1
|
Bharathan A, Arafath Y, Fathima A, Hassan S, Singh P, Kiran GS, Selvin J. Implication of environmental factors on the pathogenicity of Vibrio vulnificus: Insights into gene activation and disease outbreak. Microb Pathog 2025; 204:107591. [PMID: 40246153 DOI: 10.1016/j.micpath.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Climate change, particularly rising sea surface temperatures and altered salinity levels has contributed to the increased prevalence of Vibrio vulnificus infections in humans and marine life. This opportunistic pathogen thrives in warm, estuarine environments, and its virulence is influenced by temperature-dependent gene expression, such as the activation of pVvBt2. Elevated temperatures and iron availability enhance pathogenicity by upregulating key virulence factors, including hemolysin, exotoxins, and biofilm-associated genes. Climate-driven shifts in microbial ecology have also facilitated the global expansion of V. vulnificus, leading to more frequent outbreaks and an increasing threat to public health. The unregulated use of antibiotics has also contributed to the emergence of resistant strains, complicating treatment strategies. This review explores the complex interplay between climate change and the molecular mechanisms driving V. vulnificus pathogenicity, global gene expression responses, and the implications for disease outbreaks. We also discuss current and emerging therapeutic approaches, including antibiotic stewardship and vaccine development, to mitigate the rising health risks posed by this climate-sensitive pathogen.
Collapse
Affiliation(s)
- Aswathi Bharathan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Yaser Arafath
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Aifa Fathima
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - George Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
2
|
Lin P, Chen Z, Sun G, Guo S. Differentially Expressed Genes and Alternative Splicing Analysis Revealed the Difference in Virulence to American Eels (Anguilla rostrata) Infected by Edwardsiella anguillarum and Aeromonas hydrophila. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:4. [PMID: 39565429 DOI: 10.1007/s10126-024-10378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Edwardsiella anguillarum and Aeromonas hydrophila are two common bacterial pathogens affecting cultivated eels, and the differences in their virulence remain unclear. In this study, after two groups of American eels (Anguilla rostrata) were administered the LD50 dose of E. anguillarum and A. hydrophila, respectively, the histopathology of the liver, trunk kidney, and spleen, as well as transcriptomic RNA sequencing (RNA-seq) analysis of the spleen, was examined at three time points: pre-infection (Con group) and post-infection at 36 h (Ea_36 group, Ah_36 group) and 60 h (Ea_60 group, Ah_60 group). The results showed that the differences in pathological changes were characterized by severe hepatocyte edema at 36 h post-infection (hpi) and hepatocyte atrophy at 60 hpi in the livers of eels infected by A. hydrophila, in contrast to the severe atrophy of glomeruli in the trunk kidneys and numerous bacterial nodules in the spleens of eels infected by E. anguillarum. The RNA-seq results revealed 906 and 77 typical differentially expressed genes (DEGs) in eels infected with E. anguillarum and A. hydrophila, respectively, compared to the control eels. The DEGs between the infected and control groups were predominantly annotated in GO terms related to binding, catalytic activity, membrane part, cell part, and cellular process, as well as in KEGG pathways associated with human diseases and organismal systems. The GO enrichment analysis showed 83 and 146 differential GO terms, along with 32 and 78 differential KEGG pathways in two comparisons of Ea_36 vs Con versus Ah_36 vs Con and Ea_60 vs Con versus Ah_60 vs Con, respectively. Furthermore, the analysis of differential alternative splicing genes (DASs) showed 1244 and 1341 DASs out of 12,907 and 12,833 AS genes, respectively, in the comparisons of Ea_36 vs Ah_36 and Ea_60 vs Ah_60. These DASs were enriched in two common KEGG pathways: "NOD-like receptor signaling pathway" and "necroptosis" which shared 11 hub DASs. Finally, analysis of protein-protein interactions revealed that 91 of 412 cross DASs between Ea_36 vs Ah_36 and Ea_60 vs Ah_60 potentially play an essential role in the difference in virulence of E. anguillarum and A. hydrophila in American eels, with 12 encoded proteins being particularly notable. Together, this study is the first to report a comparative pathogenicity and RNA-seq analysis of E. anguillarum and A. hydrophila in American eels, shedding new light on our understanding of the differences in virulence as revealed by pathological changes, DEGs, and DASs, contributing to more effective control strategies to prevent outbreaks of bacterial infections.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Guanghua Sun
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, China.
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China.
| |
Collapse
|
3
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Comparative phenotype and transcriptome analysis revealed the role of ferric uptake regulator (Fur) in the virulence of Vibrio harveyi isolated from diseased American eel (Anguilla rostrata). JOURNAL OF FISH DISEASES 2024; 47:e13931. [PMID: 38373044 DOI: 10.1111/jfd.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids. Then, a mutant strain, HA_1-Δfur, was constructed through homologous recombination of a suicide plasmid (pCVD442). The HA_1-Δfur mutant exhibited weaker biofilm formation and swarming motility, and 18-fold decrease (5.5%) in virulence to the American eels; compared to the wild-type strain, the mutant strain showed time and diameter differences in growth and haemolysis, respectively. Additionally, the adhesion ability of the mutant strain was significantly decreased. Moreover, there were 15 different biochemical indicators observed between the two strains. Transcriptome analysis revealed that 875 genes were differentially expressed in the Δfur mutant, with 385 up-regulated and 490 down-regulated DEGs. GO and KEGG enrichment analysis revealed that, compared to the wild-type strain, the type II and type VI secretion systems (T2SS and T6SS), amino acid synthesis and transport and energy metabolism pathways were significantly down-regulated, but the ABC transporters and biosynthesis of siderophore group non-ribosomal peptides pathways were up-regulated in the Δfur strain. The qRT-PCR results further confirmed that DEGs responsible for amino acid transport and energy metabolism were positively regulated, but DEGs involved in iron acquisition were negatively regulated in the Δfur strain. These findings suggest that the virulence of the Δfur strain was significantly decreased, which is closely related to phenotype changing and gene transcript regulation.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
4
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Δfur mutant as a potential live attenuated vaccine (LAV) candidate protects American eels (Anguilla rostrata) from Vibrio harveyi infection. Microb Pathog 2024; 189:106591. [PMID: 38401591 DOI: 10.1016/j.micpath.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|