1
|
Liu S, Lin K, Tian Y, He Y, Zhang Z, Li C, Luo Y, Liang Y, Ma Y, Deng W. Candidalysin induces Tim-3 expression in macrophages to suppress antifungal immunity in oropharyngeal candidiasis. Int Immunopharmacol 2025; 156:114672. [PMID: 40252466 DOI: 10.1016/j.intimp.2025.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Oropharyngeal candidiasis significantly impacts patients' quality of life. Although the immune mechanisms underlying OPC have been explored, the roles of immune checkpoints and macrophages in this context remain unclear. We employed single-cell techniques to analyze changes in the oral immune microenvironment and explored the role of Tim-3 in OPC. Our single-cell analysis identified distinct macrophage subpopulations in OPC tissue, each exhibiting heterogeneous antifungal immune responses. Further investigation revealed that candidalysin induces Tim-3, which primarily reduces the proportion of macrophage subpopulations 1 and 2 in OPCs. Additionally, it suppresses the inflammatory response during infection. Experimental research showed that Tim-3 inhibited the P65 inflammatory signaling pathway in macrophages, thereby reducing the secretion of inflammatory cytokines such as l1b, Il6, Tnf, Il23, and chemokines including Ccl2, Cxcl1, Cxcl2, Cxcl3, and Cxcl5. Additionally, Tim-3 promoted macrophage apoptosis, potentially contributing to the decreased proportion of macrophages. We also found that Tim-3 suppressed the phagocytic and killing functions of macrophages against C.albicans. Notably, our research revealed that Tim-3's ligand, Galectin-9, also exhibits functional similarities to Tim-3. Specifically, the Galectin-9 gene, Lgals9, is also induced by candidalysin. This study identifies candidalysin in inhibiting macrophage responses to C.albicans through the induction of Galectin-9/Tim-3 in oral mucosal immunity, potentially representing a novel mechanism of immune evasion by C.albicans in OPC. Therefore, our research provides a basis for considering this axis as a potential therapeutic target.
Collapse
Affiliation(s)
- Siqi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Kefan Lin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuyang Tian
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen He
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiwen Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chunyan Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yurong Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Yubo Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Weiwei Deng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang H, Tian Y, Xu C, Chen M, Xiang Z, Gu L, Xue H, Xu Q. Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer. Cell Death Discov 2025; 11:78. [PMID: 40011436 DOI: 10.1038/s41420-025-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Miaomiao Chen
- Department of Radiology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Liu Y, Wang R, Liu J, Fan M, Ye Z, Hao Y, Xie F, Wang T, Jiang Y, Liu N, Cui X, Lv Q, Yan L. The vacuolar fusion regulated by HOPS complex promotes hyphal initiation and penetration in Candida albicans. Nat Commun 2024; 15:4131. [PMID: 38755250 PMCID: PMC11099166 DOI: 10.1038/s41467-024-48525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between yeast and hyphae is crucial for regulating the commensalism and pathogenicity in Candida albicans. The mechanisms that affect the invasion of hyphae in solid media, whose deficiency is more related to the pathogenicity of C. albicans, have not been elucidated. Here, we found that the disruption of VAM6 or VPS41 which are components of the homotypic vacuolar fusion and protein sorting (HOPS) complex, or the Rab GTPase YPT72, all responsible for vacuole fusion, led to defects in hyphal growth in both liquid and solid media, but more pronounced on solid agar. The phenotypes of vac8Δ/Δ and GTR1OE-vam6Δ/Δ mutants indicated that these deficiencies are mainly caused by the reduced mechanical forces that drive agar and organs penetration, and confirmed that large vacuoles are required for hyphal mechanical penetration. In summary, our study revealed that large vacuoles generated by vacuolar fusion support hyphal penetration and provided a perspective to refocus attention on the role of solid agar in evaluating C. albicans invasion.
Collapse
Affiliation(s)
- Yu Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ruina Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Jiacun Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Mengting Fan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Zi Ye
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yumeng Hao
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Fei Xie
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ting Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yuanying Jiang
- School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ningning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Xiaoyan Cui
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Quanzhen Lv
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Lan Yan
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Farhadi Cheshmeh Morvari S, McCann BL, Bignell EM. Conserved and Divergent Features of pH Sensing in Major Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:120-130. [PMID: 37577059 PMCID: PMC10421798 DOI: 10.1007/s40588-023-00195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 08/15/2023]
Abstract
Purpose of Review For human fungal pathogens, sensory perception of extracellular pH is essential for colonisation of mammalian tissues and immune evasion. The molecular complexes that perceive and transmit the fungal pH signal are membrane-proximal and essential for virulence and are therefore of interest as novel antifungal drug targets. Intriguingly, the sensory machinery has evolved divergently in different fungal pathogens, yet spatial co-ordination of cellular components is conserved. Recent Findings The recent discovery of a novel pH sensor in the basidiomycete pathogen Cryptococcus neformans highlights that, although the molecular conservation of fungal pH sensors is evolutionarily restricted, their subcellular localisation and coupling to essential components of the cellular ESCRT machinery are consistent features of the cellular pH sensing and adaptation mechanism. In both basidiomycetes and ascomycetes, the lipid composition of the plasma membrane to which pH sensing complexes are localised appears to have pivotal functional importance. Endocytosis of pH-sensing complexes occurs in multiple fungal species, but its relevance for signal transduction appears not to be universal. Summary Our overview of current understanding highlights conserved and divergent mechanisms of the pH sensing machinery in model and pathogenic fungal species, as well as important unanswered questions that must be addressed to inform the future study of such sensing mechanisms and to devise therapeutic strategies for manipulating them.
Collapse
Affiliation(s)
| | - Bethany L. McCann
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Elaine M. Bignell
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
5
|
Liu Z, Radi M, Mohamed ETT, Feist AM, Dragone G, Mussatto SI. Adaptive laboratory evolution of Rhodosporidium toruloides to inhibitors derived from lignocellulosic biomass and genetic variations behind evolution. BIORESOURCE TECHNOLOGY 2021; 333:125171. [PMID: 33894448 DOI: 10.1016/j.biortech.2021.125171] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Using lignocellulosic biomass hydrolysate for the production of microbial lipids and carotenoids is still a challenge due to the poor tolerance of oleaginous yeasts to the inhibitors generated during biomass pretreatment. In this study, a strategy of adaptive laboratory evolution in hydrolysate-based medium was developed to improve the tolerance of Rhodosporidium toruloides to inhibitors present in biomass hydrolysate. The evolved strains presented better performance to grow in hydrolysate medium, with a significant reduction in their lag phases, and improved ability to accumulate lipids and produce carotenoids when compared to the wild-type starting strain. In the best cases, the lag phase was reduced by 72 h and resulted in lipid accumulation of 27.89 ± 0.80% (dry cell weight) and carotenoid production of 14.09 ± 0.12 mg/g (dry cell weight). Whole genome sequencing analysis indicated that the wild-type strain naturally contained tolerance-related genes, which provided a background that allowed the strain to evolve in biomass-derived inhibitors.
Collapse
Affiliation(s)
- Zhijia Liu
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark
| | - Mohammad Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark
| | - Elsayed T T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, SøltoftsPlads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, SøltoftsPlads, Building 223, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Zhu J, Jia ZW, Xia CY, Gao XD. The Sur7/PalI family transmembrane protein Tos7 (Yol019w) plays a role in secretion in budding yeast. Fungal Genet Biol 2020; 144:103467. [PMID: 33002606 DOI: 10.1016/j.fgb.2020.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/24/2022]
Abstract
Tos7 (Yol019w) is a Sur7/PalI family transmembrane protein in the budding yeast Saccharomyces cerevisiae. Since the deletion of TOS7 did not affect growth or cell morphology, the cellular roles of Tos7 have not been established previously. Here, we show that high-copy TOS7 expression suppressed the growth defect of the secretion-defective RGA1-C term-overexpressing mutant and sec15-1 mutant. Moreover, Tos7 physically interacted with Boi2 and the Rho GTPase Rho3, two key regulators of exocyst assembly, suggesting that Tos7 plays a role in secretion. We also show that the deletion of TOS7 rendered the cells more sensitive to the cell wall-disrupting agents Congo red and calcofluor white while high-copy TOS7 expression had an opposite effect, suggesting that Tos7 affects cell wall organization. Finally, we show that Tos7 localized to punctate patches on the plasma membrane that were largely co-localized with the plasma membrane microdomains named MCC (membrane compartment of Can1). Together, these results suggest that Tos7 contributes to cell surface-related functions. Tos7 is likely an auxiliary component of MCC/eisosome that specifically interacts with the secretory pathway.
Collapse
Affiliation(s)
- Jing Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen-Yang Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China.
| |
Collapse
|
7
|
Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. PLoS Pathog 2016; 12:e1005617. [PMID: 27144456 PMCID: PMC4856274 DOI: 10.1371/journal.ppat.1005617] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3)-glucan, a crucial pathogen-associated molecular pattern (PAMP) of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans. Mannan plays a crucial role in cell wall structure and virulence of the opportunistic pathogen Candida albicans. Both the invasive ability of the pathogen and the host defense against the pathogen contribute to the outcome of invasive infection. In the present study, we identified a novel α-1,6-mannosyltransferase, which was responsible for cell wall α-1,6-mannose backbone extension in C. albicans. We determined that α-1,6-mannose backbone is necessary for the pathogenesis of C. albicans due to its ability to shield β-(1,3)-glucan from the host Dectin-1 recognition and Th1/Th7 response. Our study highlights a novel strategy to enhance the host immune response towards C. albicans.
Collapse
|
8
|
Li X, Yang F, Li D, Zhou M, Wang X, Xu Q, Zhang Y, Yan L, Jiang Y. Trisomy of chromosome R confers resistance to triazoles in Candida albicans. Med Mycol 2016; 53:302-9. [PMID: 25792759 DOI: 10.1093/mmy/myv002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome plasticity is a hallmark of Candida albicans, and it has been suggested that it generates numerical and structural genomic variations as a means of adaptation. In this study, we used array based comparative genomic hybridization technology and the quantitative real time PCR to investigate the mechanisms by which the following strains obtained by genetic manipulation, CaLY188, CaLY350, CaLY190 and CaLY191, were resistant to antifungal azoles. All four showed trisomy of chromosome R and resistance to azoles. Serial passage of CaLY188 in drug-free medium resulted in chromosome loss, causing chromosome R disomy and loss of azole resistance. Thus we proposed that trisomy of chromosome R contributes to azole resistance.
Collapse
Affiliation(s)
- Xingxing Li
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Feng Yang
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Dedong Li
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Mi Zhou
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Xiaojuan Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China Department of Pharmacology, China Pharmaceutical University, Nanjing, P.R. China
| | - Qiurong Xu
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China Department of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Yanxia Zhang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China Department of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
9
|
Abolishing Cell Wall Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans Enhances Recognition by Host Dectin-1. Infect Immun 2015; 83:2694-704. [PMID: 25895969 DOI: 10.1128/iai.00097-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/11/2015] [Indexed: 12/29/2022] Open
Abstract
Fungi can shield surface pathogen-associated molecular patterns (PAMPs) for evading host immune attack. The most common and opportunistic human pathogen, Candida albicans, can shield β-(1 3)-glucan on the cell wall, one of the major PAMPs, to avoid host phagocyte Dectin-1 recognition. The way to interfere in the shielding process for more effective antifungal defense is not well established. In this study, we found that deletion of the C. albicans GPI7 gene, which was responsible for adding ethanolaminephosphate to the second mannose in glycosylphosphatidylinositol (GPI) biosynthesis, could block the attachment of most GPI-anchored cell wall proteins (GPI-CWPs) to the cell wall and subsequently unmask the concealed β-(1,3)-glucan. Neutrophils could kill the uncloaked gpi7 mutant more efficiently with an augmented respiratory burst. The gpi7 mutant also stimulated Dectin-1-dependent immune responses of macrophages, including activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways and secretion of specific cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-12p40. Furthermore, the gpi7 null mutant could induce an enhanced inflammatory response through promoting significant recruitment of neutrophils and monocytes and could stimulate stronger Th1 and Th17 cell responses to fungal infections in vivo. These in vivo phenotypes also were Dectin-1 dependent. Thus, we assume that GPI-CWPs are involved in the immune mechanism of C. albicans escaping from host recognition by Dectin-1. Our studies also indicate that the blockage of GPI anchor synthesis is a strategy to inhibit C. albicans evading host recognition.
Collapse
|
10
|
Sano M, Kobayashi A, Ohashi S. Characterization of the palI Gene of Aspergillus oryzae. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Chen X, Wu H, Cao Y, Yao X, Zhao L, Wang T, Yang Y, Lv D, Chai Y, Cao Y, Zhu Z. Ion-pairing chromatography on a porous graphitic carbon column coupled with time-of-flight mass spectrometry for targeted and untargeted profiling of amino acid biomarkers involved in Candida albicans biofilm formation. ACTA ACUST UNITED AC 2014; 10:74-85. [DOI: 10.1039/c3mb70240e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Cao Y, Zhu Z, Chen X, Yao X, Zhao L, Wang H, Yan L, Wu H, Chai Y, Jiang Y. Effect of amphotericin B on the metabolic profiles of Candida albicans. J Proteome Res 2013; 12:2921-32. [PMID: 23672250 DOI: 10.1021/pr4002178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amphotericin B (AmB) is a polyene antifungal drug widely used for systemic fungal infections. In this study, a metabonomic method using gas chromatography-mass spectrometry (GC/MS) was developed to characterize the metabolic profiles of Candida albicans cells exposed to AmB. Thirty-one differentially produced metabolites between AmB-treated and the control groups were identified, among which 10 metabolites were upregulated and 21 metabolites were downregulated. These differentially produced metabolites were mainly involved in polyamines synthesis, tricarboxylic acid (TCA) cycle, oxidative stress, glutathione metabolism, lipid synthesis and glycolysis. Further experiments showed that the polyamines including putrescine, spermidine, and spermine played an important role in the sensitivity of C. albicans cells upon AmB treatment, and combined use of AmB and inhibitors of polyamine biosynthesis pathway might be a potential antifungal strategy. This study provided a systemic view of the metabolic pattern in C. albicans upon exposure to AmB, which shed new light on the mechanisms of action of antifungal agents.
Collapse
Affiliation(s)
- Yingying Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|