1
|
Wang XY, Ding ZL, Xu YX, Yang DZ, Yang S, Fei H. Effect of Supplementing Exogenous Glucanase or/and Mannanase to Diets Containing Torula Yeast on Growth Performance, Biochemical Indices, Liver and Intestinal Morphology, and Intestinal Microbiota and Metabolism of Largemouth Bass (Micropterus salmoides). Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10560-z. [PMID: 40304965 DOI: 10.1007/s12602-025-10560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
In the current study, we investigated the effect of a basic diet (where 20% of fishmeal was replaced by torula yeast, referred to as the control group), supplementation with β-glucanase (1000 U·kg-1, referred to as the TYG group), β-mannanase (510 U·kg-1, referred to as the group), and their combination (TYGM group), on the growth and health of juvenile largemouth bass (Micropterus salmoides). After an 8-week feeding experiment, the results revealed that juveniles in the TYM and TYGM groups exhibited significantly higher specific growth rates and hepatic antioxidant capacity, along with notably reduced levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase activities in their serum. Histomorphological assessment indicated that dietary glucanase and/or mannanase could mitigate vacuolization and nuclear deviation in the liver, while also increasing villus width and height. Furthermore, 16S rRNA sequence analysis revealed a significant decrease in Mycoplasma levels in the TYM and TYGM groups, along with a notable increase in Cetobacterium content in the TYGM group compared to the other groups. Additionally, untargeted metabolomics analysis showed that the differentially expressed metabolites were primarily correlated with lipid metabolism, including steroid hormone biosynthesis (cholesterol sulfate), primary bile acid biosynthesis (cerebrosterol), and sphingolipid metabolism (phytosphingosine) between the control and TYGM groups. In conclusion, our study demonstrated that dietary glucanase + mannanase could partially alleviate the adverse impacts on the growth and health of juveniles caused by high levels of torula yeast in the diet.
Collapse
Affiliation(s)
- Xiao Yan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi Li Ding
- College of Life Science, Huzhou University, Huzhou, 313000, China
| | - You Xing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dao Zhi Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Zhao F, Shao M, Li M, Li T, Zheng Y, Sun W, Ni C, Li L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Cell Mol Biol Lett 2025; 30:18. [PMID: 39920588 PMCID: PMC11804087 DOI: 10.1186/s11658-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis, with its complex pathogenesis, is a leading underlying cause of many cardiovascular diseases, which are increasingly prevalent in the population. Sphingolipids play an important role in the development of atherosclerosis. Key metabolites and enzymes in sphingolipid metabolism influence the pathogenesis of atherosclerosis in a variety of ways, including inflammatory responses and oxidative stress. Thus, an investigation of sphingolipid metabolism-related metabolites and key enzymes may provide novel insights and treatment targets for atherosclerosis. This review discusses various mechanisms and research progress on the relationship between various sphingolipid metabolites, related enzymes, and atherosclerosis. Finally, we look into the future research direction of phytosphingolipids.
Collapse
Affiliation(s)
- Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Cheng Ni
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Soni S, De UK, Gandhar JS, Sarkar VK, Saminathan M, Agarwal RK, Patra MK, Singh BR, Kumar A, Bandyopadhyay S. Diflunisal attenuates acute inflammatory responses through inhibition of NF-κB signaling pathway in Staphylococcus aureus-induced mastitis of lactating mouse model. Microb Pathog 2025; 199:107260. [PMID: 39736343 DOI: 10.1016/j.micpath.2024.107260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The cure rate of Staphylococcus aureus mastitis by conventional antibiotic therapy is very poor. Diflunisal (DIF), a difluorophenol derivative of salicylic acid, is reported to have strong anti-bacterial and anti-inflammatory effects against S. aureus infection. The present study aimed to evaluate the potential therapeutic effect of DIF administration against S. aureus-induced mastitis in mouse model by assessing the bacterial load, inflammation and histopathological changes in mammary gland. Eighteen lactating Swiss albino mice were divided into four groups: uninfected control, S. aureus-induced mastitis model, antibiotic (ceftriaxone)-treatment and diflunisal (DIF)-treatment. In S. aureus-induced mastitis mice, markedly increased bacterial load, myeloperoxidase, NF-κB and nitric oxide (NO) levels and up regulations of IL-1β, NF-κB and TNF-α mRNA expressions in mammary tissues with severe necrosis, marked infiltration of neutrophils and fibrosis in histopathology were noticed. Intramammary administration of DIF in S. aureus-induced mastitis mice showed a significant reduction in bacterial load, myeloperoxidase, NF-κB and NO concentrations in mammary tissues. The DIF treatment also suppressed the inflammatory NF-κB signaling in the inflamed mammary tissues by downregulation of IL-1β, NF-κB and TNF-α mRNA expressions. Further, the histopathology of mammary tissues showed mild necrosis with mild inflammatory cells infiltration, few bacterial colonies, moderate fibrosis, and marked regenerative changes with near to normal histological architecture. The findings of the study provide the evidence of therapeutic potential of DIF in S. aureus-induced mastitis by promising antibacterial and anti-inflammatory activities along with ameliorative impact against the histopathological alterations in mammary tissues.
Collapse
Affiliation(s)
- Srishti Soni
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India.
| | - Jitendra Singh Gandhar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Varun Kumar Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - M Saminathan
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India.
| | - Ravi Kant Agarwal
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Bhoj Raj Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, 700037, West Bengal, India
| |
Collapse
|
4
|
Zhang MY, Yin C, Ding L, Cheng L, Lv Q, Wang P, Zhang SB, You QY. Mechanism of Panax notoginseng saponins in improving cognitive impairment induced by chronic sleep deprivation based on the integrative analysis of serum metabolomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118988. [PMID: 39447711 DOI: 10.1016/j.jep.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponin (PNS) has a variety of biological activities, such as improvement of myocardial ischemia, improvement of learning and memory, hypolipidemia, and immunomodulation. However, its protective mechanism on the central nervous system (CNS) is not clear. AIM OF THE STUDY The present study initially evaluated the possible mechanism of PNS to improve cognitive dysfunction due to chronic sleep deprivation (CSD). MATERIALS AND METHODS In the present study, we used a modified multi-platform aquatic environment sleep deprivation method to induce a cognitively impaired rat model, and explored the mechanism of action of PNS by integrating serum metabolomics and network pharmacology, which was further verified by molecular docking and experiments. RESULTS The results showed that PNS significantly shortened the escape latency, increased the target quadrant time and the number of traversing platforms, and attenuated the inflammatory damage in the hippocampal Cornu Ammonis 1 (CA1) region in CSD rats. The non-targeted metabolomics results indicated that 35 biomarkers significantly altered following PNS therapy intervention, with metabolic pathways enriched for the effects of One carbon pool by folate, Riboflavin metabolism, Glycerophospholipid metabolism, Sphingolipid metabolism, Glycerolipid metabolism, Arachidonic acid metabolism, and Tryptophan metabolism. In addition, network pharmacology identified 234 potential targets for PNS intervention in CSD with cognitive impairment. Metabolite-response-enzyme-gene network was constructed by MetaScape and matched with the network pharmacology results to identify a total of five shared targets (LPL, GPAM, HSD11B1, HSD11B2, and SULT2A1) and two metabolic pathways (Sphingolipid metabolism and Steroid hormone biosynthesis). The results of molecular docking revealed that the five active ingredients had good binding ability with the five core targets. qPCR analysis confirmed the ability of PNS to modulate the above five targets. CONCLUSIONS The combination of metabolomics and network analysis provides a scientific basis for promoting the clinical application of PNS in cognitive impairment.
Collapse
Affiliation(s)
- Mei-Ya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Ping Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Shun-Bo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qiu-Yun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
5
|
Ran X, Li Y, Guo W, Li K, Guo W, Wang X, Liu J, Bi J, Fu S. Angelica sinensis Polysaccharide Alleviates Staphylococcus aureus-Induced Mastitis by Regulating The Intestinal Flora and Gut Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24504-24517. [PMID: 39454127 DOI: 10.1021/acs.jafc.4c06094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The modulation of intestinal flora by various polysaccharides has been shown to mitigate disease progression. Recent research reveals a significant link between intestinal flora and the progression of mastitis. This study demonstrates that the oral administration of Angelica sinensis polysaccharide (ASP) reduces mammary inflammation and blood-milk barrier (BMB) damage induced by Staphylococcus aureus in mice, primarily through the modulation of intestinal flora. The beneficial effects of ASP were negated when antibiotics disrupted the gut microbiota in mice. Furthermore, fecal microbiota transplantation (FMT) from ASP-treated mice to recipients markedly alleviated symptoms of S. aureus-induced mastitis. Oral ASP not only enhances gut microbial diversity but also shifts its composition, increasing the abundance of Lachnospiraceae_NK4A136 while reducing Erysipelatoclostridium. Metabolomic analysis revealed that ASP alters intestinal metabolic pathways, elevating levels of metabolites, such as tabersonine and riboflavin. Notably, tabersonine was found to ameliorate S. aureus-induced mastitis. These results suggest that targeting intestinal flora and metabolism through polysaccharides could serve as a promising strategy for mastitis intervention and potentially for other infectious diseases, as well.
Collapse
Affiliation(s)
- Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yutao Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kefei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Tarigan DN, Tarigan YG, Prakasita VC, Prasetyaningsih A, Kachingwe BHK. Phytochemical Profiling and Wound Healing Activity of Gigantochloa apus Liquid Smoke in Mus Musculus. J Exp Pharmacol 2024; 16:339-350. [PMID: 39381029 PMCID: PMC11460353 DOI: 10.2147/jep.s479862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose Rope bamboo (Gigantochloa apus) is traditionally used for medicinal purposes, and extracts from stem leaves and shoots have been shown to possess antioxidant and anti-inflammatory activity. Thus, this study looked at the potential compounds present in and the usefulness of Rope bamboo liquid smoke preparations in the wound healing process in mice. Methods The fingerprinting of the liquid smoke was done by liquid chromatography-mass spectrometry. In-vivo experiments were conducted to observe the diameter and percentage of wound healing in mice for 14 days using topical formulations containing liquid smoke concentrations of 100%, 50%, 25%, positive control and negative control. Statistical analyses were conducted using the Kruskal-Wallis test and Spearman correlation. Results The phytochemical fingerprint showed the presence of alkaloids, flavonoids, vitamins, phenols, and lipids. The 100% undiluted liquid smoke accelerated wound healing faster compared to 50% and 25% dilutions. The differences in wound diameters were statistically significant across treatments having a p-value of 0.020 and dose-dependent (p = 0.029). Conclusion Liquid smoke acceleration of the wound healing process was dose-dependent compared to controls. This dose-dependency indicates that the wound healing effects were probably due to the anti-inflammatory, antioxidant, and antimicrobial activities of the elucidated constituents of Rope bamboo liquid smoke.
Collapse
Affiliation(s)
- Desi Natalia Tarigan
- Faculty of Biotechnology, Duta Wacana Christian University, Yogyakarta, Indonesia
| | - Yenni Gustiani Tarigan
- Faculty of Pharmacy and Health Sciences, Sari Mutiara Indonesia University, Medan, Indonesia
| | | | | | | |
Collapse
|
7
|
Zhou D, Sun L, Li J, Yang Y. Schisandrin B inhibits inflammation and ferroptosis in S.aureus-induced mastitis through regulating SIRT1/p53/SLC7A11 signaling pathway. Int Immunopharmacol 2024; 137:112430. [PMID: 38852519 DOI: 10.1016/j.intimp.2024.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Mastitis, one of the most significant problems in women, is commonly caused by pathogens, especially Staphylococcus aureus (S.aureus). Schisandrin B (SCB), the main abundant derivatives from Schisandra chinensis, has been proven to have the ability to inhibiting inflammation and bacteria. However, few relevant researches systematically illustrate the role SCB in the treatment of mastitis. The aim of the present study is to demonstrate the mechanism that SCB functions in reducing pathological injury to the mammary gland in treating S.aureus-induced mastitis. H&E staining was used to identify pathological changes and injuries in mastitis. The levels of cytokines associated with inflammation were detected by ELISA. Key signals relevant to ferroptosis and Nrf2 signaling pathway were tested by western blot analysis and iron assay kit. Compared with the control group, inflammation-associated factors, such as IL-1β, TNF-α, MPO activity, increased significantly in S. aureus-treated mice. However, these changes were inhibited by SCB. Ferroptosis-associated factors Fe2+ and MDA increased significantly, and GSH, GPX4 and ferritin expression decreased markedly in S. aureus-treated mice. SCB treatment could attenuate S.aureus-induced ferroptosis. Furthermore, SCB increase SIRT1 and SLC7A11 expression and down-regulated p53 expression and NF-κB activation. In conclusion, SCB alleviates S.aureus-induced mastitis via up-regulating SIRT1/p53/SLC7A11 signaling pathway, attenuating the activation of inflammation-associated cytokines and ferroptosis in the mammary gland tissues.
Collapse
Affiliation(s)
- Di Zhou
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Liang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jun Li
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Yang Yang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
8
|
Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 Inflammasomes: Dual Function in Infectious Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:407-417. [PMID: 39102612 PMCID: PMC11299487 DOI: 10.4049/jimmunol.2300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has been the most distinctive polymer protein complex. After recognizing the endogenous and exogenous danger signals, NLRP3 can cause inflammation by pyroptosis and secretion of mature, bioactive forms of IL-1β and IL-18. The NLRP3 inflammasome is essential in the genesis and progression of infectious illnesses. Herein, we provide a comprehensive review of the NLRP3 inflammasome in infectious diseases, focusing on its two-sided effects. As an essential part of host defense with a protective impact, abnormal NLRP3 inflammasome activation, however, result in a systemic high inflammatory response, leading to subsequent damage. In addition, scientific evidence of small molecules, biologics, and phytochemicals acting on the NLRP3 inflammasome has been reviewed. We believe that the NLRP3 inflammasome helps us understand the pathological mechanism of different stages of infectious diseases and that inhibitors targeting the NLRP3 inflammasome will become a new and valuable research direction for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Qingjuan Wu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| |
Collapse
|
9
|
Yao H, Yang J, Li S, Cui SW, Tan H, Nie S. Effects of different fractions of polysaccharides from Dictyophora indusiata on high-fat diet-induced metabolic syndrome in mice. Int J Biol Macromol 2024; 272:132744. [PMID: 38834122 DOI: 10.1016/j.ijbiomac.2024.132744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Dictyophora indusiata is a common edible mushroom with great potential in the field of medicine against metabolic disorders, inflammation, and immunodeficiency. Our previous studies have shown that different fractions of the polysaccharide from Dictyophora indusiata (DIP) have various structural characteristics and morphology. However, the impact of the structural features on the protective effects of DIP against metabolic syndrome remains unclear. In this study, three distinct polysaccharide fractions have been extracted from Dictyophora indusiata and a high-fat diet-induced metabolic syndrome (MetS) was constructed in mice. The effects of these fractions on a range of MetS-associated endpoints, including abnormal blood glucose, lipid profiles, body fat content, liver function, intestinal microbiota and their metabolites were investigated. Through correlation analysis, the potential link between the monosaccharide composition of the polysaccharides and their biological activities was determined. The study aimed to explore the potential mechanisms and ameliorative effects of these polysaccharide fractions on MetS, thereby providing statistical evidence for understanding the relationship between monosaccharides composition of Dictyophora indusiata polysaccharides and their potential utility in treating metabolic disorders.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Atunnise AK, Bodede O, Adewuyi A, Maharaj V, Prinsloo G, Salau BA. Metabolomics and in-vitro bioactivities studies of fermented Musa paradisiaca pulp: A potential alpha-amylase inhibitor. Heliyon 2024; 10:e24659. [PMID: 38317983 PMCID: PMC10839803 DOI: 10.1016/j.heliyon.2024.e24659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
The in-vitro synthesis of bio-compounds via fermentation is a promising route for bioactive molecules intended for disease control and management. Therefore, this study evaluated the effect of fermentation on the antioxidants, antihyperglycemic and anti-inflammatory properties and the resultant chemometric phytochemical profiles of unripe plantain fruits. The results revealed that Escherichia coli and Propionibacterium spp. are suspected as the key fermenters. The E coli showed negative results to the pathogenicity test; Propionibacterium appeared to be opportunistic. A significant increase in the total polyphenols and protein and decreased flavonoids was recorded in the phytochemical profile of the methanolic extract of the fermented unripe plantain pulp; however, the ascorbic acid content was not significantly altered. The 1H NMR fingerprint showed that there is a closely related chemical shift among the shorter fermentation time (days 2-6) and the unfermented, while the more extended fermentation periods (days 7-12) with enhanced bioactivities were closely related based on the chemometrics analyses. Furthermore, the UPLC-QTOF-MS analysis annotated the presence of bioactive compounds in the day-9 fermented sample: polyhydroxy glucose conjugates (3-Methoxy-4-hydroxyphenyl 6-O-(3,4,5-trihydroxybenzoyl)-beta-D-glucopyranoside), short chain peptide (leucyl-glycyl-glycine), amino acid derivatives (4-Aminophenylalanine, and N-Acetylhistidine), linear and cyclic fatty acid derivatives (palmitoyl putrescine, ricinoleic acid, phytosphingosine, gabalid, rubrenoic acid, 2-aminocyclopentanecarboxylic and cystodienioc acid). The synergistic effect of these newly formed compounds and the increase in the phenolic content of the day-9 fermented unripe plantain may account for its more potent antioxidant, anti-inflammatory and antihyperglycemic activity. Therefore, the products obtained from the day 9 fermentation of unripe plantain pulp may serve as potential nutraceutical agents against gastro-enteric sugar digestion and absorption and sugar-induced oxidative stress, inflammation and metabolic disease.
Collapse
Affiliation(s)
| | - Olusola Bodede
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Pretoria, 0028, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Adewale Adewuyi
- Department of Chemical Sciences, Redeemer's University, Ede, Osun state, Nigeria
| | - Vinesh Maharaj
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Pretoria, 0028, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa
| | | |
Collapse
|