1
|
Robertson JM, Garza EA, Stubbusch AKM, Dupont CL, Hwa T, Held NA. Marine bacteria Alteromonas spp. require UDP-glucose-4-epimerase for aggregation and production of sticky exopolymer. mBio 2024; 15:e0003824. [PMID: 38958440 PMCID: PMC11325263 DOI: 10.1128/mbio.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
The physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate, Alteromonas sp. ALT199 strain 4B03, and the related type-strain A. macleodii 27126 both form large (>500 μm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole-genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out of galE (ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respective galE mutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also form aggregates with chitin particles, but their galE mutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but their galE mutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains of Alteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement for galE is evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes. IMPORTANCE Heterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2 by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2 sequestration via the formation of marine snow. We find that two members of the prevalent particle-associated genus Alteromonas can form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement for galE in aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.
Collapse
Affiliation(s)
- Jacob M Robertson
- Division of Biological Sciences, UC San Diego, La Jolla, California, USA
| | - Erin A Garza
- Microbial and Environmental Genomics, J Craig Venter Institute, La Jolla, California, USA
| | - Astrid K M Stubbusch
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Earth Sciences, Geological Institute, ETH Zurich, Zurich, Switzerland
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J Craig Venter Institute, La Jolla, California, USA
| | - Terence Hwa
- Division of Biological Sciences, UC San Diego, La Jolla, California, USA
- Department of Physics, UC San Diego, La Jolla, California, USA
| | - Noelle A Held
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Lee HJ, Lee SM, Choi M, Kwon JH, Lee SW. A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant. THE PLANT PATHOLOGY JOURNAL 2023; 39:417-429. [PMID: 37817490 PMCID: PMC10580051 DOI: 10.5423/ppj.oa.06.2023.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogen-containing heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPS-defective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.
Collapse
Affiliation(s)
- Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Minseo Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Joo Hwan Kwon
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
3
|
Li Y, Wang Y, Liu J. Genomic Insights Into the Interspecific Diversity and Evolution of Mobiluncus, a Pathogen Associated With Bacterial Vaginosis. Front Microbiol 2022; 13:939406. [PMID: 35865929 PMCID: PMC9294530 DOI: 10.3389/fmicb.2022.939406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal infection and has been associated with increased risk for a wide array of health issues. BV is linked with a variety of heterogeneous pathogenic anaerobic bacteria, among which Mobiluncus is strongly associated with BV diagnosis. However, their genetic features, pathogenicity, interspecific diversity, and evolutionary characters have not been illustrated at genomic level. The current study performed phylogenomic and comparative genomic analyses of Mobiluncus. Phylogenomic analyses revealed remarkable phylogenetic distinctions among different species. Compared with M. curtisii, M. mulieris had a larger genome and pangenome size with more insertion sequences but less CRISPR-Cas systems. In addition, these two species were diverse in profile of virulence factors, but harbored similar antibiotic resistance genes. Statistically different functional genome profiles between strains from the two species were determined, as well as correlations of some functional genes/pathways with putative pathogenicity. We also showed that high levels of horizontal gene transfer might be an important strategy for species diversification and pathogenicity. Collectively, this study provides the first genome sequence level description of Mobiluncus, and may shed light on its virulence/pathogenicity, functional diversification, and evolutionary dynamics. Our study could facilitate the further investigations of this important pathogen, and might improve the future treatment of BV.
Collapse
|
4
|
Sinha D, Sun X, Khare M, Drancourt M, Raoult D, Fournier PE. Pangenome analysis and virulence profiling of Streptococcus intermedius. BMC Genomics 2021; 22:522. [PMID: 34238216 PMCID: PMC8266483 DOI: 10.1186/s12864-021-07829-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background Streptococcus intermedius, a member of the S. anginosus group, is a commensal bacterium present in the normal microbiota of human mucosal surfaces of the oral, gastrointestinal, and urogenital tracts. However, it has been associated with various infections such as liver and brain abscesses, bacteremia, osteo-articular infections, and endocarditis. Since 2005, high throughput genome sequencing methods enabled understanding the genetic landscape and diversity of bacteria as well as their pathogenic role. Here, in order to determine whether specific virulence genes could be related to specific clinical manifestations, we compared the genomes from 27 S. intermedius strains isolated from patients with various types of infections, including 13 that were sequenced in our institute and 14 available in GenBank. Results We estimated the theoretical pangenome size to be of 4,020 genes, including 1,355 core genes, 1,054 strain-specific genes and 1,611 accessory genes shared by 2 or more strains. The pangenome analysis demonstrated that the genomic diversity of S. intermedius represents an “open” pangenome model. We identified a core virulome of 70 genes and 78 unique virulence markers. The phylogenetic clusters based upon core-genome sequences and SNPs were independent from disease types and sample sources. However, using Principal Component analysis based on presence/ absence of virulence genes, we identified the sda histidine kinase, adhesion protein LAP and capsular polysaccharide biosynthesis protein cps4E as being associated to brain abscess or broncho-pulmonary infection. In contrast, liver and abdominal abscess were associated to presence of the fibronectin binding protein fbp54 and capsular polysaccharide biosynthesis protein cap8D and cpsB. Conclusions Based on the virulence gene content of 27 S. intermedius strains causing various diseases, we identified putative disease-specific genetic profiles discriminating those causing brain abscess or broncho-pulmonary infection from those causing liver and abdominal abscess. These results provide an insight into S. intermedius pathogenesis and highlights putative targets in a diagnostic perspective.
Collapse
Affiliation(s)
- Dhiraj Sinha
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Xifeng Sun
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mudra Khare
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
5
|
Santos RG, Hurtado R, Gomes LGR, Profeta R, Rifici C, Attili AR, Spier SJ, Mazzullo G, Morais-Rodrigues F, Gomide ACP, Brenig B, Gala-García A, Cuteri V, Castro TLDP, Ghosh P, Seyffert N, Azevedo V. Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene 2020; 741:144566. [PMID: 32171826 DOI: 10.1016/j.gene.2020.144566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
Bacteria of the genusGlutamicibacterare considered ubiquitous because they can be found in soil, water and air. They have already been isolated from different habitats, including different types of soil, clinical samples, cheese and plants. Glutamicibacter creatinolyticus is a Gram-positive bacterium important to various biotechnological processes, however, as a pathogen it is associated to urinary tract infections and bacteremia. Recently,Glutamicibacter creatinolyticusLGCM 259 was isolated from a mare, which displayed several diffuse subcutaneous nodules with heavy vascularization. In this study, sequencing, genomic analysis ofG. creatinolyticusLGCM 259 and comparative analyseswere performedamong 4representatives of different members of genusfromdifferent habitats, available in the NCBI database. The LGCM 259 strain's genome carries important factors of bacterial virulence that are essential in cell viability, virulence, and pathogenicity. Genomic islands were predicted for 4 members of genusGlutamicibacter,showing ahigh number of GEIs,which may reflect a high interspecific diversity and a possible adaptive mechanism responsible for the survival of each species in its specific niche. Furthermore,G. creatinolyticusLGCM 259 sharessyntenicregions, albeit with a considerable loss of genes, in relation to the other species. In addition,G. creatinolyticusLGCM 259 presentsresistancegenes to 6 differentclasses ofantibiotics and heavy metals, such as: copper, arsenic, chromium and cobalt-zinc-cadmium.Comparative genomicsanalysescouldcontribute to the identification of mobile genetic elements particular to the speciesG. creatinolyticuscompared to other members of genus. The presence of specific regions inG. creatinolyticuscould be indicative of their rolesin host adaptation, virulence, and the characterization ofastrain that affects animals.
Collapse
Affiliation(s)
- Roselane Gonçalves Santos
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Raquel Hurtado
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Rodrigues Gomes
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Profeta
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudia Rifici
- Department of Veterinary Science, University of Messina (Italy), Polo Universitario, dell'Annunziata, 98168 Messina, ME, Italy
| | - Anna Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino (Italy), Via Circonvallazione 93/95, 62024 Matelica, MC, Italy.
| | - Sharon J Spier
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA, USA.
| | - Giuseppe Mazzullo
- Department of Veterinary Science, University of Messina (Italy), Polo Universitario, dell'Annunziata, 98168 Messina, ME, Italy.
| | - Francielly Morais-Rodrigues
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Cybelle Pinto Gomide
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, Göttingen, Germany.
| | - Alfonso Gala-García
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Institute of Biological Sciences, Federal University of Para, PA, Brazil
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino (Italy), Via Circonvallazione 93/95, 62024 Matelica, MC, Italy.
| | - Thiago Luiz de Paula Castro
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Núbia Seyffert
- Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - Vasco Azevedo
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Liao CT, Chiang YC, Hsiao YM. Functional characterization and proteomic analysis of lolA in Xanthomonas campestris pv. campestris. BMC Microbiol 2019; 19:20. [PMID: 30665348 PMCID: PMC6341742 DOI: 10.1186/s12866-019-1387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background The gram-negative Xanthomonas campestris pv. campestris is the pathogenic bacterium that causes black rot disease in crucifers. The virulence determinants of this bacterium include extracellular enzymes, exopolysaccharides, and biofilm formation. Here, one transposon mutant of X. campestris pv. campestris strain 17 that affects biofilm formation was isolated, and subsequent analyses led to the identification of the lolA gene, which encodes an outer membrane lipoprotein chaperone. Results The lolA mutant exhibited significant reductions in bacterial attachment, extracellular enzyme production, virulence, and tolerance in the presence of myriad membrane-perturbing agents. These phenotypic changes of the mutant could be complemented to the wild-type level through the intact lolA gene. Proteomic analysis revealed that 109 proteins were differentially expressed after lolA mutation. These differentially expressed proteins were categorized in various functional groups and were mainly associated with the membrane component, were involved in transport, and contained receptor activity. Through reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis, deletion of lolA was determined to have caused significantly reduced expression of genes that encode the major extracellular enzymes, the biofilm-related proteins, and the virulence-related proteins. The RT-qPCR analysis also indicated that the expression of several genes that encode putative outer membrane lipoproteins and TonB-dependent receptors was reduced after lolA mutation. Conclusions This is the first report to define the lolA gene as a virulence factor and to contribute to the functional understanding of, and provide new information concerning, the role of lolA in Xanthomonas. Furthermore, the results of this study provide and extend new insights into the function of lolA in bacteria. Electronic supplementary material The online version of this article (10.1186/s12866-019-1387-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ying-Chuan Chiang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
7
|
Polese V, de Paula Soares C, da Silva PRA, Simões-Araújo JL, Baldani JI, Vidal MS. Selection and validation of reference genes for RT-qPCR indicates that juice of sugarcane varieties modulate the expression of C metabolism genes in the endophytic diazotrophic Herbaspirillum rubrisubalbicans strain HCC103. Antonie Van Leeuwenhoek 2017; 110:1555-1568. [DOI: 10.1007/s10482-017-0906-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
|
8
|
Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen R, Shrestha BK, Ham JH. Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae. MICROBIOLOGY-SGM 2017; 163:266-279. [PMID: 28036242 DOI: 10.1099/mic.0.000419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia glumae is an emerging plant-pathogenic bacterium that causes disease in rice in several of the major rice-producing areas throughout the world. In the southern United States, B. glumae is the major causal agent of bacterial panicle blight of rice and has caused severe yield losses in recent decades. Despite its importance, few management options are available for diseases caused by B. glumae, and knowledge of how this pathogen causes disease is limited. In an effort to identify novel factors that contribute to the pathogenicity of B. glumae, random mutagenesis using the miniTn5gus transposon was performed on two strains of B. glumae. Resultant mutants were screened in the laboratory for altered phenotypes in various known or putative virulence factors, including toxoflavin, lipase and extracellular polysaccharides. Mutants that exhibited altered phenotypes compared to their parent strain were selected and subsequently characterized using a PCR-based method to identify the approximate location of the transposon insertion. Altogether, approximately 20 000 random mutants were screened and 51 different genes were identified as having potential involvement in the production of toxoflavin, lipase and/or extracellular polysaccharide. Especially, two regulatory genes, ntpR and tepR, encoding a LysR-type transcriptional regulator and a σ54-dependent response regulator, respectively, were discovered in this study as new negative regulatory factors for the production of toxoflavin, the major phytotoxin synthesized by B. glumae and involved in bacterial pathogenesis.
Collapse
Affiliation(s)
- Rebecca A Melanson
- Present address: Mississippi State University, Central Mississippi Research and Extension Center, 1320 Seven Springs Road, Raymond, MS 39154, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Surendra Osti
- Present address: Department of Agricultural Economics, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Tiago P Lelis
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Hari S Karki
- Present address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Ruoxi Chen
- Present address: Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Bishnu K Shrestha
- Present address: Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
9
|
Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12-2 T. Appl Microbiol Biotechnol 2017; 101:2967-2978. [PMID: 28097405 DOI: 10.1007/s00253-017-8114-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Mesorhizobium alhagi, a legume-symbiont soil bacterium that forms nodules with the desert plant Alhagi sparsifolia, can produce large amounts of exopolysaccharide (EPS) using mannitol as carbon source. However, the role of EPS in M. alhagi CCNWXJ12-2T, an EPS-producing rhizobium with high salt resistance, remains uncharacterized. Here, we studied the role of EPS in M. alhagi CCNWXJ12-2T using EPS-deficient mutants constructed by transposon mutagenesis. The insertion sites of six EPS-deficient mutants were analyzed using single primer PCR, and two putative gene clusters were found to be involved in EPS synthesis. EPS was extracted and quantified, and EPS production in the EPS-deficient mutants was decreased by approximately 25 times compared with the wild-type strain. Phenotypic analysis revealed reduced salt resistance, antioxidant capacity, and cell motility of the mutants compared with the wild-type strain. In conclusion, our results indicate that EPS can influence cellular Na+ content and antioxidant enzyme activity, as well as play an important role in the stress adaption and cell motility of M. alhagi CCNWXJ12-2T.
Collapse
|
10
|
Liao CT, Liu YF, Chiang YC, Lo HH, Du SC, Hsu PC, Hsiao YM. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol 2016; 167:299-312. [PMID: 26804425 DOI: 10.1016/j.resmic.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Gram-negative phytopathogenic Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in crucifers. The ability of Xcc to incite this disease in plants depends on a number of factors, including exopolysaccharides, extracellular enzymes and biofilm production. In this study, transposon mutagenesis led to identification of the prc gene, encoding a tail-specific protease, which plays a role in Xcc pathogenesis. Mutation of prc resulted in decreased virulence, extracellular protease production and bacterial attachment, with restoration to the levels of wild type by the intact prc gene. From subsequent quantitative RT-PCR analysis and reporter assay, the major extracellular protease gene prt1, biofilm-related gene galE encoding a UDP-galactose 4-epimerase and two putative adhesin genes (yapH and XC_4290 encoding autotransporter-like protein H and hemagglutinin, respectively) were found to be reduced in the prc mutant. Results of transcriptome profiling of Xcc wild type and prc mutant by RNA sequencing (RNA-Seq) showed that mutation of prc in Xcc leads to alteration in the transcriptional levels (more than twofold) of 91 genes. These differentially expressed genes were associated with a wide range of biological functions such as carbohydrate transport and metabolism, cell wall/membrane biogenesis, posttranslational modification, protein turnover and chaperones, inorganic ion transport and metabolism and signal transduction mechanisms. The results of this study facilitate the functional understanding of and provide new information about the regulatory role of prc.
Collapse
Affiliation(s)
- Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Ying-Chuan Chiang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Shin-Chiao Du
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Pei-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| |
Collapse
|
11
|
Plant Small Heat Shock Proteins and Its Interactions with Biotic Stress. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
13
|
Ouellet MM, Leduc A, Nadeau C, Barbeau J, Charette SJ. Pseudomonas aeruginosa isolates from dental unit waterlines can be divided in two distinct groups, including one displaying phenotypes similar to isolates from cystic fibrosis patients. Front Microbiol 2015; 5:802. [PMID: 25653647 PMCID: PMC4301018 DOI: 10.3389/fmicb.2014.00802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa displays broad genetic diversity, giving it an astonishing capacity to adapt to a variety of environments and to infect a wide range of hosts. While many P. aeruginosa isolates of various origins have been analyzed, isolates from cystic fibrosis (CF) patients have received the most attention. Less is known about the genetic and phenotypic diversity of P. aeruginosa isolates that colonize other environments where flourishing biofilms can be found. In the present study, 29 P. aeruginosa isolates from dental unit waterlines and CF patients were collected and their genetic and phenotypes profiles were compared to determine whether environmental and clinical isolates are related. The isolates were first classified using the random amplified polymorphic DNA method. This made it possible to distribute the isolates into one clinical cluster and two environmental clusters. The isolates in the environmental cluster that were genetically closer to the clinical cluster also displayed phenotypes similar to the clinical isolates. The isolates from the second environmental cluster displayed opposite phenotypes, particularly an increased capacity to form biofilms. The isolates in this cluster were also the only ones harboring genes that encoded specific epimerases involved in the synthesis of lipopolysaccharides, which could explain their increased ability to form biofilms. In conclusion, the isolates from the dental unit waterlines could be distributed into two clusters, with some of the environmental isolates resembled the clinical isolates.
Collapse
Affiliation(s)
- Myriam M. Ouellet
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQué, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, UniversitéLaval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, UniversitéLaval, Québec, QC, Canada
| | - Annie Leduc
- Faculté de Médecine Dentaire, Université de MontréalMontréal, QC, Canada
| | - Christine Nadeau
- Faculté de Médecine Dentaire, UniversitéLaval, Québec, QC, Canada
| | - Jean Barbeau
- Faculté de Médecine Dentaire, Université de MontréalMontréal, QC, Canada
| | - Steve J. Charette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQué, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, UniversitéLaval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, UniversitéLaval, Québec, QC, Canada
| |
Collapse
|