1
|
Luo S, Yuan J, Song Y, Ren J, Qi J, Zhu M, Feng Y, Li M, Wang B, Li X, Song C. Elevated salinity decreases microbial communities complexity and carbon, nitrogen and phosphorus metabolism in the Songnen Plain wetlands of China. WATER RESEARCH 2025; 276:123285. [PMID: 39954460 DOI: 10.1016/j.watres.2025.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Salinity can induce changes in the structure and function of soil microbial communities, which plays an important role in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. However, there are few studies on the relationship between microbial communities and functional properties of wetland soil under elevated salinity. In this study, soil samples from Zhalong, Momoge, Niuxintaobao, and Xianghai wetlands in the Songnen Plain of China were cultured with different salinity and analyzed by metagenomic sequencing to assess the overall impact of salinity on microorganisms. The results showed that increasing soil salinity decreased soil microbial diversity and significantly changed its composition. Elevated salinity led to the replacement of core species (Sphingomonas) by halophilic species (Halomonadaceae, Halomohas campaniensis), reducing the stability of microbial ecological networks. C fixation, denitrification and purine metabolism were the key ways for the maintenance of C, N and P functions in Songnen plain wetlands, and these processes were significantly reduced with increasing salinity. Key genes involved in C, N and P metabolism include EC1.1.1.42, EC4.1.1.31, EC6.4.1.1, nosZ, nirK, purB, purC, adk, purM, and purQ. They were all effectively suppressed due to increased salinity. In summary, elevated salinity reduced the complexity of microorganisms and inhibited the related functions of C, N and P cycling, and affected the stability of wetland ecosystems. Wetland protection should be strengthened to prevent the aggravation of salinization. This study provides a new scientific framework for the restoration and management of salinized wetland ecosystems in the face of upcoming global changes.
Collapse
Affiliation(s)
- Shouyang Luo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiabao Yuan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanyu Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Jiusheng Ren
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China
| | - Jia Qi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mengyuan Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yisong Feng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, PR China
| | - Mengting Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, PR China
| | - Bowen Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Xiaoyu Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Changchun Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; School of Hydraulic Engineering, Dalian University of Technology, Dalian 116023, PR China
| |
Collapse
|
2
|
Liang M, Wu Y, Jiang Y, Zhao Z, Yang J, Liu G, Xue S. Microbial functional genes play crucial roles in enhancing soil nutrient availability of halophyte rhizospheres in salinized grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178160. [PMID: 39705952 DOI: 10.1016/j.scitotenv.2024.178160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Land degradation due to salinization threatens ecosystem health. Phytoremediation, facilitated by functional microorganisms, has gained attention for improving saline-alkali soils. However, the relationship between the functional potential of rhizosphere microbes involved in multi-element cycling and soil nutrient pools remain unclear. This study focused on the changes in functional genes related to carbon (C), nitrogen (N), and phosphorus (P) cycling in the rhizospheres of various halophytes and bulk soil in the grassland ecosystem of Chaka Salt Lake, Qinghai Province, China. Our evaluation of plant and soil characteristics revealed that halophyte growth increased soil hydrolase activity and nutrient levels, particularly available N. Significant differences were observed in foliage and root nutrients, rhizosphere soil properties, and microbial functional gene composition among plant species. Halophytes significantly altered the abundance of genes involved in C fixation (Calvin and DC/4-HB cycles), C degradation (starch, hemicellulose, cellulose, and pectin degradation), dissimilatory nitrate reduction (nirB), ammonification (ureC), organic P mineralization (phoA and ugpQ), P transport (phnE), and inorganic P dissolution (ppk1). C, N, and P cycling processes were closely related to soil N nutrients, available nutrient ratios, and C/N-cycling enzyme activities. Partial least squares path modeling (PLS-PM) analysis showed that microbial functional genes were directly associated with soil nutrient availability, with soil and plant variables indirectly affecting nutrient pools through the regulation of these genes. These findings enhance our understanding of the biochemical cycling in halophyte rhizospheres and highlight the role of microbial functional genes in saline-alkali soil restoration.
Collapse
Affiliation(s)
- Meng Liang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaokun Jiang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinqiu Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guobin Liu
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sha Xue
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Banerjee S, Ghosh S, Chakraborty S, Sarkar D, Datta R, Bhattacharyya P. Synergistic impact of bioavailable PHEs and alkalinity on microbial diversity and traits in agricultural soil adjacent to chromium-asbestos mines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124021. [PMID: 38657890 DOI: 10.1016/j.envpol.2024.124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Soil microbial communities undergo constant fluctuations, particularly in response to environmental factors. Although the deposition of toxic mine waste is recognized for introducing potentially hazardous elements (PHEs) into the soil, its specific impacts on microbial communities remain unclear. This study aims to explore the combined effects of soil alkalinity and bioavailable PHEs on microbial diversity and traits in agricultural soil adjacent to a chromium-asbestos mining area. By employing a comprehensive analysis, this study indicated that microbiological attributes were reduced in contaminated areas (zone 1), whereas both the levels of bioavailable PHEs (CrWs: 31.08 mg/kg, NiWs: 13.90 mg/kg) and alkalinity indices (CROSS, MCAR, MH) were significantly higher. The spatial distribution of soil alkalinity and bioavailable PHEs, primarily originating from chromium-asbestos mines, has been determined. This study also elucidates the negative relationship between soil stressors (Alkalinity and PHEs) and microbial activities (soil enzymatic activity, microbial respiration, and biomass carbon). The vector's length exhibited a notable difference between zone 1 (0.51) and zone 2 (0.32), indicating a substantial limitation on carbon (C). Also, the investigation of soil bacterial diversity unveiled notable disparities in the prevalence of microbial populations inside zone 1. Proteobacteria constituted 57.18% of the total population indicating a noteworthy prevalence in the contaminated soils. Finally, the random forest (RF) algorithm from machine learning was selected and proven to be a robust choice in Taylor diagrams for predicting the causative stressors responsible for the deterioration of soil microbial health. Therefore, this research offers insights into the health and resilience of soil microbial communities under synergistic stress conditions, which will aid environmentalists in planning future interventions and improving sustainable farming techniques.
Collapse
Affiliation(s)
- Sonali Banerjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Saibal Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Shreya Chakraborty
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Dibyendu Sarkar
- Stevens Institute of Technology, Department of Civil, Environmental, and Ocean Engineering, Hoboken, NJ, 07030, USA
| | - Rupali Datta
- Department of Biological Science, Michigan Technological University, Michigan, USA
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India.
| |
Collapse
|
4
|
Liu ZS, Wang XK, Wang KH, Yang ML, Li DF, Liu SJ. Paraflavitalea pollutisoli sp. nov., Pollutibacter soli gen. nov. sp. nov., Polluticoccus soli gen. nov. sp. nov., and Terrimonas pollutisoli sp. nov., four new members of the family Chitinophagaceae from polluted soil. Syst Appl Microbiol 2024; 47:126503. [PMID: 38490089 DOI: 10.1016/j.syapm.2024.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
A taxonomic investigation was conducted on four bacterial strains isolated from soil contaminated with polycyclic aromatic hydrocarbons and heavy metals. Phylogenetic analysis revealed that these strains belonged to the family Chitinophagaceae. Examination of the 16S rRNA genes indicated that their sequence identities were below 97.6 % compared to any known and validly nominated bacterial species. The genomes of the four strains ranged from 4.12 to 8.76 Mb, with overall G + C molar contents varying from 41.28 % to 50.39 %. Predominant cellular fatty acids included iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The average nucleotide identity ranged from 66.90 % to 74.63 %, and digital DNA-DNA hybridization was 12.5-12.8 %. Based on the genomic and phenotypic features of the new strains, four novel species and two new genera were proposed within the family Chitinophagaceae. The ecological distributions were investigated by data-mining of NCBI databases, and results showed that additional strains or species of the newly proposed taxa were widely distributed in various environments, including polluted soil and waters. Functional analysis demonstrated that strains H1-2-19XT, JS81T, and JY13-12T exhibited resistance to arsenite (III) and chromate (VI). The proposed names for the four novel species are Paraflavitalea pollutisoli (type strain H1-2-19XT = JCM 36460T = CGMCC 1.61321T), Terrimonas pollutisoli (type strain H1YJ31T = JCM 36215T = CGMCC 1.61343T), Pollutibacter soli (type strain JS81T = JCM 36462T = CGMCC 1.61338T), and Polluticoccus soli (type strain JY13-12T = JCM 36463T = CGMCC 1.61341T).
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Kang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei-Ling Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
El-Malah SS, Rasool K, Jabbar KA, Sohail MU, Baalousha HM, Mahmoud KA. Marine Bacterial Community Structures of Selected Coastal Seawater and Sediment Sites in Qatar. Microorganisms 2023; 11:2827. [PMID: 38137970 PMCID: PMC10745943 DOI: 10.3390/microorganisms11122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023] Open
Abstract
Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa, as well as 16S rRNA sequencing, to investigate the impact of environmental conditions and spatial variations on the diversity of bacterial communities in the coastal waters and sediments from selected sites in Qatar. The concentration levels of indicator bacteria were affected by increasing temperatures and pH, and by decreasing salinity of seawater samples. Diversity indices and the molecular phylogeny demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were the dominant phyla in all locations. The most abundant operational taxonomic units (OTUs) at the family level were from Flavobacteriaceae (27.07%, 4.31%) and Rhodobacteraceae (22.51%, 9.86%) in seawater and sediment, respectively. Alphaproteobacteria (33.87%, 16.82%), Flavobacteria (30.68%, 5.84%), and Gammaproteobacteria (20.35%, 12.45%) were abundant at the species level in both seawater and sediment, while Clostridia (13.72%) was abundant in sediment only. The results suggest that sediment can act as a reservoir for indicator bacteria, with higher diversity and lower abundance compared to seawater.
Collapse
Affiliation(s)
- Shimaa S. El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | | | - Husam Musa Baalousha
- Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Khaled A. Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| |
Collapse
|
6
|
Wang Y, Wang Y, Zhang Q, Fan H, Wang X, Wang J, Zhou Y, Chen Z, Sun F, Cui X. Saline-Alkali Soil Property Improved by the Synergistic Effects of Priestia aryabhattai JL-5, Staphylococcus pseudoxylosus XW-4, Leymus chinensis and Soil Microbiota. Int J Mol Sci 2023; 24:ijms24097737. [PMID: 37175442 PMCID: PMC10178608 DOI: 10.3390/ijms24097737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Two saline-alkali-tolerant bacterial strains, Priestia aryabhattai JL-5 and Staphylococcus pseudoxylosus XW-4, were isolated, with high capabilities of hydrolyzing phosphate and producing cellulase, respectively. The molecular mechanisms regulating the saline-alkali tolerance in the strain JL-5 were further investigated using transcriptome analysis. The contents of lactic acid and proline and the enzymatic activity of glutamine synthetase in the strain JL-5 were significantly increased. The properties of saline-alkali soils were significantly improved by the enhanced growth of the indicator plant Leymus chinensis under the combined applications of the strains JL-5 and XW-4 mixed with corn straw. The contents of catalase, peroxidase, superoxide dismutase and proline of L. chinensis were significantly increased, and the content of malondialdehyde was significantly decreased in the combined treatment of both bacterial strains. The contents of available nitrogen, phosphorus and potassium and organic matters in the soil treated with both strains were significantly increased, as well as the diversity and abundance of the soil microbiota. Our study evidently demonstrated the synergistic effects of the strains JL-5 and XW-4, indicator plants and the local microbiota in terms of improving the saline-alkali soil properties, providing strong experimental evidence to support the commercial development of the combined application of both strains to improve the properties of saline-alkali soils.
Collapse
Affiliation(s)
- Yujue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Yan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hangzhe Fan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Zhanyu Chen
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Chaudhary DR, Kumar M, Kalla V. Sediment microbial community structure, enzymatic activities and functional gene abundance in the coastal hypersaline habitats. Arch Microbiol 2023; 205:56. [PMID: 36607455 DOI: 10.1007/s00203-022-03398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Salt marsh vegetation, mudflat and salt production are common features in worldwide coastal areas; however, their influence on microbial community composition and structure has been poorly studied and rarely compared. In the present study, microbial community composition (phospholipid fatty acid (PLFA) profiling and 16S rRNA gene sequencing (bacterial and archaeal)) and structure, enzymatic activities and abundance of functional genes in the sediments of salt ponds (crystallizer, condenser and reservoir), mudflat and vegetated mudflat were determined. Enzyme activities (β-glucosidase, urease and alkaline phosphatase) were considerably decreased in saltpan sediments because of elevated salinity while sediment of vegetated mudflat sediments showed the highest enzyme activities. Concentrations of total microbial biomarker PLFAs (total bacterial, Gram-positive, Gram-negative, fungal and actinomycetes) were the highest in vegetated mudflat sediments and the lowest in crystallizer sediments. Nonmetric-multidimensional scaling (NMDS) analysis of PLFA data revealed that the microbial community of crystallizer, mudflat and vegetated mudflat was significantly different from each other as well as different from condenser and reservoir. The most predominant phyla within the classified bacterial fractions were Proteobacteria followed by Firmicutes, Bacteroidetes and Planctomycetes, while Euryarchaeota and Crenarchaeota phyla dominated the classified archaeal fraction. Cyanobacterial genotypes were the most dominant in the condenser. Mudflat and vegetated mudflat supported a greater abundance of Bacteroidetes and Actinobacteria, respectively. The results of the present study suggest that salt ponds had significantly decreased the microbial and enzyme activities in comparison to mudflat and vegetated mudflat sediments due to very high salinity, ionic concentrations and devoid of vegetation. The present study expands our understanding of microbial resource utilization and adaptations of microorganisms in a hypersaline environment.
Collapse
Affiliation(s)
- Doongar R Chaudhary
- Division of Plant Omics, CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Madhav Kumar
- Division of Plant Omics, CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vandana Kalla
- Lachoo Memorial College of Science and Technology, Shastri Nagar, Sec. A, Jodhpur, 342001, Rajasthan, India
| |
Collapse
|
8
|
Purohit MK, Rathore DS, Koladiya G, Pandey S, Singh SP. Comparative analysis of the catalysis and stability of the native, recombinant and metagenomic alkaline proteases in organic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80968-80982. [PMID: 35725880 DOI: 10.1007/s11356-022-21411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The effect of organic solvents on alkaline proteases was assessed for native, recombinant, and metagenomically derived alkaline proteases. Their stability and the effects of physicochemical parameters were studied in the presence of hexane. The native enzyme was comparatively more resistant against the organic solvents than the recombinant counterparts. On the other hand, the metagenomically derived alkaline protease was minimally resistant against solvents. A similar trend was apparent for the stability of enzyme in organic solvents. The novelty of this study lies in the fact that the majority of the studies on the solvent tolerance have focused on the mesophilic enzymes, while those from the haloalkaliphilic bacteria have received little attention. The comparative tolerance of the native, recombinant, and metagenomic alkaline proteases against the organic solvent has practical importance. The phylogenetic relatedness among the various protease sequences will be described.
Collapse
Affiliation(s)
- Megha K Purohit
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
- Current Address: DNA Investigating Laboratory, Toronto, ON, Canada
| | - Dalip Singh Rathore
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
| | - Gopi Koladiya
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
| | | | - Satya P Singh
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India.
| |
Collapse
|
9
|
A biogeographic 16S rRNA survey of bacterial communities of ureolytic biomineralization from California public restrooms. PLoS One 2022; 17:e0262425. [PMID: 35030221 PMCID: PMC8759634 DOI: 10.1371/journal.pone.0262425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, we examined the total bacterial community associated with ureolytic biomineralization from urine drainage systems. Biomineral samples were obtained from 11 California Department of Transportation public restrooms fitted with waterless, low-flow, or conventional urinals in 2019. Following high throughput 16S rRNA Illumina sequences processed using the DADA2 pipeline, the microbial diversity assessment of 169 biomineral and urine samples resulted in 3,869 reference sequences aggregated as 598 operational taxonomic units (OTUs). Using PERMANOVA testing, we found strong, significant differences between biomineral samples grouped by intrasystem sampling location and urinal type. Biomineral microbial community profiles and alpha diversities differed significantly when controlling for sampling season. Observational statistics revealed that biomineral samples obtained from waterless urinals contained the largest ureC/16S gene copy ratios and were the least diverse urinal type in terms of Shannon indices. Waterless urinal biomineral samples were largely dominated by the Bacilli class (86.1%) compared to low-flow (41.3%) and conventional samples (20.5%), and had the fewest genera that account for less than 2.5% relative abundance per OTU. Our findings are useful for future microbial ecology studies of urine source-separation technologies, as we have established a comparative basis using a large sample size and study area.
Collapse
|
10
|
Guo J, Zhou Y, Guo H, Min W. Saline and alkaline stresses alter soil properties and composition and structure of gene-based nitrifier and denitrifier communities in a calcareous desert soil. BMC Microbiol 2021; 21:246. [PMID: 34521348 PMCID: PMC8442331 DOI: 10.1186/s12866-021-02313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saline and alkaline stresses damages the health of soil systems. Meanwhile, little is known about how saline or alkaline stress affects soil nitrifier and denitrifier communities. Therefore, we compared the responses of gene-based nitrifier and denitrifier communities to chloride (CS), sulfate (SS), and alkaline (AS) stresses with those in a no-stress control (CK) in pots with a calcareous desert soil. RESULTS Compared with CK, saline and alkaline stress decreased potential nitrification rate (PNR) and NO3-N; increased pH, salinity, water content, and NH4-N; and decreased copy numbers of amoA-AOA and amoA-AOB genes but increased those of denitrifier nirS and nosZ genes. Copies of nirK increased in SS and AS but decreased in CS. There were more copies of amoA-AOB than of amoA-AOA and of nirS than of nirK or nosZ. Compared with CK, SS and AS decreased operational taxonomic units (OTUs) of amoA-AOB but increased those of nirS and nosZ, whereas CS decreased nirK OTUs but increased those of nosZ. The numbers of OTUs and amoA-AOB genes were greater than those of amoA-AOA. There were positive linear relations between PNR and amoA-AOA and amoA-AOB copies. Compared with CK, the Chao 1 index of amoA-AOA and amoA-AOB decreased in AS, that of nirK increased in CS and SS, but that of nirS and nosZ increased in all treatments. The Shannon index of amoA-AOB decreased but that of nirS increased in CS and SS, whereas the index of nirK decreased in all treatments. Saline and alkaline stress greatly affected the structure of nitrifier and denitrifier communities and decreased potential biomarkers of nirS-type; however, AS increased those of nirK- and nosZ-type, and SS decreased those of nosZ-type. Soil water content, pH, and salinity were important in shaping amoA-AOA and denitrifier communities, whereas soil water and pH were important to amoA-AOB communities. CONCLUSION These results indicate that the nitrifier and denitrifier communities respond to saline and alkaline stresses conditions. Communities of amoA-AOA and amoA-AOB contribute to nitrification in alluvial gray desert soil, and those of nirS are more important in denitrification than those of nirK or nosZ.
Collapse
Affiliation(s)
- Jiaxin Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Yongxue Zhou
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Huijuan Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Wei Min
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
11
|
Zhu H, Yu X, Xu Y, Yan B, Bañuelos G, Shutes B, Wen Z. Removal of chlorpyrifos and its hydrolytic metabolite in microcosm-scale constructed wetlands under soda saline-alkaline condition: Mass balance and intensification strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145956. [PMID: 33676222 DOI: 10.1016/j.scitotenv.2021.145956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CP) is a typical organophosphorus insecticide, which poses serious threats to the natural environment and human health. Strategies for the fast elimination of CP and its toxic hydrolytic metabolite 3,5,6-trichloro-2(1H)-pyridianol (TCP) in drainage water are urgently needed. The fate of CP and TCP in microcosm-scale subsurface batch constructed wetlands (SSBCWs) was quantified with different macrophyte species under soda saline-alkaline (SSA) condition and effective intensification strategies were developed. The macrophyte species Canna indica outperformed Phragmites australis and Typha orientalis for CP and TCP removal in SSBCWs. Mass balance calculation indicates the fate of CP in SSBCWs was residue in water (≤8%), alkaline hydrolysis (18.93-57.42%), microbial degradation (37.75-61.91%), substrate adsorption (~4-14%), and macrophyte uptake (≤3%). The addition of ferric-carbon (Fe-C) as a substrate amendment in SSBCWs increased the CP removal percentage by 35% and reduced the effluent TCP concentration by ~70% during Day 1-4 on average compared with the unintensified control. Fe-C addition simplified the microbial community diversity, while increasing the relative abundance of Proteobacteria which tolerates the microelectrolytic environment. A single application of liquid microbial agent improved CP removal percentage by 84% and decreased the effluent TCP concentration by two orders of magnitude during Day 1-4. The hydraulic retention time for thorough removal of TCP reduced from over 8 d to 4 d. Although only two dominant microbial genera (i.e., Sphingomonas and Pseudomonas) adapted to the environment with CP and SSA, they accelerated CP and TCP degradation via their own metabolism and co-metabolism with other indigenous microorganisms.
Collapse
Affiliation(s)
- Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Xiangfei Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Yingying Xu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Gary Bañuelos
- San Joaquin Valley Agricultural Science Centre, Agricultural Research Service, USDA, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Zhidan Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|
12
|
Pérez-Hernández V, Hernández-Guzmán M, Luna-Guido M, Navarro-Noya YE, Romero-Tepal EM, Dendooven L. Bacterial Communities in Alkaline Saline Soils Amended with Young Maize Plants or Its (Hemi)Cellulose Fraction. Microorganisms 2021; 9:1297. [PMID: 34203640 PMCID: PMC8232260 DOI: 10.3390/microorganisms9061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
We studied three soils of the former lake Texcoco with different electrolytic conductivity (1.9 dS m-1, 17.3 dS m-1, and 33.4 dS m-1) and pH (9.3, 10.4, and 10.3) amended with young maize plants and their neutral detergent fibre (NDF) fraction and aerobically incubated in the laboratory for 14 days while the soil bacterial community structure was monitored by means of 454-pyrosequencing of their 16S rRNA marker gene. We identified specific bacterial groups that showed adaptability to soil salinity, i.e., Prauseria in soil amended with young maize plants and Marinobacter in soil amended with NDF. An increase in soil salinity (17.3 dS m-1, 33.4 dS m-1) showed more bacterial genera enriched than soil with low salinity (1.9 dS m-1). Functional prediction showed that members of Alfa-, Gamma-, and Deltaproteobacteria, which are known to adapt to extreme conditions, such as salinity and low nutrient soil content, were involved in the lignocellulose degradation, e.g., Marinimicrobium and Pseudomonas as cellulose degraders, and Halomonas and Methylobacterium as lignin degraders. This research showed that the taxonomic annotation and their functional prediction both highlighted keystone bacterial groups with the ability to degrade complex C-compounds, such as lignin and (hemi)cellulose, in the extreme saline-alkaline soil of the former Lake of Texcoco.
Collapse
Affiliation(s)
- Valentín Pérez-Hernández
- Laboratory of Soil Ecology, Department of Chemistry and Biochemistry, Instituto Tecnológico de Tuxtla-Gutiérrez, Tecnológico Nacional de México, Tuxtla Gutiérrez, Chiapas 29050, Mexico;
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Mario Hernández-Guzmán
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Marco Luna-Guido
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Yendi E. Navarro-Noya
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala 90070, Mexico;
| | - Elda M. Romero-Tepal
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| |
Collapse
|
13
|
Lynn TM, Zhran M, Wang LF, Ge T, Yu SS, Kyaw EP, Latt ZK, Htwe TM. Effect of land use on soil properties, microbial abundance and diversity of four different crop lands in central Myanmar. 3 Biotech 2021; 11:154. [PMID: 33747704 PMCID: PMC7930169 DOI: 10.1007/s13205-021-02705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Changing land use systems impact on local edaphic factors and microbial abundance and diversity, however, the information on it in central Myanmar's soils is still lacking. Therefore, soils with four different land uses were analyzed; WAP (soil from perennial tree orchard), PNON (soil from crop rotation of peanut and onion), SESA (soil from mono-crop of sesame) and CHON (soil from mono-crop of onion for 3 years consecutively). Soil organic carbon (SOC), total nitrogen (TN), dissolved organic carbon (DOC), ammonium nitrogen (NH4 +-N) and pH showed the highest in PNON soil, which suggested crop rotation with high fertilizer input and irrigation had positive effect on the edaphic factors of soil. CHON soil showed the lowest in most soil properties and microbial abundance as a result of intensive use of fertilizer and irrigation, no crop rotation and no input of manures. Microbial community composition showed differences among tested soils and relative abundance of Chloroflexi was the highest in CHON soil whereas that of Basidiomycota was the highest in WAP soil. The abundances of bacteria and fungi were significantly affected by Olsen P, whereas the abundances of archaea were influenced by SOC. Our results suggested crop rotation and manure fertilization (PNON soil) enhanced soil properties and microbial abundance although long-time onion mono-crop (CHON soil) reduced soil fertility. This study can provide information to improve soil quality and sustainability of agro-ecosystems using appropriate agricultural management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02705-y.
Collapse
Affiliation(s)
- Tin Mar Lynn
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Mostafa Zhran
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
- Atomic Energy Authority, Nuclear Research Center, Soil & Water Research Department, Abou-Zaabl, 13759 Egypt
| | - Liu Fang Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Tida Ge
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - San San Yu
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Ei Phyu Kyaw
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Zaw Ko Latt
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Tin Mar Htwe
- Ministry of Education, Kyaing Tong Education College, Kyaing Tong, Shan State Myanmar
| |
Collapse
|
14
|
Zhang Z, Feng S, Luo J, Hao B, Diao F, Li X, Jia B, Wang L, Bao Z, Guo W. Evaluation of Microbial Assemblages in Various Saline-Alkaline Soils Driven by Soluble Salt Ion Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3390-3400. [PMID: 33703896 DOI: 10.1021/acs.jafc.1c00210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Land degraded by salinization and alkalization is widely distributed globally and involves a wide range of ecosystem types. However, the knowledge of the indigenous microbial assemblages and their roles in various saline-alkaline soils is limited. This study demonstrated microbial assemblages in various saline-alkaline soils from different regions of Inner Mongolia and revealed the key driving factors to influence microbiome. The correlation network analysis indicates the difference in adaptability of bacterial and fungal communities under stimulation by saline-alkaline stress: fungal community shows higher tolerance, stability, and resilience to various saline-alkaline soils than a bacterial community. The keystone bacteria and fungi that have potential adaptability to various saline-alkaline environments are further identified, and they may confer benefits in restoring saline-alkaline soils by their own effects or assisting plants. For salt-rich soils in different regions, the soluble salt ion components are the major determinant to drive microbial assemblages of different saline-alkaline soils, rather than salinity. Thus, these saline-alkaline soils are clustered into sulfated, chlorinated, and soda-type saline-alkaline soils. Multivariate analysis reveals unique, dominant, and common microbial taxa in three saline-alkaline soils. This result of the conceptual mode indicates that potential roles of unique and dominant microbial taxa on regulating saline-alkaline functions are more vital.
Collapse
Affiliation(s)
- Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shicheng Feng
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xue Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
15
|
Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. THE ISME JOURNAL 2020; 14:2967-2979. [PMID: 32709974 PMCID: PMC7784846 DOI: 10.1038/s41396-020-0724-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
Collapse
Affiliation(s)
- Anne Daebeler
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Hanna Koch
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela Steinfeder
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jasmin Schwarz
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
16
|
Huang P, Jiang X, Wu B, Sun J. Aspergillus jilinensis sp. nov. And its thermostable alkaline enzymes evaluation. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Yue Y, Shao T, Long X, He T, Gao X, Zhou Z, Liu Z, Rengel Z. Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138259. [PMID: 32247981 DOI: 10.1016/j.scitotenv.2020.138259] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 05/10/2023]
Abstract
The improvement and development of saline-alkali soils is currently a hot economic and scientific issue, and exploring the correlation between rhizosphere microorganisms of plants growing on saline-alkali soils and their salt tolerance has become the key point of related research. In our study, the community structure of microorganism and various properties of saline soils were characterized in which Jerusalem artichoke grown along a soil salinity gradient. A variety of basic soil properties were measured and the amplicon was performed as well as metagenomic sequencing on coastal saline soils using various techniques (such as RDA analysis and the assembly of genomes) to evaluate microbial functions. In addition, WGCNA (Weighted gene coexpression network analysis) method was used to identify the species related to salt stress and the sequence binning to assemble two enriched putative bacterial genomes. The research showed the cultivation of Jerusalem artichoke on saline soil changed soil physico-chemical and enzymatic properties; most of the rapidly changing as well as the long-term stable properties differed significantly between the rhizosphere and bulk soils. The amplicon and metagenomic sequencing revealed the function and structure of microorganisms varied between the rhizosphere and bulk soils, with greater microbial diversity in the rhizosphere. Catalase activity and the moisture content were the factors with the greatest impact on microorganisms. The putative genomes of two species of microorganisms (belong to Nitrospira and Gemmatimonas) were assembled, identified microbial species that were highly responsive to salt stress and that may play a key role in saline soil, stressed the important role of archaea in microbial communities in response to salt stress. The study provides a comprehensive understanding of the microbial community structure in the rhizosphere of Jerusalem artichoke to enable the improvement and economic development of saline land.
Collapse
Affiliation(s)
- Yang Yue
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei He
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiumei Gao
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaopu Liu
- College of Resources and Environmental Sciences/ Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
18
|
Isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb Pathog 2020; 143:104134. [PMID: 32169494 DOI: 10.1016/j.micpath.2020.104134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022]
Abstract
Soil actinomycetes are a highly common group of bacteria and frequently studied as having secondary metabolites in the potential of producing the most preferred antagonistic content. Considering the continuous variation in soil structure, there is a potential for encountering different organisms. Almost all of antibiotic contents are produced by these bacteria and their importance increase. In this study, eleven different actinomycetes strain were isolated from the rhizosphere of olive trees investigated for their plant growth-promoting (PGP) traits including ammonia production, indole-3-acetic acid production, phosphate solubilization, and siderophore production with antagonistic activities against a set of pathogenic bacteria, fungi, and yeasts. All actinomycetes were identified according to 16S rRNA regions were recognized in four different Streptomyces species but according to fatty acid analysis, there would be at least six different organisms. The potential for antagonistic and plant growth-promoting traits of olive tree rhizosphere actinomycetes were a promising tool for agricultural applications and clinical antibiotic resistance. Differentiation of organisms with the antagonism of pathogenic activities and PGP features could be a definitive method for future studies.
Collapse
|
19
|
Ginawi A, Wang L, Wang H, Yu B, Yunjun Y. Effects of environmental variables on abundance of ammonia-oxidizing communities in sediments of Luotian River, China. PeerJ 2020; 8:e8256. [PMID: 31934502 PMCID: PMC6951284 DOI: 10.7717/peerj.8256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ammonia-oxidizing communities play important functional roles in the nitrification. However, environmental stresses can significantly affect this process by controlling the abundant communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities. In this study, we examined the abundance variations of ammonia-oxidizing communities using quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP) in a typical subtropical river, Luotian County, South Dabie Mountains, China. Clone libraries were conducted to evaluate the community structure and abundance of AOA and AOB in sediments. Results showed that Nitrososphaera sp and Nitrosopumilus sp were the most dominant AOA. The abundance of the AOA and AOB amoA gene ranged from 5.28 × 108 gene copies (g-soil−1) to 2.23 × 108 gene copies (g-soil−1) and 5.45 × 108 gene copies (g-soil−1) to 3.30 × 107 gene copies (g-soil−1), respectively. Five environmental variables, namely, ORP, DO, NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−, Temp, and NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+ were played a major function in microbial communities of AOA and AOB in sediments. The T-RFLP profiles of AOA showed that 488 and 116 bp T-RFs were dominated. Overall, the results of this study showed that anthropogenic activities andenvironmental stress in rivers can alter the structure and function of microbes in their variable environment.
Collapse
Affiliation(s)
- Amjed Ginawi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Marine Science and Fisheries, Red Sea University, Port Sudan, Red Sea State, Sudan
| | - Lixiao Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huading Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingbing Yu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yunjun
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Microbial community composition of saltern soils from Ramnagar, West Bengal, India. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.egg.2019.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Alexander A, Singh VK, Mishra A, Jha B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One 2019; 14:e0222405. [PMID: 31513643 PMCID: PMC6742461 DOI: 10.1371/journal.pone.0222405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Arachis hypogea (Peanut) is one of the most important crops, and it is harvested and used for food and oil production. Being a legume crop, the fixation of atmospheric nitrogen is achieved through symbiotic association. Nitrogen deficiency is one of the major constrains for loss of crop productivity. The bacterium Stenotrophomonas maltophilia is known for interactions with plants. In this study, characteristics that promote plant growth were explored for their ability to enhance the growth of peanut plants under N2 deficit condition. In the presence of S. maltophilia, it was observed that fatty acid composition of peanut plants was influenced and increased contents of omega-7 monounsaturated fatty acid and omega-6 fatty acid (γ-Linolenic acid) were detected. Plant growth was increased in plants co-cultivated with PGPR (Plant Growth Promoting Rhizobacteria) under normal and stress (nitrogen deficient) condition. Electrolyte leakage, lipid peroxidation, and H2O2 content reduced in plants, co-cultivated with PGPR under normal (grown in a media supplemented with N2 source; C+) or stress (nitrogen deficient N+) conditions compared to the corresponding control plants (i.e. not co-cultivated with PGPR; C-or N-). The growth hormone auxin, osmoprotectants (proline, total soluble sugars and total amino acids), total phenolic-compounds and total flavonoid content were enhanced in plants co-cultivated with PGPR. Additionally, antioxidant and free radical scavenging (DPPH, hydroxyl and H2O2) activities were increased in plants that were treated with PGPR under both normal and N2 deficit condition. Overall, these results indicate that plants co-cultivated with PGPR, S. maltophilia, increase plant growth, antioxidant levels, scavenging, and stress tolerance under N2 deficit condition. The beneficial use of bacterium S. maltophilia could be explored further as an efficient PGPR for growing agricultural crops under N2 deficit conditions. However, a detail agronomic study would be prerequisite to confirm its commercial role.
Collapse
Affiliation(s)
- Ankita Alexander
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay Kumar Singh
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
| | - Avinash Mishra
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Bhavanath Jha
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
22
|
Bacterial community structure and functional diversity in subsurface seawater from the western coastal ecosystem of the Arabian Sea, India. Gene 2019; 701:55-64. [DOI: 10.1016/j.gene.2019.02.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
|
23
|
Li Y, Wu Z, Dong X, Jia Z, Sun Q. Variance in bacterial communities, potential bacterial carbon sequestration and nitrogen fixation between light and dark conditions under elevated CO 2 in mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:234-242. [PMID: 30366324 DOI: 10.1016/j.scitotenv.2018.10.253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 05/20/2023]
Abstract
This study is the first to show the response of bacterial communities with primary carbon and nitrogen fixers to elevated CO2 (eCO2) in light and dark conditions based on 6 months of culture growth. Carbon sequestration and nitrogen fixation were analyzed by 13C and 15N isotope labeling using 13C-labeled CO2 and 15N-labeled N2, followed by pyrosequencing and DNA-based stable isotope probing (SIP) to identify carbon fixers and nitrogen fixers. The results indicated that eCO2 decreased the Chao 1 richness, and the eCO2-light treatment exhibited the highest Shannon diversity. In addition, eCO2 (in either light or dark conditions) greatly increased the relative abundances of bacteria belonging to the classes Betaproteobacteria and Alphaproteobacteria. The 13C atom % in the mine tailings increased from 1.108 to 1.84 ± 0.11 under light conditions and 1.52 ± 0.17 under dark conditions after 6 months of culture growth. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) form I-coding gene (cbbL) copy numbers were 164.30-fold and 40.36-fold higher than RubisCO form II-coding gene (cbbM) copy numbers in the heavy fractions with a buoyant density of 1.7388 g·mL-1 relative to the buoyant density gradients of DNA fractions obtained under eCO2-light and eCO2-dark treatment, respectively. The Proteobacteria-like cbbL genes were dominant in the carbon fixers. In addition, the 15N atom % in the mine tailings increased from 0.366 to 0.454 ± 0.021 in light conditions and 0.437 ± 0.018 in dark conditions. Furthermore, uncultured nitrogen-fixing bacteria were the dominant nitrogen fixers in light conditions, and bacteria harboring the Bradyrhizobium-like nifH and Leptospirillum-like nifH genes were the dominant nitrogen fixers in dark conditions. These first data for a mine tailing ecosystem are inconsistent with those obtained for a range of other ecosystems, in which the effects of CO2 were limited to several nonphotoautotrophic communities and different nitrogen fixers.
Collapse
Affiliation(s)
- Yang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Zhaojun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Xingchen Dong
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
24
|
Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics. Appl Microbiol Biotechnol 2019; 103:2427-2440. [PMID: 30661109 DOI: 10.1007/s00253-018-09613-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.
Collapse
|
25
|
Genderjahn S, Alawi M, Mangelsdorf K, Horn F, Wagner D. Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments. Front Microbiol 2018; 9:2082. [PMID: 30294305 PMCID: PMC6158459 DOI: 10.3389/fmicb.2018.02082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
More than 41% of the Earth's land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter. Using Illumina 16S rRNA gene sequencing, this study provides new insights into the diversity of bacteria and archaea in semi-arid, saline, and low-carbon environments. Many of the observed taxa are halophilic and adapted to water-limiting conditions. The analysis reveals a high relative abundance of halophilic archaea (primarily Halobacteria), and the bacterial diversity is marked by an abundance of Gemmatimonadetes and spore-forming Firmicutes. In the deeper, anoxic layers, candidate division MSBL1, and acetogenic bacteria (Acetothermia) are abundant. Together, the taxonomic information and geochemical data suggest that acetogenesis could be a prevalent form of metabolism in the deep layers of a saline pan.
Collapse
Affiliation(s)
- Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.2 Organic Geochemistry, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.2 Organic Geochemistry, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany.,Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
26
|
Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Antonie van Leeuwenhoek 2018; 112:351-365. [PMID: 30232678 DOI: 10.1007/s10482-018-1164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Salinity is an important environmental factor influencing microbial community composition. To better understand this influence, we determined the bacterial communities present in 17 different sites of brackish sediment (underwater) and soil (surface) samples from the Camargue region (Rhône river delta) in southern France during the fall of 2013 and 2014 using pyrosequencing of the V3-V4 regions of the 16S rRNA genes amplified by PCR. This region is known for abundant flora and fauna and, though saline, 30% of rice consumed in France is grown here. We found that bacterial abundance in 1 g of soil or sediment, calculated by qPCR, was higher in sediments than in surface soil samples. Members belonging to the Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes phyla dominated the bacterial communities of sediment samples, while members belonging to the Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Firmicutes and Acidobacteria phyla dominated the bacterial communities of the soil samples. The most abundant bacterial genera present in the saline sediments and soils from the Camargue belonged mostly to halophilic and sulphate reducing bacteria, suggesting that the Camargue may be a valuable system to investigate saline, yet agriculturally productive, sediment and soil microbial ecosystem.
Collapse
|
27
|
Gómez-Villegas P, Vigara J, León R. Characterization of the Microbial Population Inhabiting a Solar Saltern Pond of the Odiel Marshlands (SW Spain). Mar Drugs 2018; 16:md16090332. [PMID: 30213145 PMCID: PMC6164061 DOI: 10.3390/md16090332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
The solar salterns located in the Odiel marshlands, in southwest Spain, are an excellent example of a hypersaline environment inhabited by microbial populations specialized in thriving under conditions of high salinity, which remains poorly explored. Traditional culture-dependent taxonomic studies have usually under-estimated the biodiversity in saline environments due to the difficulties that many of these species have to grow at laboratory conditions. Here we compare two molecular methods to profile the microbial population present in the Odiel saltern hypersaline water ponds (33% salinity). On the one hand, the construction and characterization of two clone PCR amplified-16S rRNA libraries, and on the other, a high throughput 16S rRNA sequencing approach based on the Illumina MiSeq platform. The results reveal that both methods are comparable for the estimation of major genera, although massive sequencing provides more information about the less abundant ones. The obtained data indicate that Salinibacter ruber is the most abundant genus, followed by the archaea genera, Halorubrum and Haloquadratum. However, more than 100 additional species can be detected by Next Generation Sequencing (NGS). In addition, a preliminary study to test the biotechnological applications of this microbial population, based on its ability to produce and excrete haloenzymes, is shown.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| |
Collapse
|
28
|
Pershina EV, Ivanova EA, Korvigo IO, Chirak EL, Sergaliev NH, Abakumov EV, Provorov NA, Andronov EE. Investigation of the core microbiome in main soil types from the East European plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1421-1430. [PMID: 29727966 DOI: 10.1016/j.scitotenv.2018.03.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 05/12/2023]
Abstract
The main goal of modern microbial ecology is to determine the key factors influencing the global diversity of microorganisms. Because of their complexity, soil communities are largely underexplored in this context. We studied soil genesis (combination of various soil-forming processes, specific to a particular soil type) that is driven by microbial activity. To investigate the interrelation between soil type and microbial diversity, we analyzed six soil types that are common in Russia, the Crimea, and Kazakhstan using 16S rDNA pyrosequencing. Soils of different types varied in the taxonomic composition of microbial communities. Their core microbiomes comprised 47 taxa within the orders Solirubrobacteriales and Hyphomicrobiaceae and the Gaiellaceae family. Two species from Bradyrhizobiaceae and Solirubrobactriaceae were present in all samples, whereas most other taxa were soil-type specific. Multiple resampling analysis revealed that two random soil samples from the same soil type shared more taxa than two samples from different types. The differences in community composition were mostly affected by the variation in pH values and exchangeable potassium content. The results show that data on the soil microbiome could be used for soil identification and clarification of their taxonomic position.
Collapse
Affiliation(s)
- Elizaveta V Pershina
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia; Department of Microbiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Ekaterina A Ivanova
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia; Laboratory of Biology and Biochemistry of Soils, V.V. Dokuchaev Soil Science Institute, Moscow, Russia
| | - Ilia O Korvigo
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Evgeny L Chirak
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Nurlan H Sergaliev
- West Kazakhstan Agrarian Technical University, Zhangir Khan, Uralsk, Kazakhstan
| | | | - Nikolai A Provorov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Evgeny E Andronov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia; Laboratory of Biology and Biochemistry of Soils, V.V. Dokuchaev Soil Science Institute, Moscow, Russia
| |
Collapse
|
29
|
Cheng Z, Chen Y, Zhang F. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:799-808. [PMID: 29494981 DOI: 10.1016/j.scitotenv.2018.02.259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Understanding the impact of reclamation of abandoned salinized farmland on soil bacterial community is of great importance for maintaining soil health and sustainability in arid regions. In this study, we used field sampling and 454 pyrosequencing methods to investigate the effects of 5-year reclamation treatments on soil properties, bacterial community composition and diversity. The four reclamation treatments are: abandoned salinized farmland (CK), cropland (CL), grassland (GL) and woodland (WL). We have found soil properties are significantly altered by abandoned salinized farmland reclamation. In particular, the lowest soil pH and electrical conductivity (EC) values are observed in CL (P<0.05). The dominant phyla are Firmicutes, Proteobacteria, Chloroflexi, Actinobacteria and Acidobacteria in all treatments. At the genus levels, the relative abundance of Bacillus, Lactococcus, Streptococcus and Enterococcus in CK, GL and WL is significantly higher than in CL. Bacterial diversity indices (i.e. ACE, Chao and Shannon) dramatically increase after the reclamation, with the highest in CL. Similar patterns of bacterial communities have been observed in CK, GL and WL soils, but significantly different from CL. Regression analyses indicate that the relative abundance of these phyla are significantly correlated with soil Fe, pH and EC. Results from non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicate that soil Fe content, EC and pH are the most important factors in shaping soil bacterial communities. Overall, results indicate that abandoned salinized farmland reclaimed for CL significantly decrease soil pH and EC, and increase soil bacterial community diversity. Soil Fe concentration, EC and pH are the dominant environmental factors affecting soil bacterial community composition. The important role of Fe concentration in shaping bacterial community composition is a new discovery among the similar studies.
Collapse
Affiliation(s)
- Zhibo Cheng
- Agricultural College, Shihezi University, Shihezi City, 832003, China; CSIRO Land and Water, Canberra, ACT, 2601, Australia
| | - Yun Chen
- CSIRO Land and Water, Canberra, ACT, 2601, Australia
| | - Fenghua Zhang
- Agricultural College, Shihezi University, Shihezi City, 832003, China.
| |
Collapse
|
30
|
Panosyan H, Hakobyan A, Birkeland NK, Trchounian A. Bacilli community of saline–alkaline soils from the Ararat Plain (Armenia) assessed by molecular and culture-based methods. Syst Appl Microbiol 2018; 41:232-240. [DOI: 10.1016/j.syapm.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022]
|
31
|
McAllister T, Dunière L, Drouin P, Xu S, Wang Y, Munns K, Zaheer R. Silage review: Using molecular approaches to define the microbial ecology of silage. J Dairy Sci 2018; 101:4060-4074. [DOI: 10.3168/jds.2017-13704] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
|
32
|
Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat. Front Microbiol 2017; 8:2420. [PMID: 29270160 PMCID: PMC5725476 DOI: 10.3389/fmicb.2017.02420] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/22/2017] [Indexed: 02/02/2023] Open
Abstract
Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising antibacterial activities. However, fractionation and further characterization of active compounds from S. variabilis RD-5 are needed for their optimum utilization toward antibacterial purposes.
Collapse
Affiliation(s)
- Riddhi N Dholakiya
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Raghawendra Kumar
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Kalpana H Mody
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| |
Collapse
|
33
|
Xie K, Deng Y, Zhang S, Zhang W, Liu J, Xie Y, Zhang X, Huang H. Prokaryotic Community Distribution along an Ecological Gradient of Salinity in Surface and Subsurface Saline Soils. Sci Rep 2017; 7:13332. [PMID: 29042583 PMCID: PMC5645410 DOI: 10.1038/s41598-017-13608-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/26/2017] [Indexed: 02/01/2023] Open
Abstract
Salinity effects on microbial communities in saline soils is still unclear, and little is known about subsurface soil microbial communities especially in saline or hypersaline ecosystems. Here we presented the survey of the prokaryotic community in saline soils along a salinity gradient (17.3-148.3 dS/m) in surface (0-10 cm) and subsurface (15-30 cm) saline soils of Qarhan Salt Lake, China. Moreover, we compared them with three paired nonsaline normal soils. Using the high-throughput sequencing technology and several statistical methods, we observed no significant community difference between surface soils and subsurface soils. For environmental factors, we found that TOC was the primary driver of the prokaryotic community distribution in surface saline soils, so was pH in subsurface saline soils. Salinity had more effects on the prokaryotic community in subsurface saline soils than in surface saline soils and played a less important role in saline soils than in saline waters or saline sediments. Our research provided references for the prokaryotic community distribution along a salinity gradient in both surface and subsurface saline soils of arid playa areas.
Collapse
Affiliation(s)
- Kehui Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Yong Deng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Shaocun Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Wenhao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jianrong Liu
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, 810007, People's Republic of China
| | - Yulong Xie
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, 810007, People's Republic of China
| | - Xuze Zhang
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, 810007, People's Republic of China.
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
34
|
Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils. Appl Environ Microbiol 2017; 83:AEM.00287-17. [PMID: 28576763 DOI: 10.1128/aem.00287-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants.IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered.
Collapse
|
35
|
Singh VK, Mishra A, Jha B. Anti-quorum Sensing and Anti-biofilm Activity of Delftia tsuruhatensis Extract by Attenuating the Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:337. [PMID: 28798903 PMCID: PMC5526841 DOI: 10.3389/fcimb.2017.00337] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along the coastal-saline area. The isolate SJ01 culture and bacterial crude extract showed QSI activity in the biosensor plate containing the reference strain Chromobacterium violaceum CV026. A decrease in the violacein production of approximately 98% was detected with the reference strain C. violaceum CV026. The bacterial extract (strain SJ01) exhibited anti-quorum sensing activity and inhibited the biofilm formation of clinical isolates wild-type Pseudomonas aeruginosa PAO1 and P. aeruginosa PAH. A non-toxic effect of the bacterial extract (SJ01) was detected on the cell growth of the reference strains as P. aeruginosa viable cells were present within the biofilm. It is hypothesized that the extract (SJ01) may change the topography of the biofilm and thus prevent bacterial adherence on the biofilm surface. The extract also inhibits the motility, virulence factors (pyocyanin and rhamnolipid) and activity (elastase and protease) in P. aeruginosa treated with SJ01 extract. The potential active compound present was identified as 1,2-benzenedicarboxylic acid, diisooctyl ester. Microarray and transcript expression analysis unveiled differential expression of quorum sensing regulatory genes. The key regulatory genes, LasI, LasR, RhlI, and RhlR were down-regulated in the P. aeruginosa analyzed by quantitative RT-PCR. A hypothetical model was generated of the transcriptional regulatory mechanism inferred in P. aeruginosa for quorum sensing, which will provide useful insight to develop preventive strategies against the biofilm formation. The potential active compound identified, 1,2-benzenedicarboxylic acid, diisooctyl ester, has the potential to be used as an anti-pathogenic drug for the treatment of biofilm-forming pathogenic bacteria. For that, a detailed study is needed to investigate the possible applications.
Collapse
Affiliation(s)
- Vijay K Singh
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| |
Collapse
|
36
|
Canfora L, Salvati L, Benedetti A, Francaviglia R. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:319. [PMID: 28589460 DOI: 10.1007/s10661-017-6040-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Little is known about composition, diversity, and abundance of microbial communities in environments affected by primary soil salinization, such as coastal lagoon systems. The main objective of this study was to investigate the impact of lagoon salinity, soil type, and land-use on inland soil and groundwater quality, and soil microbial community structure, diversity, and gene abundance, as evaluated by T-RFLP (terminal-restriction fragment length polymorphism) and qPCR (quantitative polymerase-chain-reaction). For this purpose, four sites oriented along a groundwater salinity gradient (Fogliano lagoon, central Italy) were studied under different recreational, grazing, and land-use conditions. Spatial variability in groundwater attributes was observed depending on salinity and soil electrical conductivity, both influenced by salt intrusion. A comparison of community abundance and number of phylotypes of bacteria, archaea, and fungi across varying soil depths pointed out marked differences across soils characterized by different soil type, land-use, and salinity. The latter significantly affected the microbial population richness and diversity and showed a dominance in terms of bacteria species. Our study provides a comprehensive overview of the spatial relationship between soil microbial community and soil degradation processes along a relatively underexplored environmental gradient in a coastal system, coming to the conclusion that salinity acts differently as a driver of microbial community structure in comparison with other saline environments.
Collapse
Affiliation(s)
- Loredana Canfora
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via della Navicella 2-4, 00184, Rome, Italy.
| | - Luca Salvati
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via della Navicella 2-4, 00184, Rome, Italy
| | - Anna Benedetti
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via della Navicella 2-4, 00184, Rome, Italy
| | - Rosa Francaviglia
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via della Navicella 2-4, 00184, Rome, Italy
| |
Collapse
|
37
|
Udayangani RMC, Dananjaya SHS, Nikapitiya C, Heo GJ, Lee J, De Zoysa M. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. FISH & SHELLFISH IMMUNOLOGY 2017; 66:173-184. [PMID: 28479399 DOI: 10.1016/j.fsi.2017.05.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 05/27/2023]
Abstract
In this study, we evaluated the effects of chitosan silver nanocomposites (CAgNCs) supplemented diet on gut microbial community, goblet cell density, gut morphometry and mRNA expression of immune related and mucin encoding genes in zebrafish. Zebrafish gut microbiota analysis results clearly showed the reduction of phylum Proteobacteria. However, they remained as the major bacterial group in gut with CAgNCs supplemented diet, while the abundance of phylum Fusobacteria and phylum Bacteroidetes were increased notably compared to the control diet fed fish. Total goblet cell density was significantly increased at 30 and 60 days in CAgNCs supplemented group (1.6-fold and 2.0-fold, respectively) compared to the control group indicating enhanced immune function in the gut. CAgNCs supplementation has also increased villi height significantly in the zebrafish mid gut at the end of 30 (95.5 ± 3.7 μm) and 60 days (144.40 ± 4.8 μm) compared to control diet fed fish at 30 (86.90 ± 3.7 μm) and 60 days (96.2 ± 4.8 μm). Furthermore, mRNA expression of immune related genes such as TNF-α (6.2-fold), IL-10 (5.0-fold), IL-12 (9.2-fold), IRF-1 (5.2-fold), Defbl1 (3-fold), Lyz (5.1-fold) and mucin encoding genes were significantly upregulated (above 2-fold) compared to that of control group. The current study revealed that CAgNCs supplemented diet engenders promising effects on fish gut immunity by enhancing beneficial microbial populations, goblet cell density, villi length, and transcriptional regulation of immune related and mucin encoding genes.
Collapse
Affiliation(s)
- R M C Udayangani
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Gang-Joon Heo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
38
|
Gibtan A, Park K, Woo M, Shin JK, Lee DW, Sohn JH, Song M, Roh SW, Lee SJ, Lee HS. Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts. Front Microbiol 2017; 8:799. [PMID: 28539917 PMCID: PMC5423978 DOI: 10.3389/fmicb.2017.00799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/19/2017] [Indexed: 11/21/2022] Open
Abstract
Salting is one of the oldest food preservation techniques. However, salt is also the source of living halophilic microorganisms that may affect human health. In order to determine the microbial communities of commercial salts, an investigation were done using amplicon sequencing approach in four commercial salts: Ethiopian Afdera salt (EAS), Ethiopian rock salt (ERS), Korean Jangpan salt (KJS), and Korean Topan salt (KTS). Using domain-specific primers, a region of the 16S rRNA gene was amplified and sequenced using a Roche 454 instrument. The results indicated that these microbial communities contained 48.22–61.4% Bacteria, 37.72–51.26% Archaea, 0.51–0.86% Eukarya, and 0.005–0.009% unclassified reads. Among bacteria, the communities in these salts were dominated by the phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. Of the archaea, 91.58% belonged to the class Halobacteria, whereas the remaining 7.58, 0.83, and 0.01% were Nanoarchaea, Methanobacteria, and Thermococci, respectively. This comparison of microbial diversity in salts from two countries showed the presence of many archaeal and bacterial genera that occurred in salt samples from one country but not the other. The bacterial genera Enterobacter and Halovibrio were found only in Korean and Ethiopian salts, respectively. This study indicated the occurrence and diversity of halophilic bacteria and archaea in commercial salts that could be important in the gastrointestinal tract after ingestion.
Collapse
Affiliation(s)
- Ashagrie Gibtan
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea
| | - Kyounghee Park
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea
| | - Mingyeong Woo
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea
| | - Jung-Kue Shin
- Department of Korean Cusine, Jeonju UniversityJeonju, South Korea
| | - Dong-Woo Lee
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Jae Hak Sohn
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea.,Research Center for Extremophiles and Marine Microbiology, Silla UniversityBusan, South Korea
| | - Minjung Song
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of KimchiGwangju, South Korea
| | - Sang-Jae Lee
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea.,Research Center for Extremophiles and Marine Microbiology, Silla UniversityBusan, South Korea
| | - Han-Seung Lee
- Major in Food Biotechnology, Division of Bioindustry, Silla UniversityBusan, South Korea.,Research Center for Extremophiles and Marine Microbiology, Silla UniversityBusan, South Korea
| |
Collapse
|
39
|
Duniere L, Xu S, Long J, Elekwachi C, Wang Y, Turkington K, Forster R, McAllister TA. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol 2017; 17:50. [PMID: 28253864 PMCID: PMC5335695 DOI: 10.1186/s12866-017-0947-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/07/2017] [Indexed: 02/01/2023] Open
Abstract
Background Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. Results All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Conclusion Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0947-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lysiane Duniere
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Shanwei Xu
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Jin Long
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Chijioke Elekwachi
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Kelly Turkington
- Agriculture and Agri-Food Canada (AAFC), Lacombe, T4L 1 W1, AB, Canada
| | - Robert Forster
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada.
| |
Collapse
|
40
|
Lynn TM, Liu Q, Hu Y, Yuan H, Wu X, Khai AA, Wu J, Ge T. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil. Arch Microbiol 2017; 199:711-721. [PMID: 28233042 DOI: 10.1007/s00203-017-1347-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 11/30/2022]
Abstract
Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected archaeal community composition. Pearson correlation analysis showed that bacterial and archaeal 16S rRNA gene abundance had the highest correlation with clay content (r > 0.905, P < 0.01), followed by total-P, CEC, pH, and silt (%). These results will lead to more comprehensive understanding of how land use affects microbial distribution.
Collapse
Affiliation(s)
- Tin Mar Lynn
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,Changsha Observation and Research Station for Agricultural environment, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qiong Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,Changsha Observation and Research Station for Agricultural environment, Chinese Academy of Sciences, Changsha, 410125, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,Changsha Observation and Research Station for Agricultural environment, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,Changsha Observation and Research Station for Agricultural environment, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xiaohong Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Aye Aye Khai
- Biotechnology Research Department, Ministry of Education, Kyaukse, 100301, Myanmar
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,Changsha Observation and Research Station for Agricultural environment, Chinese Academy of Sciences, Changsha, 410125, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,Changsha Observation and Research Station for Agricultural environment, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
41
|
Ni N, Wang F, Song Y, Shi R, Jia M, Bian Y, Jiang X. Effects of cationic surfactant on the bioaccumulation of polycyclic aromatic hydrocarbons in rice and the soil microbial community structure. RSC Adv 2017. [DOI: 10.1039/c7ra07124h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cetyltrimethylammonium bromide reduced the PAH bioaccumulation in rice from paddy soils and benefit the soil ecology in the short term.
Collapse
Affiliation(s)
- Ni Ni
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Renyong Shi
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Mingyun Jia
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| |
Collapse
|
42
|
Mohammadipanah F, Wink J. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity. Front Microbiol 2016; 6:1541. [PMID: 26858692 PMCID: PMC4729944 DOI: 10.3389/fmicb.2015.01541] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022] Open
Abstract
The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems, along with the recent work trend on Iranian arid soils, are reported.
Collapse
Affiliation(s)
- Fatemeh Mohammadipanah
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of TehranTehran, Iran
- University of Tehran Microorganisms Collection, Microbial Technology and Products Research Center, University of TehranTehran, Iran
| | - Joachim Wink
- Microbial Strain Collection, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| |
Collapse
|
43
|
Zamora MA, Pinzón A, Zambrano MM, Restrepo S, Broadbelt LJ, Moura M, Husserl Orjuela J, González Barrios AF. A comparison between functional frequency and metabolic flows framed by biogeochemical cycles in metagenomes: The case of “El Coquito” hot spring located at Colombia's national Nevados park. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Sall SN, Ndour NYB, Diédhiou-Sall S, Dick R, Chotte JL. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 161:30-37. [PMID: 26143083 DOI: 10.1016/j.jenvman.2015.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions.
Collapse
Affiliation(s)
- Saïdou Nourou Sall
- Université Gaston Berger, UFR des Sciences Agronomiques de l'Aquaculture et des Technologies Alimentaires, B.P. 234 Saint-Louis, Senegal.
| | - Ndèye Yacine Badiane Ndour
- ISRA Laboratoire National de Recherche sur les Productions Végétales, Centre ISRA/IRD Bel-Air, B.P. 2312 Dakar, Senegal
| | - Siré Diédhiou-Sall
- Université Assane Seck, Département Agroforesterie, B.P. 523 Néma, Ziguinchor, Senegal
| | - Richard Dick
- School of Environment and Natural Resources, 2021 Coffey Road, Ohio State University, Columbus, OH 43210, USA
| | - Jean-Luc Chotte
- UMR 210 Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols) INRA-IRD-SupAgro, Place Viala (Bt. 12), F-34060 Montpellier Cedex 1, France
| |
Collapse
|
45
|
Zepeda Mendoza ML, Sicheritz-Pontén T, Gilbert MTP. Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Brief Bioinform 2015; 16:745-58. [PMID: 25673291 PMCID: PMC4570204 DOI: 10.1093/bib/bbv001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
DNA-based taxonomic and functional profiling is widely used for the characterization of organismal communities across a rapidly increasing array of research areas that include the role of microbiomes in health and disease, biomonitoring, and estimation of both microbial and metazoan species richness. Two principal approaches are currently used to assign taxonomy to DNA sequences: DNA metabarcoding and metagenomics. When initially developed, each of these approaches mandated their own particular methods for data analysis; however, with the development of high-throughput sequencing (HTS) techniques they have begun to share many aspects in data set generation and processing. In this review we aim to define the current characteristics, goals and boundaries of each field, and describe the different software used for their analysis. We argue that an appreciation of the potential and limitations of each method can help underscore the improvements required by each field so as to better exploit the richness of current HTS-based data sets.
Collapse
|
46
|
A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 2015; 19:973-87. [PMID: 26186976 DOI: 10.1007/s00792-015-0772-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Here we present the first report on the taxonomic diversity of the microbial communities of the saline desert of the Great Rann of Kutch, Gujarat, India, using a metagenomic approach. Seven samples, differing in salinity levels and covering different seasons, were analysed to investigate the dynamics of microbial communities in relation to salinity and season. Metagenomic data generated using whole metagenome sequencing revealed that despite its very high salinity (4.11-30.79 %), the saline desert's microbiota had a rich microbial diversity that included all major phyla. Notably, 67 archaeal genera, representing more than 60 % of all known archaeal genera, were present in this ecosystem. A strong positive correlation (0.85) was observed between the presence of the extremely halophilic bacterium Salinibacter and salinity level. Taxonomic and functional comparisons of the saline desert metagenome with those of other publicly available metagenomes (i.e. sea, hypersaline lagoon, solar saltern, brine, hot desert) was carried out. The microbial community of the Kutch was found to be unique yet more similar to the sea biomes followed by hypersaline lagoon.
Collapse
|
47
|
Keshri J, Yousuf B, Mishra A, Jha B. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea. Microbiol Res 2015; 175:57-66. [PMID: 25862282 DOI: 10.1016/j.micres.2015.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
The Gulf of Cambay is a trumpet-shaped inlet of the Arabian Sea, located along the west coast of India and confronts a high tidal range with strong water currents. The region belongs to a semi-arid zone and saline alkaline intertidal soils are considered biologically extreme. The selected four soil types (S1-S4) were affected by salinity, alkalinity and sodicity. Soil salinity ranged from 20 to 126 dS/m, soil pH 8.6-10.0 with high sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP). Abundance of the key functional genes like cbbL, nifH, amoA and apsA involved in biogeochemical cycling were targeted using qPCR, which varied from (2.36 ± 0.03) × 10(4) to (2.87 ± 0.26) × 10(8), (1.18 ± 0.28) × 10(6) to (1.01 ± 0.26) × 10(9), (1.41 ± 0.21) × 10(6) to (1.29 ± 0.05) × 10(8) and (8.47 ± 0.23) × 10(4) to (1.73 ± 0.01) × 10(6) per gram dry weight, respectively. The microbial community structure revealed that soils S1 and S3 were dominated by phylum Firmicutes whereas S4 and S2 showed an abundance of Proteobacterial clones. These soils also represented Bacteroidetes, Chloroflexi, Actinobacteria, Planctomycetes and Acidobacteria clones. Molecular phylogeny showed a significant variation in the bacterial community distribution among the intertidal soil types. A high number of novel taxonomic units were observed which makes the intertidal zone a unique reservoir of unidentified bacterial taxa that may be explored further.
Collapse
Affiliation(s)
- Jitendra Keshri
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 362 002, Gujarat, India.
| | - Basit Yousuf
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 362 002, Gujarat, India.
| | - Avinash Mishra
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 362 002, Gujarat, India.
| | - Bhavanath Jha
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 362 002, Gujarat, India.
| |
Collapse
|
48
|
Li P, Jiang D, Li B, Dai X, Wang Y, Jiang Z, Wang Y. Comparative survey of bacterial and archaeal communities in high arsenic shallow aquifers using 454 pyrosequencing and traditional methods. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1878-1889. [PMID: 25142348 DOI: 10.1007/s10646-014-1316-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
A survey of bacterial and archaeal community structure was carried out in 10 shallow tube wells in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia by 16S rRNA gene based two-step nested PCR-DGGE, clone libraries and 454 pyrosequencing. 12 bacterial and 18 archaeal DGGE bands and 26-136 species-level OTUs were detected for all the samples. 299 bacterial and 283 archaeal 16S rRNA gene clones for two typical samples were identified by phylogenetic analysis. Most of the results from these different methods were consistent with the dominant bacterial populations. But the proportions of the microbial populations were mostly different and the bacterial communities in most of these samples from pyrosequencing were both more abundant and more diverse than those from the traditional methods. Even after quality filtering, pyrosequencing revealed some populations including Alishewanella, Sulfuricurvum, Arthrobacter, Sporosarcina and Algoriphagus which were not detected with traditional techniques. The most dominant bacterial populations in these samples identified as some arsenic, iron, nitrogen and sulfur reducing and oxidizing related populations including Acinetobacter, Pseudomonas, Flavobacterium, Brevundimonas, Massilia, Planococcus, and Aquabacterium and archaeal communities Nitrosophaera and Methanosaeta. Acinetobacter and Pseudomonas were distinctly abundant in most of these samples. Methanogens were found as the dominant archeal population with three methods. From the results of traditional methods, the dominant archaeal populations apparently changed from phylum Thaumarchaeota to Euryarchaeota with the arsenic concentrations increasing. But this structure dynamic change was not revealed with pyrosequencing. Our results imply that an integrated approach combining the traditional methods and next generation sequencing approaches to characterize the microbial communities in high arsenic groundwater is recommended.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Yousuf B, Kumar R, Mishra A, Jha B. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach. FEMS Microbiol Lett 2014; 360:117-25. [PMID: 25196726 DOI: 10.1111/1574-6968.12593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/27/2014] [Accepted: 08/31/2014] [Indexed: 11/30/2022] Open
Abstract
Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| | | | | | | |
Collapse
|
50
|
Yousuf B, Kumar R, Mishra A, Jha B. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities. PLoS One 2014; 9:e107025. [PMID: 25225969 PMCID: PMC4167329 DOI: 10.1371/journal.pone.0107025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Raghawendra Kumar
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Avinash Mishra
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| |
Collapse
|