the detection of antimicrobial resistance in this bacterium and identifying new drugs and new vaccine candidates against it, there is hope in reducing the gonorrhea burden worldwide.
Collapse
|
24
|
Bonardi A, Parkkila S, Supuran CT. Inhibition studies of the protozoan α-carbonic anhydrase from Trypanosoma cruzi with phenols. J Enzyme Inhib Med Chem 2022; 37:2417-2422. [PMID: 36065959 PMCID: PMC9467564 DOI: 10.1080/14756366.2022.2119965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The α-class carbonic anhydrase (CA, EC 4.2.1.1) from the protozoan pathogen Trypanosoma cruzi, TcCA, was investigated earlier for its inhibition with anions, sulphonamides, thiols and hydroxamates, well-known classes of CA inhibitors (CAIs). Here we present the first inhibition study of this enzyme with phenols, which possess a diverse CA inhibition mechanism compared to the previously investigated compounds, which are all zinc binders. Indeed, phenols are known to anchor to the zinc coordinated water molecule within the enzyme active site. In a series of 22 diversely substituted phenols, the best inhibitors were simple phenol, pyrocatechol, salicylic acid, 3,5-difluorophenol, 3,4-dihydroxy-benzoic acid, 3,6- dihydroxy-benzoic acid, caffeic acid and its des-hydroxy analog, with KIs of 1.8 - 7.3 µM. The least effective TcCA inhibitor was 3-chloro-4-amino-phenol (KI of 47.9 µM). Although it is not yet clear whether TcCA can be considered as an anti-Chagas disease drug target, as no animal model for investigating the antiprotozoan effects is available so far, finding effective in vitro inhibitors may be a first relevant step towards new antiprotozoal agents.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| |
Collapse
|
25
|
May Sulfonamide Inhibitors of Carbonic Anhydrases from Mammaliicoccus sciuri Prevent Antimicrobial Resistance Due to Gene Transfer to Other Harmful Staphylococci? Int J Mol Sci 2022; 23:ijms232213827. [PMID: 36430304 PMCID: PMC9693918 DOI: 10.3390/ijms232213827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Mammaliicoccus sciuri, previously known as Staphylococcus sciuri, is a Gram-positive bacterium involved in gene transfer phenomena that confer resistance to multiple antibiotics. These plasmid-encoded genes can be easily transferred to other pathogenic staphylococci. Because antibiotic resistance is rising, inhibiting M. sciuri proliferation may be a credible strategy for restricting antimicrobial resistance gene transfer to other pathogenic bacteria. Recently, it has been shown that blocking bacterial carbonic anhydrases (CAs, EC 4.2.1.1), metalloenzymes sustaining bacterial metabolic activities, can reduce pathogen survival and fitness. Here, the recombinant M. sciuri γ-CA (MscCAγ) has been cloned and purified, utilizing the DNA recombinant technology. Its kinetic properties for the CO2 hydration reaction, as well as the sulfonamide inhibition profile, were investigated and compared with those reported earlier for MscCAβ (previously described as SauBCA) and the two off-target human CA isoforms (hCA I and hCA II). The recombinant MscCAγ showed significant hydratase activity. Moreover, the MscCAγ sulfonamide inhibitory profile was different from that of MscCAβ, implying that a varied amino acid set typifies the catalytic pocket of the two enzymes. These differences provide additional evidence for the possibility of developing novel CA class-specific inhibitors.
Collapse
|