1
|
Chouhan V, Thalor S, Charishma K, Javed M, Kumar S, Sharma J, Munjal V, Kumar A. Microbiome succession on the pomegranate phylloplane during bacterial blight dysbiosis: Functional implications for blight suppression. Microbiol Res 2025; 293:128050. [PMID: 39817928 DOI: 10.1016/j.micres.2025.128050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy. We observed shifts in microbial diversity, with Xanthomonas typically released through stomata as the blight progressed from water-soaked early lesion to advanced necrotic lesion. The Shannon diversity index peaked at 2.6 in early necrotic stages but dropped to 2.1 in advanced blight. Proteobacteria and Firmicutes were the dominant phyla, with significant compositional changes between disease stages. Bacillus species were prevalent throughout, peaking in both early and severe lesions. Pantoea and Curtobacterium increased during severe blight, while Exiguobacterium thrived on the abaxial surface. A core microbiome, including Pantoea, Enterobacter, and Pseudomonas, remained consistent across stages. Antibacterial screening of 116 bacterial candidates, dominated by Pantoea (32), Bacillus (18), and Pseudomonas (11), revealed multipronged activities against X. axonopodis pv. punicae. Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-Slp-6 suppressed the pathogen through secreted metabolites, while Pantoea dispersa Pg-Slp-6, Pseudomonas oryzihabitans Pg-Slp-82, and Pantoea dispersa Pg-slp-117 exhibited volatile-mediated suppression. Among these, Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-slp-6 showed 55 % and 42 % blight suppression, respectively, highlighting their potential as biocontrol agents.
Collapse
Affiliation(s)
- Vinod Chouhan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Thalor
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K Charishma
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mohammed Javed
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyotsana Sharma
- ICAR-National Research Center for Pomegranate, Solapur, Maharashtra, India
| | - Vibuthi Munjal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
2
|
da Silva Bandeira ON, da Silva Bandeira R, de Souza CRB. Systematic review and meta-analysis of the potential effects of endophytic bacteria Klebsiella on plant growth promotion and biocontrol of pathogens. World J Microbiol Biotechnol 2025; 41:89. [PMID: 40021542 DOI: 10.1007/s11274-025-04300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Klebsiella is a bacterial genus widely recognized in the medical field but with underexplored potential in agriculture. This study employed a systematic review and meta-analysis to investigate scientific articles on plant growth promotion effects associated with endophytic bacteria Klebsiella species. A total of 39 relevant studies, published between 2012 and 2024, were identified based on strict inclusion and exclusion criteria. The analysis revealed that Klebsiella sp., K. pneumoniae, and K. variicola are cosmopolitan species that have functional versatility in phytohormone production, nutrient solubilization, and pathogen control in agricultural systems in both tropical and temperate zones. The data showed a significant correlation between the use of Klebsiella sp. and plant growth, highlighting the positive impact of these species in controlling aggressive pathogens. These findings underscore the potential of Klebsiella as a biotechnological tool for sustainable agricultural practices, enhancing plant growth and reducing the reliance on chemical inputs. The study further emphasizes the need for future research to deepen genomic characterization and expand the agricultural applications of these bacteria.
Collapse
|
3
|
Dakshayini E, Muthuramu S, Maragatham S, Anandham R, Balachandar D. Rhizosphere Microbiome and Functioning in Alternative Rice Cropping Methods: A Critical Review for Rice Sustainability. Front Biosci (Elite Ed) 2025; 17:25926. [PMID: 40150981 DOI: 10.31083/fbe25926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Rice is a staple crop worldwide, providing sustenance to over half the global population. The rice microbiome represents the complex interaction between rice plants and their surrounding microbial communities. Plants host various microorganisms in different regions, including the rhizosphere, surface tissues, such as the rhizoplane and phylloplane, and inner tissues (endosphere). These microorganisms engage in diverse interactions with the plants, ranging from beneficial to neutral or harmful. This rhizosphere microbiome plays a crucial role in improving the resilience and sustainability of rice cultivation. The relationship between the rice plants and their microbial communities is imperative for developing farming practices that maximize yields while minimizing biotic and abiotic stresses. Our examination underscores the diverse functions of rhizosphere microbiota within rice farming systems, particularly in nutrient uptake, drought resilience, pest and disease management, and tolerance to salinity. This review describes the different types of rice cultivation methods farmers use worldwide to improve the efficiency of rice production in various agro-ecological contexts. Moreover, the review details how alternate cropping methods influence the rhizosphere functioning of rice and techniques for managing the microbiome function for rice sustainability.
Collapse
Affiliation(s)
- Ejamani Dakshayini
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| | | | | | - Rangasamy Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| |
Collapse
|
4
|
Ullah H, Hassan SHA, Yang Q, Salama ES, Liu P, Li X. Dynamic interaction of antibiotic resistance between plant microbiome and organic fertilizers: sources, dissemination, and health risks. World J Microbiol Biotechnol 2024; 41:4. [PMID: 39690351 DOI: 10.1007/s11274-024-04214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Antibiotic resistance is a global health problem driven by the irrational use of antibiotics in different areas (such as agriculture, animal farming, and human healthcare). Sub-lethal concentrations of antibiotic residues impose selective pressure on environmental, plant-associated, and human microbiome leading to the emergence of antibiotic-resistant bacteria (ARB). This review summarizes all sources of antibiotic resistance in agricultural soils (including manure, sewage sludge, wastewater, hospitals/pharmaceutical industry, and bioinoculants). The factors (such as the physicochemical properties of soil, root exudates, concentration of antibiotic exposure, and heavy metals) that facilitate the transmission of resistance in plant microbiomes are discussed. Potential solutions for effective measures and control of antibiotic resistance in the environment are also hypothesized. Manure exhibits the highest antibiotics load, followed by hospital and municipal WW. Chlortetracycline, tetracycline, and sulfadiazine have the highest concentrations in the manure. Antibiotic resistance from organic fertilizers is transmitted to the plant microbiome via horizontal gene transfer (HGT). Plant microbiomes serve as transmission routes of ARB and ARGS to humans. The ingestion of ARB leads to human health risks (such as ineffectiveness of medication, increased morbidity, and mortality).
Collapse
Affiliation(s)
- Habib Ullah
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Sedky H A Hassan
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Muscat, Oman
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
5
|
Niaz K, Rauf M, Arif M, Hamayun M, Gul H, Hashem A, Abd_Allah EF, Wu QS. Drought-tolerant fungal microbes, Aspergillus oryzae and Aspergillus fumigatus, elevate physiohormonal and antioxidant responses of maize under drought stress. Front Microbiol 2024; 15:1488639. [PMID: 39669778 PMCID: PMC11634847 DOI: 10.3389/fmicb.2024.1488639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Temporary and extended drought stress accelerates phytohormones and reactive oxygen species (ROS) in plants, however, the fate of the plants under stress is mostly determined by the metabolic and molecular reprogramming, which can be modulated by the application of habitat-adapted fungi that triggers resistance to stress upon symbiotic association. Methods The present research exhibited the exploitation of the newly isolated, drought habitat-adapted fungal endophytic consortium of SAB (Aspergillus oryzae) and CBW (Aspergillus fumigatus), on maize under drought stress. SAB and CBW primarily hosted the root tissues of Conyza bonariensis L., which have not been reported earlier, and sufficiently produced growth-promoting metabolites and antioxidants. Results SAB and CBW adeptly inhabited the maize roots. They promoted biomass, primary metabolites, osmolytes (protein, sugar, lipids, proline, phenolics, flavonoids), and IAA production while reducing tannins, ABA, and H2O2 contents and increasing antioxidant enzyme activities. In addition, the enhanced adventitious root development at the root/stem interface, and elongated main root development optimum stomatal activity of SAB- and CBW-inoculated maize plants were observed under drought stress. SAB and CBW modulated the expression of the ZmBSK1, ZmAPX, and ZmCAT1 genes in the maize shoot and root tissues under drought stress vs. control, signifying an essential regulatory function for SAB/CBW-induced drought stress tolerance via phytohormonal signaling pathway leading to the antioxidant upregulation. Discussion These findings imply that the exogenous administration of the SAB/CBW consortium might be a rather efficient strategy that contributes to optimizing the physio-hormonal attributes and antioxidant potential to alleviate the drought stress in maize.
Collapse
Affiliation(s)
- Kiran Niaz
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Zhang J, Jia F, Song K, Wang F, Li J, Huang L, Qu T. Enterobacter ludwigii b3 in the rhizosphere of wild rice assists cultivated rice in mitigating drought stress by direct and indirect methods. Biochem Biophys Res Commun 2024; 735:150489. [PMID: 39096883 DOI: 10.1016/j.bbrc.2024.150489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Drought is the primary factor limiting rice production in ecosystems. Wild rice rhizosphere bacteria possess the potential to assist in the stress resistance of cultivated rice. This study examines the impact of wild rice rhizosphere bacteria on cultivated rice under drought conditions. From the rhizosphere soil of wild rice, 20 potential drought-resistant strains were isolated. Subsequent to the screening, the most effective strain b3, was identified as Enterobacter ludwigii. Pot experiments were conducted on the cultivated Changbai 9 rice. It was found that inoculation with the E. ludwigii b3 strain improved the drought resistance of the rice, promotion of rice growth (shoot height increased by 13.47 %), increased chlorophyll content (chlorophyll a, chlorophyll b and carotenoid increased by 168.74 %, 130.68 % and 87.89 %), improved antioxidant system (content of glutathione was increased by 60.35 %), and accumulation of osmotic regulation substances (soluble sugar and soluble protein increased by 70.36 % and 142.03 %). Furthermore, E. ludwigii b3 had a transformative effect on the rhizosphere bacterial community of cultivated rice, increasing its abundance and diversity while simultaneously recruiting beneficial rhizosphere bacteria, resulting in a more complex community. Additionally, E. ludwigii b3 acted directly and indirectly on cultivated rice through its metabolites (organic acids, amino acids, flavonoids and other substances), which helped alleviate drought stress. In conclusion, the E. ludwigii b3 shows promise as a drought-resistant strain and has the potential to improve the growth and productivity of cultivated rice in arid agricultural ecosystems. This study represents the first investigation of E. ludwigii in the rhizosphere of wild rice under drought conditions on cultivated rice.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junchen Li
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Leye Huang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongbao Qu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Qadir M, Iqbal A, Hussain A, Hussain A, Shah F, Yun BW, Mun BG. Exploring Plant-Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. Int J Mol Sci 2024; 25:12198. [PMID: 39596264 PMCID: PMC11594960 DOI: 10.3390/ijms252212198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
This review explores the intricate relationship between plants and bacterial endophytes, revealing their multifaceted roles in promoting plant growth, resilience, and defense mechanisms. By selectively shaping their microbiome, plants harness diverse endophytic bacterial strains to enhance nutrient absorption, regulate hormones, mitigate damage, and contribute to overall plant health. The review underscores the potential of bacterial endophytes in self-sustaining agricultural systems, offering solutions to reduce reliance on fertilizers and pesticides. Additionally, the review highlights the importance of endophytes in enhancing plant tolerance to various environmental stresses, such as drought, salinity, extreme temperatures, and heavy metal toxicity. The review emphasizes the significance of understanding and harnessing the mutualistic relationship between plants and endophytes for maximizing agricultural yields and promoting sustainable farming practices.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental Biochemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
8
|
Zhang J, Song K, Jin F, Jia F, Liang J, Wang F, Zhang J. A novel strategy of artificially regulating plant rhizosphere microbial community to promote plant tolerance to cold stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175184. [PMID: 39089386 DOI: 10.1016/j.scitotenv.2024.175184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fengyuan Jin
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Dhar SK, Kaur J, Singh GB, Chauhan A, Tamang J, Lakhara N, Asyakina L, Atuchin V, Mudgal G, Abdi G. Novel Bacillus and Prestia isolates from Dwarf century plant enhance crop yield and salinity tolerance. Sci Rep 2024; 14:14645. [PMID: 38918548 PMCID: PMC11199671 DOI: 10.1038/s41598-024-65632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.
Collapse
Affiliation(s)
- Sanjoy Kumar Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Gajendra Bahadur Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeewan Tamang
- University Institute of Agricultural Sciences, Chandigarh University, Mohali, Punjab, 140413, India
- Khaniyabas Rural Municipality, Province 3, Dhading, Bagmati Zone, 45100, Nepal
| | - Nikita Lakhara
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Lyudmila Asyakina
- Laboratory for Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Krasnaya Street, 6, Kemerovo, Russia, 650000
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, Russia, 630090
- Research and Development Department, Kemerovo State University, Kemerovo, Russia, 650000
- Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, Russia, 630073
- R&D Center "Advanced Electronic Technologies", Tomsk State University, Tomsk, Russia, 634034
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
- Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
10
|
Castro-Severyn J, Fortt J, Sierralta M, Alegria P, Donoso G, Choque A, Avellaneda AM, Pardo-Esté C, Saavedra CP, Stoll A, Remonsellez F. Rhizospheric bacteria from the Atacama Desert hyper-arid core: cultured community dynamics and plant growth promotion. Microbiol Spectr 2024; 12:e0005624. [PMID: 38687070 PMCID: PMC11237387 DOI: 10.1128/spectrum.00056-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata. Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 (Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant's survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications.IMPORTANCEThe current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render "unsuitable" soils farmable.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Jonathan Fortt
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Mariela Sierralta
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Paola Alegria
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Gabriel Donoso
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Alessandra Choque
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexandra Stoll
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas CEAZA, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, La Serena, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
11
|
Agunbiade VF, Fadiji AE, Agbodjato NA, Babalola OO. Isolation and Characterization of Plant-Growth-Promoting, Drought-Tolerant Rhizobacteria for Improved Maize Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1298. [PMID: 38794369 PMCID: PMC11125291 DOI: 10.3390/plants13101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/26/2024]
Abstract
Drought is one of the main abiotic factors affecting global agricultural productivity. However, the application of bioinocula containing plant-growth-promoting rhizobacteria (PGPR) has been seen as a potential environmentally friendly technology for increasing plants' resistance to water stress. In this study, rhizobacteria strains were isolated from maize (Zea mays L.) and subjected to drought tolerance tests at varying concentrations using polyethylene glycol (PEG)-8000 and screened for plant-growth-promoting activities. From this study, 11 bacterial isolates were characterized and identified molecularly, which include Bacillus licheniformis A5-1, Aeromonas caviae A1-2, A. veronii C7_8, B. cereus B8-3, P. endophytica A10-11, B. halotolerans A9-10, B. licheniformis B9-5, B. simplex B15-6, Priestia flexa B12-4, Priestia flexa C6-7, and Priestia aryabhattai C1-9. All isolates were positive for indole-3-acetic acid (IAA), siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, ammonia production, nitrogen fixation, and phosphate solubilization, but negative for hydrogen cyanide production. Aeromonas strains A1-2 and C7_8, showing the highest drought tolerance of 0.71 and 0.77, respectively, were selected for bioinoculation, singularly and combined. An increase in the above- and below-ground biomass of the maize plants at 100, 50, and 25% water-holding capacity (WHC) was recorded. Bacterial inoculants, which showed an increase in the aerial biomass of plants subjected to moderate water deficiency by up to 89%, suggested that they can be suitable candidates to enhance drought tolerance and nutrient acquisition and mitigate the impacts of water stress on plants.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
12
|
Goyal T, Mukherjee A, Chouhan GK, Gaurav AK, Kumar D, Abeysinghe S, Verma JP. Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling. Heliyon 2024; 10:e29692. [PMID: 38660266 PMCID: PMC11040113 DOI: 10.1016/j.heliyon.2024.e29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Rice is a major dietary element for about two billion people worldwide and it faces numerous biotic and abiotic stress for its cultivation. Rice blast disease caused by Magnaporthe oryzae reduce up to 30 % rice yield. Overuse of synthetic chemicals raises concerns about health and environment; so, there is an urgent need to explore innovative sustainable strategies for crop productivity. The main aim of this study is to explore the impact of bacterial volatiles (BVCs) on seedling growth and defense mechanisms of rice under in-vitro condition. On the basis of plant growth promoting properties, six bacterial strains were selected out of ninety-one isolated strains for this study; Pantoea dispersa BHUJPVR01, Enterobacter cloacae BHUJPVR02, Enterobacter sp. BHUJPVR12, Priestia aryabhattai BHUJPVR13, Pseudomonas sp. BHUJPVWRO5 and Staphylococcus sp. BHUJPVWLE7. Through the emission of bacterial volatiles compounds (BVCs), Enterobacter sp., P. dispersa and P. aryabhattai significantly reduces the growth of rice blast fungus Magnaporthe oryzae by 69.20 %, 66.15 % and 62.31 % respectively. Treatment of rice seedlings with BVCs exhibited significant enhancement in defence enzyme levels, including guaiacol peroxidase, polyphenol oxidase, total polyphenols, and total flavonoids by a maximum of up to 24 %, 48 %, 116 % and 80 %, respectively. Furthermore, BVCs effectively promote shoot height, root height, and root counts of rice. All BVCs treated plant showed a significant increase in shoot height. P. dispersa treated plants showed the highest increase of 60 % shoot and 110 % root length, respectively. Root counts increased up to 30% in plants treated with E. cloacae and Staphylococcus sp. The BVCs can be used as a sustainable approach for enhancing plant growth attributes, productivity and defence mechanism of rice plant under biotic and abiotic stresses.
Collapse
Affiliation(s)
- Tushar Goyal
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gowardhan Kumar Chouhan
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
13
|
Nourashrafeddin SM, Ramandi A, Seifi A. Rhizobacteria isolated from xerophyte Haloxylon ammodendron manipulate root system architecture and enhance drought and salt tolerance in Arabidopsis thaliana. Int Microbiol 2024; 27:337-347. [PMID: 37392309 DOI: 10.1007/s10123-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50-100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.
Collapse
Affiliation(s)
| | - Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
14
|
Dinango VN, Dhouib H, Wakam LN, Kouokap LK, Youmbi DY, Eke P, Driss F, Tounsi S, Boyom FF, Frikha-Gargouri O. Bacterial endophytes inhabiting desert plants provide protection against seed rot caused by Fusarium verticillioides and promote growth in maize. PEST MANAGEMENT SCIENCE 2024; 80:1206-1218. [PMID: 37886813 DOI: 10.1002/ps.7850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Fusarium maize ear and root rot disease caused by Fusarium verticillioides has become one of the most serious fungal diseases associated with maize production. Due to their abilities to promote plant development and manage diseases, bacterial endophytes provide a more promising approach for treating this vascular disease. RESULTS This work was undertaken for the selection and identification of promising isolates as plant growth promoters and biocontrol agents against F. verticillioides in maize agroecosystems. A screening procedure consisting of in vitro and in situ tests was applied to 27 endophytic strains originating from desert plants: Euphorbia antiquorum, Calotropis procera, and Alcasia albida. In vitro studies indicated that the bacteria exhibited variable results in biocontrol, endophytism, and plant growth-promoting traits. In addition, in situ plant growth promotion and biocontrol experiments allowed the identification of the most promising bacterial endophytes. In vitro and in situ comparative study results indicated a low correlation. Our data revealed that in situ screening must be used as the method of selection of biocontrol agents against Fusarium ear and root rot disease. Based on in situ results, seven potent strains were selected and identified as Bacillus subtilis, Bacillus velezensis, Bacillus tequilensis, Stenotrophomonas maltophilia, and Klebsiella pneumoniae. CONCLUSION The results of this study showed that the selected strains seem to be promising candidates to be exploited as biofertilizers and biocontrol agents against Fusarium maize ear and root rot disease. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vanessa Nya Dinango
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Hanen Dhouib
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Louise Nana Wakam
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
- Soil Microbiology Laboratory, Biotechnology Centre, Yaoundé, Cameroon
| | - Lanvin Kepngop Kouokap
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Diane Yimta Youmbi
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Pierre Eke
- College of Technology, Department of Crop Production Technology, University of Bamenda, Bambili, Cameroon
| | - Fatma Driss
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
15
|
Krishnappa C, Balamurugan A, Velmurugan S, Kumar S, Sampathrajan V, Kundu A, Javed M, Chouhan V, Ganesan P, Kumar A. Rice foliar-adapted Pantoea species: Promising microbial biostimulants enhancing rice resilience against foliar pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Microb Pathog 2024; 186:106445. [PMID: 37956936 DOI: 10.1016/j.micpath.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Foliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth. Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, OsACO4, OsICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols. In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates. In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.
Collapse
Affiliation(s)
- Charishma Krishnappa
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanmugam Velmurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanu Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vellaikumar Sampathrajan
- Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, 625104, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vinod Chouhan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
16
|
Javed M, Reddy B, Sheoran N, Ganesan P, Kumar A. Unraveling the transcriptional network regulated by miRNAs in blast-resistant and blast-susceptible rice genotypes during Magnaporthe oryzae interaction. Gene 2023; 886:147718. [PMID: 37595851 DOI: 10.1016/j.gene.2023.147718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The plant pathogen Magnaporthe oryzae poses a significant threat to global food security, and its management through the cultivation of resistant varieties and crop husbandry practices, including fungicidal sprays, has proven to be inadequate. To address this issue, we conducted small-RNA sequencing to identify the roles of miRNAs and their target genes in both resistant (PB1637) and susceptible (PB1) rice genotypes. We confirmed the expression of differentially expressed miRNAs using stem-loop qRT-PCR analysis and correlated them with rice patho-phenotypic and physio-biochemical responses. Our findings revealed several noteworthy differences between the resistant and susceptible genotypes. The resistant genotype exhibited reduced levels of total chlorophyll and carotenoids compared to the susceptible genotype. However, it showed increased levels of total protein, callose, H2O2, antioxidants, flavonoids, and total polyphenols. Additionally, among the defense-associated enzymes, guaiacol peroxidase and polyphenol oxidase responses were higher in the susceptible genotypes. In our comparative analysis, we identified 27 up-regulated and 43 down-regulated miRNAs in the resistant genotype, while the susceptible genotype exhibited 44 up-regulated and 62 down-regulated miRNAs. Furthermore, we discovered eight up-regulated and five down-regulated miRNAs shared between the resistant and susceptible genotypes. Notably, we also identified six novel miRNAs in the resistant genotype and eight novel miRNAs in the susceptible genotype. These novel miRNAs, namely Chr8_26996, Chr12_40110, and Chr12_41899, were found to negatively correlate with the expression of predicted target genes, including Cyt-P450 monooxygenase, serine carboxypeptidase, and zinc finger A20 domain-containing stress-associated protein, respectively. The results of our study on miRNA and transcriptional responses provide valuable insights for the development of future rice lines that are resistant to blast disease. By understanding the roles of specific miRNAs and their target genes in conferring resistance, we can enhance breeding strategies and improve crop management practices to ensure global food security.
Collapse
Affiliation(s)
- Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India.
| |
Collapse
|
17
|
Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, Karwa S, Prakash G, Subramanian S, Gogoi R, Eke P, Kumar A. Enhancing defense against rice blast disease: Unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb Pathog 2023; 184:106326. [PMID: 37648175 DOI: 10.1016/j.micpath.2023.106326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Rice remains the primary staple for more than half of the world's population, yet its cultivation faces numerous challenges, including both biotic and abiotic stresses. One significant obstacle is the prevalence of rice blast disease, which substantially diminishes productivity and increases cultivation costs due to frequent fungicide applications. Consequently, the presence of fungicide residues in rice raises concerns about compliance with international maximum residue limits (MRLs). While host resistance has proven effective, it often remains vulnerable to new variants of the Magnaporthe oryzae pathogen. Therefore, there is a critical need to explore innovative management strategies that can complement or enhance existing methods. An unexplored avenue involves harnessing endophytic bacterial communities. To this end, the present study investigates the potential of eleven endophytic Bacillus spp. in suppressing Pyricularia oryzae, promoting plant growth, and eliciting a defense response through phyllobacterization. The results indicate that the secreted metabolome and volatilome of seven tested isolates demonstrate inhibitory effects against P.oryzae, ranging from a minimum of 40% to a maximum of 70%. Bacillus siamensis L34, B. amyloliquefaciens RA37, B. velezensis L12, and B. subtilis B18 produce antifungal antibiotics targeting P.oryzae. Additionally, B. subtilis S4 and B. subtilis S6 emerge as excellent inducers of systemic resistance against blast disease, as evidenced by elevated activity of biochemical defense enzymes such as peroxidase, polyphenol oxidase, and total phenol content. However, a balance between primary metabolic activity (e.g., chlorophyll content, chlorophyll fluorescence, and photosynthetic rate) and defense activity is observed. Furthermore, specific endophytic Bacillus spp. significantly stimulates defense-related genes, including OsPAD4, OsFMO1, and OsEDS1. These findings underscore the multifaceted potential of endophytic Bacillus in managing blast disease through antibiosis and induced systemic resistance. In conclusion, this study highlights the promising role of endophytic Bacillus spp. as a viable option for blast disease management. Their ability to inhibit the pathogen and induce systemic resistance makes them a valuable addition to the existing strategies. However, it is crucial to consider the trade-off between primary metabolic activity and defense response when implementing these bacteria-based approaches.
Collapse
Affiliation(s)
| | | | | | - Shanu Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Mohammed Javed
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sourabh Karwa
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Robin Gogoi
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pierre Eke
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
18
|
Feng Y, Zhang Y, Shah OU, Luo K, Chen Y. Isolation and Identification of Endophytic Bacteria Bacillus sp. ME9 That Exhibits Biocontrol Activity against Xanthomonas phaseoli pv. manihotis. BIOLOGY 2023; 12:1231. [PMID: 37759630 PMCID: PMC10525512 DOI: 10.3390/biology12091231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the bacterial blight of cassava has caused substantial economic losses to the Chinese cassava industry. Chemical control methods have become the primary approach to control this disease; however, their widespread usage and harmful residues have raised concerns about environmental pollution. In order to avoid this, it is urgent to seek a green ecological method to prevent and control it. Biological control through the utilization of microorganisms not only effectively inhibits the disease, but also gives consideration to environmental friendliness. Therefore, investigating an endophytic biological control method for cassava bacterial blight is of great importance. In this study, cassava leaf tissues were used as test specimens in order to isolate endophytic bacteria by using dilution and separation methods. Bacillus ME9, derived from cassava endophytic bacteria, exhibits good antagonism against a diverse range of pathogens, including Xpm11. Its genome consists of a series of genes encoding antibacterial lipopeptides, which may be directly related to its antibacterial capabilities. Furthermore, inoculation resulted in a substantial change in the diversity of the endophytic bacterial community, characterized by improved diversity, and displayed an obvious inhibition of pathogenic bacterial growth, demonstrating successful colonization within plants. The results laid a foundation and provided theoretical support for the development and utilization of cassava endophytic bacterial diversity and endogenous disease control strategies.
Collapse
Affiliation(s)
- Yating Feng
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China (O.U.S.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yijie Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China (O.U.S.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Obaid Ullah Shah
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China (O.U.S.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China
| | - Kai Luo
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China (O.U.S.)
| | - Yinhua Chen
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China (O.U.S.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
19
|
Bakhshi S, Eshghi S, Banihashemi Z. Application of candidate endophytic fungi isolated from extreme desert adapted trees to mitigate the adverse effects of drought stress on maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107961. [PMID: 37639983 DOI: 10.1016/j.plaphy.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The survival of plants under adverse conditions in desert habitats is related to microbial interactions, which can be an innovative strategy for reducing the effects of drought stress in colonized plants. In this study, two endophytic fungi, Trichoderma harzianum, and Fusarium solani, were recovered from the roots of trees in desert regions of Iran. A greenhouse experiment with two fungal agents (control, T. harzianum, F. solani, and T. harzianum + F. solani) and drought (100, 75, and 50% water-holding capacity) was performed on maize (Zea mays L.). Findings indicate that increasing drought levels negatively affect maize plant growth and physiological traits. However, the symbiotic relationship between fungal endophytes and maize roots increased fresh and dry biomass, root/shoot ratio, leaf area, relative water content, and membrane stability index compared with their control counterparts. Maize plants inoculated with endophytic fungi had 52.07, 40, 33.03, and 55.62% higher total phenolic, proline and soluble sugar concentrations, respectively than uninoculated controls. Photosynthetic parameters, including chlorophyll and carotenoid pigments, chlorophyll fluorescence, and gas exchange, were improved in the endophyte-treated plants. However, with increasing drought stress, maize plants colonized with endophytes, electrolyte leakage, and sub-stomatal CO2 concentrations decreased by 28.93% and 47.62%, respectively, compared to endophyte-free plants. When plants were exposed to higher levels of drought stress, endophytes were more effective in improving most parameters, and inoculation of maize seedlings with a combination of endophytes isolated from plants in harsh regions was more effective in increasing their tolerance to drought stress than individual inoculation of each fungus.
Collapse
Affiliation(s)
- Somayeh Bakhshi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Zia Banihashemi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
20
|
Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, Lyudmila A, Perveen K, Khan F, Bukhari NA, Mudgal G, Gururani MA. Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3081. [PMID: 37687328 PMCID: PMC10490547 DOI: 10.3390/plants12173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Euphorbiaceae is a highly diverse family of plants ranging from trees to ground-dwelling minute plants. Many of these have multi-faceted attributes like ornamental, medicinal, industrial, and food-relevant values. In addition, they have been regarded as keystone resources for investigating plant-specific resilience mechanisms that grant them the dexterity to withstand harsh climates. In the present study, we isolated two co-culturable bacterial endophytes, EP1-AS and EP1-BM, from the stem internodal segments of the prostate spurge, Euphorbia prostrata, a plant member of the succulent family Euphorbiaceae. We characterized them using morphological, biochemical, and molecular techniques which revealed them as novel strains of Enterobacteriaceae, Lelliotia amnigena. Both the isolates significantly were qualified during the assaying of their plant growth promotion potentials. BM formed fast-growing swarms while AS showed growth as rounded colonies over nutrient agar. We validated the PGP effects of AS and BM isolates through in vitro and ex vitro seed-priming treatments with wheat and tomato, both of which resulted in significantly enhanced seed germination and morphometric and physiological plant growth profiles. In extended field trials, both AS and BM could remarkably also exhibit productive yields in wheat grain and tomato fruit harvests. This is probably the first-ever study in the context of PGPB endophytes in Euphorbia prostrata. We discuss our results in the context of promising agribiotechnology translations of the endophyte community associated with the otherwise neglected ground-dwelling spurges of Euphorbiaceae.
Collapse
Affiliation(s)
- Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Sanjoy Kumar Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Jeewan Tamang
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Gajendra Bahadur Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Asyakina Lyudmila
- Laboratory for Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Krasnaya Street, 6, 65000 Kemerovo, Russia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Faheema Khan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Najat A. Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Mayank Anand Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
21
|
Pang Z, Mao X, Zhou S, Yu S, Liu G, Lu C, Wan J, Hu L, Xu P. Microbiota-mediated nitrogen fixation and microhabitat homeostasis in aerial root-mucilage. MICROBIOME 2023; 11:85. [PMID: 37085934 PMCID: PMC10120241 DOI: 10.1186/s40168-023-01525-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants sustain intimate relationships with diverse microbes. It is well-recognized that these plant-associated microbiota shape individual performance and fitness of host plants, but much remains to be explored regarding how they exert their function and maintain their homeostasis. RESULTS Here, using pink lady (Heterotis rotundifolia) as a study plant, we investigated the phenomenon of microbiota-mediated nitrogen fixation and elucidated how this process is steadily maintained in the root mucilage microhabitat. Metabolite and microbiota profiling showed that the aerial root mucilage is enriched in carbohydrates and diazotrophic bacteria. Nitrogen isotope-labeling experiments, 15N natural abundance, and gene expression analysis indicated that the aerial root-mucilage microbiota could fix atmospheric nitrogen to support plant growth. While the aerial root mucilage is a hotspot of nutrients, we did not observe high abundance of other environmental and pathogenic microbes inside. We further identified a fungus isolate in mucilage that has shown broad-spectrum antimicrobial activities, but solely allows the growth of diazotrophic bacteria. This "friendly" fungus may be the key driver to maintain nitrogen fixation function in the mucilage microhabitat. Video Abstract CONCLUSION: The discovery of new biological function and mucilage-habitat friendly fungi provides insights into microbial homeostasis maintenance of microenvironmental function and rhizosphere ecology.
Collapse
Affiliation(s)
- Zhiqiang Pang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sheng Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guizhou Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
22
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
23
|
Ogbe AA, Gupta S, Stirk WA, Finnie JF, Van Staden J. Growth-Promoting Characteristics of Fungal and Bacterial Endophytes Isolated from a Drought-Tolerant Mint Species Endostemon obtusifolius (E. Mey. ex Benth.) N. E. Br. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030638. [PMID: 36771720 PMCID: PMC9921005 DOI: 10.3390/plants12030638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 05/02/2023]
Abstract
Endophytes are primarily endosymbiotic bacteria and fungi that colonize the interior tissues of their host plant. They enhance the host plant's growth and attenuate adverse effects of biological stress. Endophytic species of many indigenous plants are an untapped resource of plant growth-promoting microorganisms that can mitigate abiotic stress effects. Thus, this study aimed to isolate endophytes from the roots and leaves of the medicinal plant Endostemon obtusifolius to evaluate their in vitro growth-promoting capacities and drought tolerance and to characterize the most promising species. Twenty-six endophytes (fourteen bacteria and twelve fungi) were isolated and cultured from the roots and leaves of E. obtusifolius. All 26 endophytes produced flavonoids, and 14 strains produced phenolic compounds. Of the 11 strains that displayed good free radical scavenging capability (low IC50) in the 1-1-diphenyl-1-picryhydrazyl radical scavenging assay, only three strains could not survive the highest drought stress treatment (40% polyethylene glycol). These 11 strains were all positive for ammonia and siderophore production and only one strain failed to produce hydrogen cyanide and solubilize phosphate. Seven isolates showed aminocyclopropane-1-carboxylate deaminase activity and differentially synthesized indole-3-acetic acid. Using molecular tools, two promising symbiotic, drought stress tolerant, and plant growth-enhancing endophytic species (EORB-2 and EOLF-5) were identified as Paenibacillus polymyxa and Fusarium oxysporum. The results of this study demonstrate that P. polymyxa and F. oxysporum should be further investigated for their drought stress mitigation and plant growth enhancement effects as they have the potential to be developed for use in sustainable agricultural practices.
Collapse
Affiliation(s)
- Abdulazeez A. Ogbe
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- Department of Botany, Lagos State University, Km 15, Badagry Expressway, Lasu Post Office, Ojo, P.O. Box 0001, Lagos 102101, Nigeria
| | - Shubhpriya Gupta
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Wendy A. Stirk
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Jeffrey F. Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- Correspondence:
| |
Collapse
|
24
|
Patel A, Sahu KP, Mehta S, Balamurugan A, Kumar M, Sheoran N, Kumar S, Krishnappa C, Ashajyothi M, Kundu A, Goyal T, Narayanasamy P, Kumar A. Rice leaf endophytic Microbacterium testaceum: Antifungal actinobacterium confers immunocompetence against rice blast disease. Front Microbiol 2022; 13:1035602. [PMID: 36619990 PMCID: PMC9810758 DOI: 10.3389/fmicb.2022.1035602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic and functional characteristics of rice leaf endophytic actinobacterial member, Microbacterium are described. Morphotyping, multilocus sequence analysis and transmission electron microscopy indicated the species identity of the endophytic bacterium, OsEnb-ALM-D18, as Microbacterium testaceum. The endophytic Microbacterium showed probiotic solubilization of plant nutrients/minerals, produced hydrolytic enzyme/phytohormones, and showed endophytism in rice seedlings. Further, the endophytic colonization by M. testaceum OsEnb-ALM-D18 was confirmed using reporter gene coding for green fluorescence protein. Microbacterium OsEnb-ALM-D18 showed volatilome-mediated antibiosis (95.5% mycelial inhibition) on Magnaporthe oryzae. Chemical profiling of M. testaceum OsEnb-ALM-D18 volatilome revealed the abundance of 9-Octadecenoic acid, Hexadecanoic acid, 4-Methyl-2-pentanol, and 2,5-Dihydro-thiophene. Upon endobacterization of rice seedlings, M. testaceum altered shoot and root phenotype suggestive of activated defense. Over 80.0% blast disease severity reduction was observed on the susceptible rice cultivar Pusa Basmati-1 upon foliar spray with M. testaceum. qPCR-based gene expression analysis showed induction of OsCERK1, OsPAD4, OsNPR1.3, and OsFMO1 suggestive of endophytic immunocompetence against blast disease. Moreover, M. testaceum OsEnb-ALM-D18 conferred immunocompetence, and antifungal antibiosis can be the future integrated blast management strategy.
Collapse
Affiliation(s)
- Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sahil Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Aditi Kundu
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tushar Goyal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Aundy Kumar, ; ; orcid.org/0000-0002-7401-9885
| |
Collapse
|
25
|
Endophytic Pseudomonas sp. from Agave palmeri Participate in the Rhizophagy Cycle and Act as Biostimulants in Crop Plants. BIOLOGY 2022; 11:biology11121790. [PMID: 36552299 PMCID: PMC9775861 DOI: 10.3390/biology11121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Plant growth-promoting bacteria are generating increasing interest in the agricultural industry as a promising alternative to traditional chemical fertilizers; however, much of the focus has been on rhizosphere bacteria. Bacterial endophytes are another promising source of plant growth-promoting bacteria, and though many plants have already been prospected for beneficial microbes, desert plants have been underrepresented in such studies. In this study, we show the growth-promoting potential of five strains of endophytic Pseudomonas sp. isolated from Agave palmeri, an agave from the Sonoran Desert. When inoculated onto Kentucky bluegrass, clover, carrot, coriander, and wheat, endophytic Pseudomonas sp. increased seedling root lengths in all hosts and seedling shoot lengths in Kentucky bluegrass, carrot, and wheat. Transformation of the Pseudomonas sp. strain P3AW to express the fluorescent protein mCherry revealed that Pseudomonas sp. becomes endophytic in non-native hosts and participates in parts of the rhizophagy cycle, a process by which endophytic bacteria cycle between the soil and roots, bringing in nutrients from the soil which are then extracted through reactive oxygen-mediated bacterial degradation in the roots. Tracking of the Pseudomonas sp. strain P3AW also provided evidence for a system of endophyte, or endophyte cell content, transport via the vascular bundle. These results provide further evidence of the rhizophagy cycle in plants and how it relates to growth promotion in plants by biostimulant bacteria.
Collapse
|
26
|
Kaur J, Mudgal G, Chand K, Singh GB, Perveen K, Bukhari NA, Debnath S, Mohan TC, Charukesi R, Singh G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci Rep 2022; 12:21330. [PMID: 36494408 PMCID: PMC9734154 DOI: 10.1038/s41598-022-25225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieria trifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacterium pusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l-1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l-1), gibberellic acid (172.98 mg l-1), ammonia (42.66 µmol ml-1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants' physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.
Collapse
Affiliation(s)
- Jaspreet Kaur
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gaurav Mudgal
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kartar Chand
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gajendra B. Singh
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kahkashan Perveen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Najat A. Bukhari
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Sandip Debnath
- grid.440987.60000 0001 2259 7889Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, Birbhum, West Bengal 731236 India
| | - Thotegowdanapalya C. Mohan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Rajulu Charukesi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Gaurav Singh
- Stress Signaling to the Nucleus, CNRS-Institute of Molecular Biology of Plants, 12 Rue du General-Zimmer, 67000 Strasbourg, France
| |
Collapse
|
27
|
Zhang X, Ma YN, Wang X, Liao K, He S, Zhao X, Guo H, Zhao D, Wei HL. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. MICROBIOME 2022; 10:216. [PMID: 36482381 PMCID: PMC9733015 DOI: 10.1186/s40168-022-01422-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants and their associated microbiota constitute an assemblage of species known as holobionts. The plant seed microbiome plays an important role in nutrient uptake and stress attenuation. However, the core vertically transmitted endophytes remain largely unexplored. RESULTS To gain valuable insights into the vertical transmission of rice seed core endophytes, we conducted a large-scale analysis of the microbiomes of two generations of six different rice varieties from five microhabitats (bulk soil, rhizosphere, root, stem, and seed) from four geographic locations. We showed that the microhabitat rather than the geographic location and rice variety was the primary driver of the rice microbiome assemblage. The diversity and network complexity of the rice-associated microbiome decreased steadily from far to near the roots, rice exterior to interior, and from belowground to aboveground niches. Remarkably, the microbiomes of the roots, stems, and seeds of the rice interior compartments were not greatly influenced by the external environment. The core bacterial endophytes of rice were primarily comprised of 14 amplicon sequence variants (ASVs), 10 of which, especially ASV_2 (Pantoea) and ASV_48 (Xanthomonas), were identified as potentially vertically transmitted taxa because they existed across generations, were rarely present in exterior rice microhabitats, and were frequently isolated from rice seeds. The genome sequences of Pantoea and Xanthomonas isolated from the parental and offspring seeds showed a high degree of average nucleotide and core protein identity, indicating vertical transmission of seed endophytes across generations. In silico prediction indicated that the seed endophytes Pantoea and Xanthomonas possessed streamlined genomes with short lengths, low-complexity metabolism, and various plant growth-promoting traits. We also found that all strains of Pantoea and Xanthomonas exhibited cellulase activity and produced indole-3-acetic acid. However, most strains exhibited insignificant antagonism to the major pathogens of rice, such as Magnaporthe oryzae and X. oryzae pv. oryzae. CONCLUSION Overall, our study revealed that microhabitats, rather than site-specific environmental factors or host varieties, shape the rice microbiome. We discovered the vertically transmitted profiles and keystone taxa of the rice microbiome, which led to the isolation of culturable seed endophytes and investigation of their potential roles in plant-microbiome interactions. Our results provide insights on vertically transmitted microbiota and suggest new avenues for improving plant fitness via the manipulation of seed-associated microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yi-Nan Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xing Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Kaiji Liao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shanwen He
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xia Zhao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hebao Guo
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dongfang Zhao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
28
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
29
|
Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon 2022; 8:e11269. [PMID: 36339753 PMCID: PMC9634370 DOI: 10.1016/j.heliyon.2022.e11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plant encounters various biotic and abiotic stresses, that affect agricultural productivity and reduce farmer's income especially under changing global climate. These environmental stresses can advance plant senescence by inducing osmotic stress, nutrient stress, hormonal imbalance, production of oxygen radicals, and ion toxicity, etc. Additionally, these stresses are not limited to plant health but also deteriorate soil health by affecting the microbial diversity of soil. To tackle this global delinquent of agriculture, several methods are suggested to ameliorate the negative effect of different types of stresses, the application of beneficial microorganisms or bioinoculants is one of them. Beneficial microorganisms that are used as bioinoculants not only facilitate plant growth by fulfilling the nutrient requirements but also assist the plant to withstand these stresses. These microorganisms produce certain chemicals such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phytohormones, antioxidants, extracellular polysaccharide (EPS), siderophores, antibiotics, and volatile organic compounds (VOCs), etc. which help the plants to mitigate various stresses. Besides, these microbes also activate plant defence responses. Thus, these bioinoculants can effectively replace chemical inputs to supplement nutrient requirements and mitigation of multiple stresses in plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland
| | - Sandeep Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Balkar Singh
- Department of Botany, Arya PG College, Panipat, Haryana, 132103, India
| | - Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
30
|
Wen Z, Yao W, Han M, Xu X, Wu F, Yang M, Fazal A, Yin T, Qi J, Lu G, Yang R, Song X, Yang Y. Differential assembly of root-associated bacterial and fungal communities of a dual transgenic insect-resistant maize line at different host niches and different growth stages. Front Microbiol 2022; 13:1023971. [PMID: 36246225 PMCID: PMC9557180 DOI: 10.3389/fmicb.2022.1023971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Transgenic technology has been widely applied to crop development, with genetically modified (GM) maize being the world's second-largest GM crop. Despite the fact that rhizosphere bacterial and fungal populations are critical regulators of plant performance, few studies have evaluated the influence of GM maize on these communities. Plant materials used in this study included the control maize line B73 and the mcry1Ab and mcry2Ab dual transgenic insect-resistant maize line 2A-7. The plants and soils samples were sampled at three growth stages (jointing, flowering, and maturing stages), and the sampling compartments from the outside to the inside of the root are surrounding soil (SS), rhizospheric soil (RS), and intact root (RT), respectively. In this study, the results of alpha diversity revealed that from the outside to the inside of the root, the community richness and diversity declined while community coverage increased. Morever, the different host niches of maize rhizosphere and maize development stages influenced beta diversity according to statistical analysis. The GM maize line 2A-7 had no significant influence on the composition of microbial communities when compared to B73. Compared to RS and SS, the host niche RT tended to deplete Chloroflexi, Gemmatimonadetes and Mortierellomycota at phylum level. Nitrogen-fixation bacteria Pseudomonas, Herbaspirillum huttiense, Rhizobium leguminosarum, and Sphingomonas azotifigens were found to be enriched in the niche RT in comparison to RS and SS, whilst Bacillus was found to be increased and Stenotrophomonas was found to be decreased at the maturing stage as compared to jointing and flowering stages. The nitrogen fixation protein FixH (clusters of orthologous groups, COG5456), was found to be abundant in RT. Furthermore, the pathogen fungus that causes maize stalk rot, Gaeumannomyces radicicola, was found to be abundant in RT, while the beneficial fungus Mortierella hyalina was found to be depleted in RT. Lastly, the abundance of G. radicicola gradually increased during the development of maize. In conclusion, the host niches throughout the soil-plant continuum rather than the Bt insect-resistant gene or Bt protein secretion were primarily responsible for the differential assembly of root-associated microbial communities in GM maize, which provides the theoretical basis for ecological agriculture.
Collapse
Affiliation(s)
- Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Weixuan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mi Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinhong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fengci Wu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tongming Yin
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Rongwu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyuan Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Microbial endophytes: application towards sustainable agriculture and food security. Appl Microbiol Biotechnol 2022; 106:5359-5384. [PMID: 35902410 DOI: 10.1007/s00253-022-12078-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Microbial endophytes are ubiquitous and exist in each recognised plant species reported till date. Within the host plant, the entire community of microbes lives non-invasively within the active internal tissues without causing any harm to the plant. Endophytes interact with their host plant via metabolic communication enables them to generate signal molecules. In addition, the host plant's genetic recombination with endophytes helps them to imitate the host's physicochemical functions and develop identical active molecules. Therefore, when cultured separately, they begin producing the host plant phytochemicals. The fungal species Penicillium chrysogenum has portrayed the glory days of antibiotics with the invention of the antibiotic penicillin. Therefore, fungi have substantially supported social health by developing many bioactive molecules utilised as antioxidant, antibacterial, antiviral, immunomodulatory and anticancerous agents. But plant-related microbes have emanated as fountainheads of biologically functional compounds with higher levels of medicinal perspective in recent years. Researchers have been motivated by the endless need for potent drugs to investigate alternate ways to find new endophytes and bioactive molecules, which tend to be a probable aim for drug discovery. The current research trends with these promising endophytic organisms are reviewed in this review paper. KEY POINTS: • Identified 54 important bioactive compounds as agricultural relevance • Role of genome mining of endophytes and "Multi-Omics" tools in sustainable agriculture • A thorough description and graphical presentation of agricultural significance of plant endophytes.
Collapse
|
32
|
Sahu KP, Kumar A, Sakthivel K, Reddy B, Kumar M, Patel A, Sheoran N, Gopalakrishnan S, Prakash G, Rathour R, Gautam RK. Deciphering core phyllomicrobiome assemblage on rice genotypes grown in contrasting agroclimatic zones: implications for phyllomicrobiome engineering against blast disease. ENVIRONMENTAL MICROBIOME 2022; 17:28. [PMID: 35619157 PMCID: PMC9134649 DOI: 10.1186/s40793-022-00421-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - K Sakthivel
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - R K Gautam
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| |
Collapse
|
33
|
Kour D, Khan SS, Kaur T, Kour H, Singh G, Yadav A, Yadav AN. Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon 2022; 8:e09493. [PMID: 35647359 PMCID: PMC9130543 DOI: 10.1016/j.heliyon.2022.e09493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 05/14/2022] [Indexed: 12/20/2022] Open
Abstract
Drought stress is among the most destructive stresses for agricultural productivity. It interferes with normal metabolic activities of the plants resulting, a negative impact on physiology and morphology of the plants. The management of drought stress requires various adaptive and alleviation strategies in which stress adaptive microbiomes are exquisite bioresources for plant growth and alleviation of drought stress. Diverse drought adaptive microbes belonging to genera Achromobacter, Arthrobacter, Aspergillus, Bacillus, Pseudomonas, Penicillium and Streptomyces have been reported worldwide. These bioresources exhibit a wide range of mechanisms such as helping plant in nutrient acquisition, producing growth regulators, lowering the levels of stress ethylene, increasing the concentration of osmolytes, and preventing oxidative damage under water deficit environmental conditions. Horticulture is one of the potential agricultural sectors to speed up the economy, poverty and generation of employment for livelihood. The applications of drought adaptive plant growth promoting (PGP) microbes as biofertilizers and biopesticides for horticulture is a potential strategy to improve the productivity and protection of horticultural crops from abiotic and biotic stresses for agricultural sustainability.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Sofia Shareif Khan
- Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu and Kashmir, 180006, India
| | - Gagandeep Singh
- Department of Animal Husbandary, National Dairy Research Institute, Karnal, 132001, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| |
Collapse
|
34
|
Srinivasan J, Khadka J, Novoplansky N, Gillor O, Grafi G. Endophytic Bacteria Colonizing the Petiole of the Desert Plant Zygophyllum dumosum Boiss: Possible Role in Mitigating Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040484. [PMID: 35214818 PMCID: PMC8924888 DOI: 10.3390/plants11040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Zygophyllum dumosum is a dominant shrub in the Negev Desert whose survival is accomplished by multiple mechanisms including abscission of leaflets to reduce whole plant transpiration while leaving the fleshy, wax-covered petioles alive but dormant during the dry season. Petioles that can survive for two full growing seasons maintain cell component integrity and resume metabolic activity at the beginning of the winter. This remarkable survival prompted us to investigate endophytic bacteria colonizing the internal tissues of the petiole and assess their role in stress tolerance. Twenty-one distinct endophytes were isolated by culturing from surface-sterile petioles and identified by sequencing of the 16S rDNA. Sequence alignments and the phylogenetic tree clustered the isolated endophytes into two phyla, Firmicutes and Actinobacteria. Most isolated endophytes displayed a relatively slow growth on nutrient agar, which was accelerated by adding petiole extracts. Metabolic analysis of selected endophytes showed several common metabolites whose level is affected by petiole extract in a species-dependent manner including phosphoric acid, pyroglutamic acid, and glutamic acid. Other metabolites appear to be endophyte-specific metabolites, such as proline and trehalose, which were implicated in stress tolerance. These results demonstrate the existence of multiple endophytic bacteria colonizing Z. dumosum petioles with the potential role in maintaining cell integrity and functionality via synthesis of multiple beneficial metabolites that mitigate stress and contribute to stress tolerance.
Collapse
Affiliation(s)
- Jansirani Srinivasan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Correspondence:
| |
Collapse
|
35
|
Cui L, Yang C, Wang Y, Ma T, Cai F, Wei L, Jin M, Osei R, Zhang J, Tang M. Potential of an endophytic bacteria Bacillus amyloliquefaciens 3-5 as biocontrol agent against potato scab. Microb Pathog 2021; 163:105382. [PMID: 34974122 DOI: 10.1016/j.micpath.2021.105382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
To obtain a potential biocontrol agent for potato scab, 75 endophytic bacteria were isolated from the healthy potato tubers and strain 3-5 was selected as an optimal antagonistic bacterium against Streptomyces griseoplanus (Streptacidiphilus griseoplanus) causing potato scab. Strain 3-5 was identified as Bacillus amyloliquefaciens based on its morphological characteristics, 16S rDNA and gyrB gene sequence analysis. B. amyloliquefaciens 3-5 has biological functions of indole-3-acetic acid (IAA) production and nitrogen fixation. Polymerase chain reaction (PCR) detection revealed that B. amyloliquefaciens 3-5 had 6 diverse antibacterial substance synthesis genes, named bacD, bacAB, ituD, ituC, sfP and albF, which resulted in the production of bacilysin, iturin, surfactin and subtilosin. Field efficacy evaluation revealed that B. amyloliquefaciens 3-5 (solid fermentation) was successful in controlling potato scab with a 38.90 ± 3.2140% efficiency which is higher than other chemical bactericides except zhongshengmycin·oligosaccharins and kasugamycin·zhongshengmycin. The endophytic bacterium B. amyloliquefaciens 3-5 could be used as a biocontrol agent against potato scab due its control efficacy and environmental safety.
Collapse
Affiliation(s)
- Lingxiao Cui
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chengde Yang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yinyu Wang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Ma
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fengfeng Cai
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijuan Wei
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mengjun Jin
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Richard Osei
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
| | - Mei Tang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
36
|
Sahu KP, Patel A, Kumar M, Sheoran N, Mehta S, Reddy B, Eke P, Prabhakaran N, Kumar A. Integrated Metabarcoding and Culturomic-Based Microbiome Profiling of Rice Phyllosphere Reveal Diverse and Functional Bacterial Communities for Blast Disease Suppression. Front Microbiol 2021; 12:780458. [PMID: 34917058 PMCID: PMC8669949 DOI: 10.3389/fmicb.2021.780458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pierre Eke
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
37
|
Adeleke BS, Babalola OO. The plant endosphere-hidden treasures: a review of fungal endophytes. Biotechnol Genet Eng Rev 2021; 37:154-177. [PMID: 34666635 DOI: 10.1080/02648725.2021.1991714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The endosphere represents intracellular regions within plant tissues colonize by microbial endophytes without causing disease symptoms to host plants. Plants harbor one or two endophytic microbes capable of synthesizing metabolite compounds. Environmental factors determine the plant growth and survival as well as the kind of microorganisms associated with them. Some fungal endophytes that symbiotically colonize the endosphere of medicinal plants with the potential of producing biological products have been employed in traditional and modern medicine. The bioactive resources from endophytic fungi are promising; biotechnologically to produce cheap and affordable commercial bioactive products as alternatives to chemical drugs and other compounds. The exploration of bioactive metabolites from fungal endophytes has been found applicable in agriculture, pharmaceutical, and industries. Thus, fungal endophytes can be engineered to produce a substantive quantity of pharmacological drugs through the biotransformation process. Hence, this review shall provide an overview of fungal endophytes, ecology, their bioactive compounds, and exploration with the biosystematics approach.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
38
|
Considerations on the Identity and Diversity of Organisms Affiliated with Sphingobacterium multivorum-Proposal for a New Species, Sphingobacterium paramultivorum. Microorganisms 2021; 9:microorganisms9102057. [PMID: 34683378 PMCID: PMC8540502 DOI: 10.3390/microorganisms9102057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Plant biomass offers great potential as a sustainable resource, and microbial consortia are primordial in its bioconversion. The wheat-straw-biodegradative bacterial strain w15 has drawn much attention as a result of its biodegradative potential and superior degradation performance in bacterial-fungal consortia. Strain w15 was originally assigned to the species Sphingobacterium multivorum based on its 16S ribosomal RNA (rRNA) gene sequence. A closer examination of this taxonomic placement revealed that the sequence used has 98.9% identity with the ‘divergent’ 16S rRNA gene sequence of S. multivorum NCTC 11343T, yet lower relatedness with the canonical 16S rRNA sequence. A specific region of the gene, located between positions 186 and 210, was found to be highly variable and determinative for the divergence. To solve the identity of strain w15, genome metrics and analyses of ecophysiological niches were undertaken on a selection of strains assigned to S. multivorum and related species. These analyses separated all strains into three clusters, with strain w15, together with strain BIGb0170, constituting a separate radiation, next to S. multivorum and S. siyangense. Moreover, the strains denoted FDAARGOS 1141 and 1142 were placed inside S. siyangense. We propose the renaming of strains w15 and BIGb0170 as members of the novel species, coined Sphingobacterium paramultivorum.
Collapse
|
39
|
Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future. BIOLOGY 2021; 10:biology10100961. [PMID: 34681060 PMCID: PMC8533330 DOI: 10.3390/biology10100961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Simple Summary Endophytes are microbes that live inside plants without causing negative effects in their hosts. All land plants are known to have endophytes, and these endophytes have the capacity to be transferred between plants. Taking endophytes from desert plants, which grow in low-nutrient, high-stress environments, and transferring them to crop plants may alleviate some of the challenges being faced by the agricultural industry, such as increasing drought frequency and rising opposition to chemical use in agriculture. Studies have shown that desert endophytes have the capacity to increase nutrient uptake and increase plant resistance to drought and heat stress, salt stress, and pathogen attack. Currently, the agricultural industry focuses on using irrigation, chemical fertilizers, and chemical pesticides to solve such issues, which can be extremely damaging to the environment. While there is still a lot that is unknown about endophytes, particularly desert plant endophytes, current research provides evidence that desert plant endophytes could be an environmentally friendly alternative to the conventional solutions being applied today. Abstract Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes—microbes that colonize and infect plant tissues without causing apparent disease—may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.
Collapse
|
40
|
Feng F, Zhan H, Wan Q, Wang Y, Li Y, Ge J, Sun X, Zhu H, Yu X. Rice recruits Sphingomonas strain HJY-rfp via root exudate regulation to increase chlorpyrifos tolerance and boost residual catabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5673-5686. [PMID: 33987653 DOI: 10.1093/jxb/erab210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Inoculation with pollution-degrading endophytes boosts the catabolism of residual contaminants and promotes the pollution adaptation of host plants. We investigated the interaction pattern between Sphingomonas strain HJY-rfp, a chlorpyrifos-degrading endophytic bacterium, and rice (Oryza sativa) under pesticide stress using hydroponic cultivation. We observed a notable trend of endophytic root colonization in rice plants treated with 10 mg l-1 chlorpyrifos solution, and after 24 h the migration of HJY-rfp enhanced the chlorpyrifos degradation rate in leaves and stems by 53.36% and 40.81%, respectively. Critically, the rice root exudate profile (organic acids and amino acids) changed under chlorpyrifos stress, and variations in the contents of several components affected the chemotactic behaviour of HJY-rfp. HJY-rfp colonization dramatically activated defensive enzymes, which enabled efficient scavenging of reactive oxygen species, and led to 9.8%, 22.5%, and 41.9% increases in shoot length, fresh weight, and accumulation of total chlorophyll, respectively, in rice suffering from oxidative damage by chlorpyrifos. Endophytic colonization caused up-regulation of detoxification genes that have shown a significant positive correlation with chlorpyrifos degradation in vivo. Collectively, our results demonstrate that agrochemical stress causes plants to actively recruit specific symbiotic microbes to detoxify contaminants and survive better under pollution conditions.
Collapse
Affiliation(s)
- Fayun Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, China
| | - Honglin Zhan
- Department of Biotechnology, Qingdao University of Science &Technology, Qingdao, China
| | - Qun Wan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ya Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yong Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Ge
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Sun
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hong Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiangyang Yu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
41
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
42
|
Lü BB, Wu GG, Sun Y, Zhang LS, Wu X, Jiang W, Li P, Huang YN, Wang JB, Zhao YC, Liu H, Song LL, Mo Q, Pan AH, Yang Y, Long XQ, Cui WD, Zhang C, Wang X, Tang XM. Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Front Microbiol 2021; 12:682356. [PMID: 34354681 PMCID: PMC8329594 DOI: 10.3389/fmicb.2021.682356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.
Collapse
Affiliation(s)
- Bei B Lü
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guo G Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liang S Zhang
- Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan N Huang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin B Wang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong C Zhao
- Institute of Edible Fungi, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Hua Liu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li L Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qin Mo
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ai H Pan
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Q Long
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wei D Cui
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xue M Tang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
43
|
Rovida AFDS, Costa G, Santos MI, Silva CR, Freitas PNN, Oliveira EP, Pileggi SAV, Olchanheski RL, Pileggi M. Herbicides Tolerance in a Pseudomonas Strain Is Associated With Metabolic Plasticity of Antioxidative Enzymes Regardless of Selection. Front Microbiol 2021; 12:673211. [PMID: 34239509 PMCID: PMC8258386 DOI: 10.3389/fmicb.2021.673211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.
Collapse
Affiliation(s)
| | - Gessica Costa
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Mariana Inglês Santos
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Elizangela Paz Oliveira
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Luiz Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
44
|
Sahu KP, Kumar A, Patel A, Kumar M, Gopalakrishnan S, Prakash G, Rathour R, Gogoi R. Rice Blast Lesions: an Unexplored Phyllosphere Microhabitat for Novel Antagonistic Bacterial Species Against Magnaporthe oryzae. MICROBIAL ECOLOGY 2021; 81:731-745. [PMID: 33108474 DOI: 10.1007/s00248-020-01617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/05/2020] [Indexed: 05/28/2023]
Abstract
Dark brown necrotic lesions caused by Magnaporthe oryzae on rice foliage is a contrasting microhabitat for leaf-colonizing microbiome as compared with the surrounding healthy chlorophyll-rich tissues. We explored culturable bacterial communities of blast lesions by adopting microbiological tools for isolating effective biocontrol bacterial strains against M. oryzae. 16S rRNA gene sequencing-based molecular identification revealed a total of 17 bacterial species belonging to Achromobacter (2), Comamonas (1), Curtobacterium (1), Enterobacter (1), Leclercia (2), Microbacterium (1), Pantoea (3), Sphingobacterium (1), and Stenotrophomonas (5) found colonizing the lesion. Over 50% of the bacterial isolates were able to suppress the mycelial growth of M. oryzae either by secretory or volatile metabolites. Volatiles released by Achromobacter sp., Curtobacterium luteum, Microbacterium oleivorans, Pantoea ananatis, Stenotrophomonas maltophilia, and Stenotrophomonas sp., and were found to be fungicidal while others showed fungistatic action. In planta pathogen challenged evaluation trial revealed the biocontrol potential of Stenotrophomonas sp. and Microbacterium oleivorans that showed over 60% blast severity suppression on the rice leaf. The lesion-associated bacterial isolates were found to trigger expression of defense genes such as OsCEBiP, OsCERK1, OsEDS1, and OsPAD4 indicating their capability to elicit innate defense in rice against blast disease. The investigation culminated in the identification of potential biocontrol agents for the management of rice blast disease.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Gopalakrishnan
- Division of Genetics, ICAR -Indian Agricultural Research Institute, New Delhi, 110012, India
| | - G Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - R Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
45
|
|
46
|
Kumar M, Kumar A, Sahu KP, Patel A, Reddy B, Sheoran N, Krishnappa C, Rajashekara H, Bhagat S, Rathour R. Deciphering core-microbiome of rice leaf endosphere: Revelation by metagenomic and microbiological analysis of aromatic and non-aromatic genotypes grown in three geographical zones. Microbiol Res 2021; 246:126704. [PMID: 33486428 DOI: 10.1016/j.micres.2021.126704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
We have deciphered the leaf endophytic-microbiome of aromatic (cv. Pusa Basmati-1) and non-aromatic (cv. BPT-5204) rice-genotypes grown in the mountain and plateau-zones of India by both metagenomic NGS (mNGS) and conventional microbiological methods. Microbiome analysis by sequencing V3-V4 region of ribosomal gene revealed marginally more bacterial operational taxonomic units (OTU) in the mountain zone at Palampur and Almora than plateau zone at Hazaribagh. Interestingly, the rice leaf endophytic microbiomes in mountain zone were found clustered separately from that of plateau-zone. The Bray-Curtis dissimilarity indices indicated influence of geographical location as compared to genotype per se for shaping rice endophytic microbiome composition. Bacterial phyla, Proteobacteria followed by Bacteroidetes, Firmicutes, and Actinobacteria were found abundant in all three locations. The core-microbiome analysis devulged association of Acidovorax; Acinetobacter; Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium; Aureimonas; Bradyrhizobium; Burkholderia-Caballeronia-Paraburkholderia; Enterobacter; Pantoea; Pseudomonas; Sphingomonas; and Stenotrophomonas with the leaf endosphere. The phyllosphere and spermosphere microbiota appears to have contributed to endophytic microbiota of rice leaf. SparCC network analysis of the endophytic-microbiome showed complex cooperative and competitive intra-microbial interactions among the microbial communities. Microbiological validation of mNGS data further confirmed the presence of core and transient genera such as Acidovorax, Alcaligenes, Bacillus, Chryseobacterium, Comamonas, Curtobacterium, Delftia, Microbacterium, Ochrobactrum, Pantoea, Pseudomonas, Rhizobium, Rhodococcus, Sphingobacterium, Staphylococcus, Stenotrophomonas, and Xanthomonas in the rice genotypes. We isolated, characterized and identified core-endophytic microbial communities of rice leaf for developing microbiome assisted crop management by microbiome reengineering in future.
Collapse
Affiliation(s)
- Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | | | - Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhaskar Reddy
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Someshwar Bhagat
- ICAR-Central Rainfed Upland Rice Research Station (NRRI), Hazaribagh, Jharkhand, India
| | - Rajeev Rathour
- CSK-Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| |
Collapse
|
47
|
Ma Y, Dias MC, Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:591911. [PMID: 33281852 DOI: 10.3389/fpls.2020.591911molazem] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 05/25/2023]
Abstract
Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.
Collapse
Affiliation(s)
- Ying Ma
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Maria Celeste Dias
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Helena Freitas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| |
Collapse
|
48
|
Pang Z, Zhao Y, Xu P, Yu D. Microbial Diversity of Upland Rice Roots and Their Influence on Rice Growth and Drought Tolerance. Microorganisms 2020; 8:microorganisms8091329. [PMID: 32878310 PMCID: PMC7564600 DOI: 10.3390/microorganisms8091329] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/25/2023] Open
Abstract
Among abiotic stresses, drought is one of the most important factors limiting plant growth. To increase their drought tolerance and survival, most plants interact directly with a variety of microbes. Upland rice (Oryza sativa L.) is a rice ecotype that differs from irrigated ecotype rice; it is adapted to both drought-stress and aerobic conditions. However, its root microbial resources have not been explored. We isolated bacteria and fungi from roots of upland rice in Xishuangbanna, China. Four hundred sixty-two endophytic and rhizospheric isolates (337 bacteria and 125 fungi) were distributed. They were distributed among 43 genera on the basis of 16S rRNA and internal transcribed spacer (ITS) gene sequence analysis. Notably, these root microbes differed from irrigated rice root microbes in irrigated environments; for example, members of the Firmicutes phylum were enriched (by 28.54%) in the roots of the upland plants. The plant growth-promoting (PGP) potential of 217 isolates was investigated in vitro. The PGP ability of 17 endophytic and 10 rhizospheric isolates from upland rice roots was evaluated under well-irrigated and drought-stress conditions, and 9 fungal strains increased rice seedling shoot length, shoot and root fresh weight (FW), antioxidant capability, and proline (Pro) and soluble sugar contents. Our work suggests that fungi from upland rice roots can increase plant growth under irrigated and drought-stress conditions and can serve as effective microbial resources for sustainable agricultural production in arid regions.
Collapse
Affiliation(s)
- Zhiqiang Pang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (Z.P.); (Y.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (Z.P.); (Y.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (Z.P.); (Y.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Correspondence: (P.X.); (D.Y.)
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (Z.P.); (Y.Z.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
- Correspondence: (P.X.); (D.Y.)
| |
Collapse
|
49
|
Adeleke BS, Babalola OO. The endosphere microbial communities, a great promise in agriculture. Int Microbiol 2020; 24:1-17. [PMID: 32737846 DOI: 10.1007/s10123-020-00140-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Agricultural food production and sustainability need intensification to address the current global food supply to meet human demand. The continuous human population increase and other anthropogenic activities threaten food security. Agrochemical inputs have long been used in conventional agricultural systems to boost crop productivity, but they are disadvantageous to a safe environment. Towards developing environmentally friendly agriculture, efforts are being directed in exploring biological resources from soil and plant microbes. The survival of the rhizosphere and endosphere microbiota is influenced by biotic and abiotic factors. Plant microbiota live interdependently with the host plants. Endophytes are regarded as colonizer microbes inhabiting and establishing microbial communities within the plant tissue. Their activities are varied and include fixing atmospheric nitrogen, solubilizing phosphate, synthesis of siderophores, secretion of metabolite-like compounds containing active biocontrol agents in the control of phytopathogens, and induced systemic resistance that stimulates plant response to withstand stress. Exploring beneficial endophyte resources in the formulation of bio-inoculants, such as biofertilizers, as an alternative to agrochemicals (fertilizers and pesticides) in developing environmentally friendly agriculture and for incorporation into crop breeding and disease control program is promising. Therefore, in this review, endosphere microbial ecology, associating environmental factors, and their roles that contribute to their effectiveness in promoting plant growth for maximum agricultural crop productivity were highlighted.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
50
|
Ma Y, Dias MC, Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:591911. [PMID: 33281852 PMCID: PMC7691295 DOI: 10.3389/fpls.2020.591911] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 05/19/2023]
Abstract
Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.
Collapse
|