1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Ding S, Li P, Tang Y, He Z, She X. Identification and genomic insights into Bacillus siamensis strains with host colonization potential and activity against tomato bacterial wilt. PEST MANAGEMENT SCIENCE 2025; 81:1547-1561. [PMID: 39582424 DOI: 10.1002/ps.8555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum species complex (RSSC), is considered as one of the most destructive plant diseases worldwide. In this study, two strains of Bacillus siamensis, BB605-1 and BB653, were screened and identified from endophytes in healthy tomato and mangrove plants, respectively. RESULTS Both strains demonstrated antagonistic activities against all 16 RSSC strains, representing eight sequevars from various hosts. The growth of RSSC was suppressed by the crude antimicrobial extracts produced by two strains. The pot inoculation experiment revealed the control efficiencies of two strains against tomato bacterial wilt as 59.63% and 63.98%, respectively. After imparting rifampicin resistance to the strains and applying them to tomato plants, both strains successfully established stable colonization in the rhizosphere, roots, stems, and leaves of tomato plants. Additionally, our study demonstrated that both strains exhibited significant plant growth-promoting properties. Complete genome sequencing revealed genome size of 3.868 M bp with 3594 protein-coding genes for BB605-1, and 3.857 M bp with 3600 protein-coding genes for BB653. Genome analysis of both strains identified seven secondary metabolite clusters with known antimicrobial properties and predicted three unknown compounds with potentially novel properties. Genome mining revealed several key genes associated with plant growth regulation, colonization, and biofilm formation, and we also detected these corresponding substances. CONCLUSIONS These findings provide a compelling case for the application of B. siamensis in agricultural practices. The isolates' multiple capacities to colonize, enhance plant growth, and exert antagonistic effects against BW positions them as highly promising candidates for an integrated biological solution. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
da Silva Bandeira ON, da Silva Bandeira R, de Souza CRB. Systematic review and meta-analysis of the potential effects of endophytic bacteria Klebsiella on plant growth promotion and biocontrol of pathogens. World J Microbiol Biotechnol 2025; 41:89. [PMID: 40021542 DOI: 10.1007/s11274-025-04300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Klebsiella is a bacterial genus widely recognized in the medical field but with underexplored potential in agriculture. This study employed a systematic review and meta-analysis to investigate scientific articles on plant growth promotion effects associated with endophytic bacteria Klebsiella species. A total of 39 relevant studies, published between 2012 and 2024, were identified based on strict inclusion and exclusion criteria. The analysis revealed that Klebsiella sp., K. pneumoniae, and K. variicola are cosmopolitan species that have functional versatility in phytohormone production, nutrient solubilization, and pathogen control in agricultural systems in both tropical and temperate zones. The data showed a significant correlation between the use of Klebsiella sp. and plant growth, highlighting the positive impact of these species in controlling aggressive pathogens. These findings underscore the potential of Klebsiella as a biotechnological tool for sustainable agricultural practices, enhancing plant growth and reducing the reliance on chemical inputs. The study further emphasizes the need for future research to deepen genomic characterization and expand the agricultural applications of these bacteria.
Collapse
|
4
|
Meng P, Xin K, Lu Z, Chen J, Tang X, Meng G, He F, Liu L, Wang H, Wang C. Intercropping with Robinia pseudoacacia reduces soft rot incidence in konjac by modulating the root bacterial community. PEST MANAGEMENT SCIENCE 2025; 81:55-68. [PMID: 39263914 DOI: 10.1002/ps.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Soft rot (Pectobacterium aroidearum and Dickeya) is a devastating soil-borne bacterial disease that threatens konjac production. Intercropping with false acacia has been shown to significantly reduce soft rot incidence in konjac by shifting the microbial community. However, how intercropping shapes the root bacterial community and affects soft rot incidence remains unclear. To address this, we investigated three konjac intercropping systems (false acacia, paulownia, and maize) to explore the relationships among intercropping, soft rot incidence, root bacterial community, soil enzyme activity, and soil properties. RESULTS Konjac intercropped with false acacia exhibited the lowest soft rot incidence and the lowest abundance of pathogenic taxa. Soft rot incidence was negatively correlated with total soil nitrogen and potassium but positively correlated with total and available soil phosphorus. The bacterial community structure and function in konjac roots differed among intercropping types, mainly driven by available soil phosphorus. Beneficial microorganisms such as Bradyrhizobium and Variovorax were enriched under a false acacia intercropping system and were negatively correlated with soil-available phosphorus. Additionally, the stable bacterial community in healthy konjac roots under false acacia may make konjac less susceptible to pathogen invasion. CONCLUSION The study showed that intercropping reduced the soft rot incidence by regulating the structure and stability of the konjac root bacterial community, and soil-available phosphorus was the main factor affecting the difference in the konjac root bacterial community, which provided a basis for the management of soil fertilization in konjac cultivation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Kexu Xin
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhoumin Lu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Juan Chen
- Yachang Forest Farm, Guangxi Zhuang Autonomous Region, Baise, China
| | - Xiaan Tang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Guihua Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Fei He
- College of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | | | - Haihua Wang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Biswas S, Chatterjee R, Rai U, Jana SK, Mukhopadhyay M. Proclaiming Plant Growth-Promoting and Antifungal Properties of Pseudomonas lurida and Bacillus velezensis Isolated from Rhododendrons of Darjeeling Hills. Curr Microbiol 2024; 81:393. [PMID: 39369364 DOI: 10.1007/s00284-024-03900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Endophytes have drawn attentions due to their effectiveness in providing benefits to host and non-host plants. In this study endophytic bacteria were isolated from stem and leaf samples of medicinally important plants Rhododendron griffithianum Wight and Rhododendron arboreum Smith subsp. cinnamomeum (Wall. ex G. Don) grown at higher altitudes of Darjeeling, India. Two endophytic bacteria, Pseudomonas lurida RGDS03 and Bacillus velezensis RCDL12 were identified based on 16S rRNA gene sequencing analysis. The endophytes exhibited indole acetic acid (IAA), gibberellic acid (GA), siderophore production, phosphate solubilization, nitrogen-fixing abilities, though B. velezensis RCDL12 showed superior production of IAA (126.04 ± 0.40 µg/mL), GA (241.00 ± 0.44 µg/mL), and phosphate (74.4 ± 0.41 µg/mL) solubilization as compared to P. lurida RGDS03. Purity of extracted IAA from these two endophytes was confirmed by HPLC and LC-MS analysis. In this study, P. lurida RGDS03 inhibited mycelial growth of two tested phytopathogens Phytophthora sp. and Pestalotiopsis sp. of broad host range. However, only against Pestalotiopsis sp. did B. velezensis RCDL12 exhibit antifungal activity. Study was conducted on growth promotion capabilities of isolates on rice and mung bean seedlings. P. lurida RGDS03, B. velezensis RCDL12 and consortium of both the strains reported with promising growth promotion on both rice (85-97%) and mung bean (86-99%) in terms of their seed germination, vegetative growth (root and shoot length, fresh and dry weight), and chlorophyll content as compared to the control plants (untreated). This study has emphasized growth-promoting and biocontrol activities of endophytic bacteria from rhododendrons, and application to enhance crop development for sustainable agriculture.
Collapse
Affiliation(s)
- Shreyasi Biswas
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India
| | - Rajeshwari Chatterjee
- Deapartment of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Upakar Rai
- Department of Botany, St Joseph's College, Darjeeling, West Bengal, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - Mahuya Mukhopadhyay
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Su L, Zhang J, Fan J, Li D, Zhao M, Wang Y, Pan H, Zhao L, Zhang X. Antagonistic Mechanism Analysis of Bacillus velezensis JLU-1, a Biocontrol Agent of Rice Pathogen Magnaporthe oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19657-19666. [PMID: 39190007 DOI: 10.1021/acs.jafc.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Magnaporthe oryzae, the causal agent of rice blast, is a fungal disease pathogen. Bacillus spp. have emerged as the most promising biological control agent alternative to chemical fungicides. In this study, the bacterial strain JLU-1 with significant antagonistic activity isolated from the rhizosphere soil of rice was identified as Bacillus velezensis through whole-genome sequencing, average nucleotide identity analysis, and 16S rRNA gene sequencing. Twelve gene clusters for secondary metabolite synthesis were identified in JLU-1. Furthermore, 3 secondary metabolites were identified in JLU-1, and the antagonistic effect of secondary metabolites against fungal pathogens was confirmed. Exposure to JLU-1 reduced the virulence of M. oryzae, and JLU-1 has the ability to induce the reactive oxygen species production of rice and improve the salt tolerance of rice. All of these results indicated that JLU-1 and its secondary metabolites have the promising potential to be developed into a biocontrol agent to control fungal diseases.
Collapse
Affiliation(s)
- Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiyue Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinyu Fan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dan Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yichi Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Li X, Ding Y, Okoye CO, Geng X, Jiang H, Wang Y, Wu Y, Gao L, Fu L, Jiang J, Sun J. Performance of Halo-Alkali-Tolerant Endophytic Bacteria on Hybrid Pennisetum and Bacterial Community under Varying Soil Conditions. Microorganisms 2024; 12:1062. [PMID: 38930444 PMCID: PMC11205500 DOI: 10.3390/microorganisms12061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Halo-alkali soil threatens agriculture, reducing growth and crop yield worldwide. In this study, physicochemical and molecular techniques were employed to explore the potential of halo-alkali-tolerant endophytic bacteria strains Sphingomonas sp. pp01, Bacillus sp. pp02, Pantoea sp. pp04, and Enterobacter sp. pp06 to enhance the growth of hybrid Pennisetum under varying saline conditions. The strains exhibited tolerance to high salt concentrations, alkaline pH, and high temperatures. Under controlled conditions, all four strains showed significant growth-promoting effects on hybrid Pennisetum inoculated individually or in combination. However, the effects were significantly reduced in coastal saline soil. The best growth-promoting effect was achieved under greenhouse conditions, increasing shoot fresh and dry weights of hybrid Pennisetum by up to 457.7% and 374.7%, respectively, using irrigating trials. Metagenomic sequencing analysis revealed that the diversity and composition of rhizosphere microbiota underwent significant changes after inoculation with endophytic bacteria. Specifically, pp02 and co-inoculation significantly increased the Dyella and Pseudomonas population. Firmicutes, Mycobacteria, and Proteobacteria phyla were enriched in Bacillus PP02 samples. These may explain the best growth-promoting effects of pp02 and co-inoculation on hybrid Pennisetum under greenhouse conditions. Our findings reveal the performance of endophytic bacterial inoculants in enhancing beneficial microbiota, salt stress tolerance, and hybrid Pennisetum growth.
Collapse
Affiliation(s)
- Xia Li
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Yiming Ding
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xiaoyan Geng
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
- Library, Jiangsu University, Zhenjiang 212013, China
| | - Huifang Jiang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Yongli Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Yanfang Wu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Lu Gao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Lei Fu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Jianxiong Jiang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| |
Collapse
|
8
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
9
|
Zou L, Wang Q, Li M, Wang S, Ye K, Dai W, Huang J. Culturable bacterial endophytes of Aconitum carmichaelii Debx. were diverse in phylogeny, plant growth promotion, and antifungal potential. Front Microbiol 2023; 14:1192932. [PMID: 37266004 PMCID: PMC10229814 DOI: 10.3389/fmicb.2023.1192932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Medicinal plants harbor tremendously diverse bacterial endophytes that maintain plant growth and health. In the present study, a total of 124 culturable bacterial endophytes were isolated from healthy Aconitum carmichaelii Debx. plants. These strains were clustered into 10 genera based on full-length 16S rDNA sequences, among which Bacillus and Pseudomonas were the dominant genera. In addition, A. carmichaelii may capture 10 potential new bacterial species based on multi-locus sequence analysis of three housekeeping genes (gyrA, rpoB, and atpD). The majority of these bacterial endophytes exhibited plant growth-promoting ability through diverse actions including the production of either indole acetic acid and siderophore or hydrolytic enzymes (glucanase, cellulose, and protease) and solubilization of phosphate or potassium. A total of 20 strains inhibited hyphal growth of fungal pathogens Sclerotium rolfsii and Fusarium oxysporum in vitro on root slices of A. carmichaelii by the dual-culture method, among which Pseudomonas sp. SWUSTb-19 showed the best antagonistic activity. Field experiment confirmed that Pseudomonas sp. SWUSTb-19 significantly reduced the occurrence of southern blight and promoted plant biomass compared with non-inoculation treatment. The possible mode of actions for Pseudomonas sp. SWUSTb-19 to antagonize against S. rolfsii involved the production of glucanase, siderophore, lipopeptides, and antimicrobial volatile compounds. Altogether, this study revealed that A. carmichaelii harbored diverse plant growth-promoting bacterial endophytes, and Pseudomonas sp. SWUSTb-19 could be served as a potential biocontrol agent against southern blight.
Collapse
Affiliation(s)
- Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Qian Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Muyi Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Kunhao Ye
- Institute of Traditional Chinese Medicinal Materials, Miangyang Academy of Agricultural Science, Mianyang, China
| | - Wei Dai
- Institute of Traditional Chinese Medicinal Materials, Miangyang Academy of Agricultural Science, Mianyang, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| |
Collapse
|
10
|
Dong Q, Liu Q, Goodwin PH, Deng X, Xu W, Xia M, Zhang J, Sun R, Wu C, Wang Q, Wu K, Yang L. Isolation and Genome-Based Characterization of Biocontrol Potential of Bacillus siamensis YB-1631 against Wheat Crown Rot Caused by Fusarium pseudograminearum. J Fungi (Basel) 2023; 9:jof9050547. [PMID: 37233258 DOI: 10.3390/jof9050547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum is one of the most serious soil-borne diseases of wheat. Among 58 bacterial isolates from the rhizosphere soil of winter wheat seedlings, strain YB-1631 was found to have the highest in vitro antagonism to F. pseudograminearum growth. LB cell-free culture filtrates inhibited mycelial growth and conidia germination of F. pseudograminearum by 84.14% and 92.23%, respectively. The culture filtrate caused distortion and disruption of the cells. Using a face-to-face plate assay, volatile substances produced by YB-1631 inhibited F. pseudograminearum growth by 68.16%. In the greenhouse, YB-1631 reduced the incidence of FCR on wheat seedlings by 84.02% and increased root and shoot fresh weights by 20.94% and 9.63%, respectively. YB-1631 was identified as Bacillus siamensis based on the gyrB sequence and average nucleotide identity of the complete genome. The complete genome was 4,090,312 bp with 4357 genes and 45.92% GC content. In the genome, genes were identified for root colonization, including those for chemotaxis and biofilm production, genes for plant growth promotion, including those for phytohormones and nutrient assimilation, and genes for biocontrol activity, including those for siderophores, extracellular hydrolase, volatiles, nonribosomal peptides, polyketide antibiotics, and elicitors of induced systemic resistance. In vitro production of siderophore, β-1, 3-glucanase, amylase, protease, cellulase, phosphorus solubilization, and indole acetic acid were detected. Bacillus siamensis YB-1631 appears to have significant potential in promoting wheat growth and controlling wheat FCR caused by F. pseudograminearum.
Collapse
Affiliation(s)
- Qianqian Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Qingxiang Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Xiaoxu Deng
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Wen Xu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Mingcong Xia
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Jie Zhang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Runhong Sun
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kun Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Agricultural Microbiology Innovation Center, Zhengzhou 450002, China
| |
Collapse
|
11
|
Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. MICROBIAL ECOLOGY 2023; 85:1113-1135. [PMID: 36319743 PMCID: PMC10156819 DOI: 10.1007/s00248-022-02136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Collapse
Affiliation(s)
- Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bartholomew Saanu Adeleke
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
12
|
Chowdhury S, Ghosh S, Gond SK. Anti-MRSA and clot lysis activities of Pestalotiopsis microspora isolated from Dillenia pentagyna Roxb. J Basic Microbiol 2023; 63:340-358. [PMID: 36002312 DOI: 10.1002/jobm.202200294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
There is an urgent call to search for novel natural compounds against developing multidrug-resistant microorganisms. The present work focuses on the characterization of a plant-associated fungus having bioactivity against methicillin-resistant Staphylococcus aureus (MRSA) strains. A fungal strain P31 was isolated from bark of Dillenia pentagyna and identified as Pestalotiopsis microspora. The maximum anti-MRSA activity was observed from extract of P31 grown in sabouraud dextrose broth. The minimum inhibitory concentrations (MIC) values of P31 extract were 14 μg/ml for methicillin-sensitive S. aureus (MSSA) and 32 μg/ml for MRSA strain, respectively. A crude P31 extract showed strong bactericidal activity by killing all treated MRSA cells within 24 h of treatment at their respective MIC value. A scanning electron microscopic study visualized morphological damage of MRSA cells. The membrane permeability of P31 extract-treated MRSA cells gradually increased which caused release of internal cytoplasmic nucleic acids, proteins and potassium ions (K+ ) from cells suggesting cell lysis or leakage from cells. A very low concentration of P31 extract was able to inhibit biofilm formed by MRSA cells. Thin layer chromatographic separation followed by gas chromatography-mass spectrometry analysis of the P31 extract revealed a number of antimicrobial compounds along with an anti-MRSA compound 2,4-di-tert-butylphenol. In addition, the P31 extract also showed in-vitro human blood clot lysis activity at various concentrations. The clot lysis activity of P31 extract was found maximum at 500 µg/ml. These findings suggest that fungal isolate P31 has potential as a source of anti-MRSA compounds useful in staph infections.
Collapse
Affiliation(s)
- Sandip Chowdhury
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India.,Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Surendra K Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Gorai PS, Ghosh R, Ghosh S, Samanta S, Sen A, Panja S, Gond SK, Mandal NC. Management of Black Root Disease-Causing Fungus Fusarium solani CRP1 by Endophytic Bacillus siamensis CNE6 through Its Metabolites and Activation of Plant Defense Genes. Microbiol Spectr 2023; 11:e0308222. [PMID: 36744908 PMCID: PMC10101116 DOI: 10.1128/spectrum.03082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/20/2022] [Indexed: 02/07/2023] Open
Abstract
Black root rot disease of Cicer arietinum L. is accountable for substantial loss in chickpea production worldwide. Endophytic Bacillus siamensis CNE6 has previously shown multifaceted plant growth-promoting, broad-spectrum antifungal, and chickpea plant-colonizing potential. In the present study, the strain Bacillus siamensis CNE6 was used for controlling black root rot disease caused by Fusarium solani CRP1 in chickpea. CNE6 showed strong antagonistic potential against CRP1 both in vivo and in vitro. Scanning electron microscopic studies indicated cellular deformation of CRP1 due to production of β-glucanase, protease, and other secondary metabolites. A total of five compounds were detected from the cell-free supernatant (CFS) of the ethyl acetate (EA) fraction of CNE6 through gas chromatography-mass spectrometry analysis. A confocal microscopic study demonstrated strong inhibition of biofilm formation of the pathogen CRP1 by the EA fraction of CFS of CNE6. Molecular docking analysis revealed that one compound, (2E)-6-methoxy-2-[(4-methoxyphenyl)methylidene]-2,3-dihydro-1-benzofuran-3-one, may inhibit the activity of lanosterol 14-alpha demethylase, which is involved in ergosterol biosynthesis and beta-tubulin assembling. In vivo experiments also showed the efficacy of CNE6 for increasing chickpea growth as well as upregulation of four defense genes (CHI1, PAMP, PR2B, and TF1082) upon pathogenic challenge. Thus, our results strongly suggest a positive role for CNE6 as a prospective biocontrol agent for combating Fusarium solani in chickpea. IMPORTANCE The present work was undertaken to explore an effective biocontrol agent against the destructive black root rot disease of chickpea. We have used an efficient bacterial endophyte, CNE6, which can colonize in the chickpea root system, produce secondary metabolites and enzymes to degrade pathogenic cellular integrity, inhibit pathogenic establishment by rupturing biofilm formation, and induce host immunity upon treatment. Interaction of the bacterial metabolite was also observed with lanosterol 14-alpha demethylase, which is an important component in fungal membrane functioning. Being an endophyte, Bacillus siamensis CNE6 fulfills a suitable criterion as a biocontrol agent to control black root rot disease in chickpea and has huge prospects for use commercially.
Collapse
Affiliation(s)
- Pralay Shankar Gorai
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Ranjan Ghosh
- Department of Botany, Bankura Sammilani College, Bankura, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Department of Biochemistry, Bose Institute, Kolkata, India
| | - Smriti Samanta
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Animesh Sen
- Regional Ayurveda Research Institute, Gangtok, Sikkim, India
| | - Suraj Panja
- Rice Biotechnology Laboratory, Department of Biotechnology, Visva-Bharati, Santiniketan, India
| | | | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| |
Collapse
|
14
|
Sanchez-Gonzalez ME, Mora-Herrera ME, Wong-Villarreal A, De La Portilla-López N, Sanchez-Paz L, Lugo J, Vaca-Paulín R, Del Aguila P, Yañez-Ocampo G. Effect of pH and Carbon Source on Phosphate Solubilization by Bacterial Strains in Pikovskaya Medium. Microorganisms 2022; 11:microorganisms11010049. [PMID: 36677341 PMCID: PMC9866999 DOI: 10.3390/microorganisms11010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phosphate-solubilizing bacteria (PSB) transform precipitated inorganic phosphorus into soluble orthophosphates. This study evaluated the efficiency of tricalcium and iron phosphate solubilization in Pikovskaya medium using five bacterial strains (A1, A2, A3, A5, and A6) cultured in acidic and alkaline pH levels. The bacterial strain that proved to be more efficient for P solubilization and was tolerant to pH variations was selected for assessing bacterial growth and P solubilization with glucose and sucrose in the culture medium. The bacterial strains were identified through 16S rRNA gene sequencing as Pseudomonas libanensis A1, Pseudomonas libanensis (A2), Bacillus pumilus (A3), Pseudomonas libanensis (A5), and Bacillus siamensis (A6). These five bacterial strains grew, tolerated pH changes, and solubilized inorganic phosphorus. The bacterial strain A3 solubilized FePO4 (4 mg L-1) and Ca3(PO4)2 (50 mg L-1). P solubilization was assayed with glucose and sucrose as carbon sources for A3 (Bacillus pumilus MN100586). After four culture days, Ca3(PO4)2 was solubilized, reaching 246 mg L-1 with sucrose in culture media. Using glucose as a carbon source, FePO4 was solubilized and reached 282 mg L-1 in six culture days. Our findings were: Pseudomonas libanensis, and Bacillus siamensis, as new bacteria, can be reported as P solubilizers with tolerance to acidic or alkaline pH levels. The bacterial strain B. pumilus grew using two sources of inorganic phosphorus and carbon, and it tolerated pH changes. For that reason, it is an ideal candidate for inorganic phosphorus solubilization and future production as a biofertilizer.
Collapse
Affiliation(s)
- Ma. Esther Sanchez-Gonzalez
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Martha E. Mora-Herrera
- Tenancingo Universitary Center, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | | | - Nadia De La Portilla-López
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Laura Sanchez-Paz
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Jorge Lugo
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Rocio Vaca-Paulín
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Pedro Del Aguila
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Gustavo Yañez-Ocampo
- Laboratory of Edaphology and Environment, Faculty of Sciences, Autonomous University of the State of Mexico, Toluca 50000, Mexico
- Correspondence: ; Tel.: +52-722-2262-300
| |
Collapse
|
15
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
16
|
Khunjamayum R, Tamreihao K, Asem RS, Singh YR, Nongthombam A, Devi KM, Chanu TP, Devi LJ, Mukherjee S, Ningthoujam DS. Fungal disease suppression and growth promotion potential of endophytic bacteria from ethnomedicinal plants. Arch Microbiol 2022; 204:539. [PMID: 35927385 DOI: 10.1007/s00203-022-03136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
103 bacterial isolates obtained from 8 ethnomedicinal plants in Manipur, India were studied for antifungal and plant growth promoting (PGP) activities. Forty-six (46), out of 62 antifungal isolates, showed potent activities against R. solani. Since R. solani (RS), a sheath blight pathogen, threatens rice yields worldwide, the present study was aimed at discovering promising bioinoculants with anti-RS and PGP potential on rice. Twenty-nine (29) endophytic isolates exhibiting promising anti-RS and PGP activities were subjected to seed vigor assays on rice (var. Jatra) and 16 were found to enhance rice seedling vigour by 70% or more over the control. Four (4) strains, Streptomyces sp. (AcRz21), Alkalihalobacillus sp. (PtL11), Bacillus sp. (TgIb5), and Priestia sp. (TgIb12) with the highest vigor indices were studied for growth promotion of rice in field conditions under pathogen-challenged and pathogen-free conditions. These bioactive strains were able to significantly enhance root and shoot biomass and reduce lesion heights caused by R. solani.
Collapse
Affiliation(s)
- Rakhi Khunjamayum
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - K Tamreihao
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Roshan Singh Asem
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Yurembam Rojiv Singh
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Amanda Nongthombam
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Khuraijam Mrinalini Devi
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Thoudam Pooja Chanu
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Laishram Jaya Devi
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Saikat Mukherjee
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India
| | - Debananda S Ningthoujam
- Microbial Biotechnology Research Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, 795003, India.
| |
Collapse
|
17
|
Chauhan J, Gohel S. Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Braz J Microbiol 2022; 53:1817-1828. [PMID: 35854099 PMCID: PMC9679074 DOI: 10.1007/s42770-022-00794-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/13/2023] Open
Abstract
To explore the in vivo and in vitro plant growth promoting activities, biocatalytic potential, and antimicrobial activity of salt tolerance rhizoactinobacteria, rhizospheric soil of a halotolerant plant Saueda maritima L. was collected from Rann of Tiker, near Little Rann of Kutch, Gujarat (India). The morphology analysis of the isolated strain TSm39 revealed that the strain belonged to the phylum actinobacteria, as it was stained Gram-positive, displayed filamentous growth, showed spore formation and red pigment production on starch casein agar (SCA). It was identified as Georgenia soli based on 16S rRNA gene sequencing. The Georgenia soli strain TSm39 secreted extracellular amylase, pectinase, and protease. It showed in vitro plant growth-promoting (PGP) activities such as indole acetic acid (IAA) production, siderophore production, ammonia production, and phosphate solubilization. In vivo plant growth-promoting traits of strain TSm39 revealed 30% seed germination on water agar and vigor index 374.4. Additionally, a significant increase (p ≤ 0.05) was found in growth parameters such as root length (16.1 ± 0.22), shoot length (15.2 ± 0.17), the fresh weight (g), and dry weight (g) of the roots (0.43 ± 0.42 and 0.32 ± 0.12), shoots (0.62 ± 0.41 and 0.13 ± 0.03), and leaves (0.42 ± 0.161 and 0.14 ± 0.42) in treated seeds of Vigna radiata L. plant with the strain TSm39 compared to control. The antibiotic susceptibility profile revealed resistance of the strain TSm39 to erythromycin, ampicillin, tetracycline, and oxacillin, while it displayed maximum sensitivity to vancomycin (40 ± 0.72), chloramphenicol (40 ± 0.61), clarithromycin (40 ± 1.30), azithromycin (39 ± 0.42), and least sensitivity to teicoplanin (15 ± 0.15). Moreover, the antimicrobial activity of the strain TSm39 was observed against Gram's positive and Gram's negative microorganisms such as Shigella, Proteus vulgaris, and Bacillus subtilis. These findings indicated that the Georgenia soli strain TSm39 has multiple plant-growth-promoting properties and biocatalytic potential that signifies its agricultural applications in the enhancement of crop yield and quality and would protect the plant against plant pathogens.
Collapse
Affiliation(s)
- Jagruti Chauhan
- grid.412428.90000 0000 8662 9555Department of Biosciences, Saurashtra University, Rajkot, 360005 Gujarat India
| | - Sangeeta Gohel
- grid.412428.90000 0000 8662 9555Department of Biosciences, Saurashtra University, Rajkot, 360005 Gujarat India
| |
Collapse
|
18
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zhou L, Wang J, Wu F, Yin C, Kim KH, Zhang Y. Termite Nest Associated Bacillus siamensis YC-9 Mediated Biocontrol of Fusarium oxysporum f. sp. cucumerinum. Front Microbiol 2022; 13:893393. [PMID: 35722323 PMCID: PMC9198579 DOI: 10.3389/fmicb.2022.893393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
The antagonistic potential of bacteria obtained from the nest of Odontotermes formosanus was assessed against Fusarium oxysporum f. sp. cucumerinum (FOC). Of 30, seven termite nest-associated bacteria strains had biocontrol potential. Among them, the strain YC-9 showed the strongest antifungal activity toward FOC. Phylogenetic analysis of the 16S rRNA amplified product of YC-9 revealed its identification as Bacillus siamensis. The in vivo antifungal activity experiment showed that the application of YC-9 at 108 cfu/ml significantly reduced the cucumber wilt incidence with a control efficacy of 73.2%. Furthermore, plant growth parameters such as fresh weight, dry weight, plant height, and root height were significantly improved by 42.6, 53.0, 20.8, and 19.3%, respectively. We found that inoculation with B. siamensis YC-9 significantly increased the activity of defensive enzymes such as peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in diseased cucumber roots, thereby raising the resistance. PCR using gene-specific primers revealed that B. siamensis YC-9 contains biosynthetic genes for known antibiotics, including bacillomycin, iturin, and surfactin. Chemical analysis of the cultivation of B. siamensis YC-9 resulted in the isolation of five metabolites, including hexadecanoic acid (1), cyclo-(L-phenylalanylglycine) (2), cyclo-(L-trans-Hyp-L-Leu) (3), C15-surfactin (4), and macrolactin A (5), the structures of which were identified by the analysis of NMR spectroscopic data and MS. Among them, the compound 4 showed significant antifungal activity against conidial germination of FOC with an IC50 value of 5.1 μg/ml, which was comparable to that of the positive control, cycloheximide (IC50 value of 2.6 μg/ml). Based on these findings, this study suggests that termite-nest associated B. siamensis YC-9 could be a potential biological control agent for integrated control of soil-borne diseases like cucumber Fusarium wilt.
Collapse
Affiliation(s)
- Lingfeng Zhou
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Junyong Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Wu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Caiping Yin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yinglao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Attia MS, El-Wakil DA, Hashem AH, Abdelaziz AM. Antagonistic Effect of Plant Growth-Promoting Fungi Against Fusarium Wilt Disease in Tomato: In vitro and In vivo Study. Appl Biochem Biotechnol 2022; 194:5100-5118. [PMID: 35689755 PMCID: PMC9587074 DOI: 10.1007/s12010-022-03975-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Fusarium wilt is considered one of the most destructive diseases for tomato plants. The novelty of this work was to investigate the antifungal and plant growth-promoting capabilities of some plant growth-promoting fungi (PGPF). Plant growth-promoting fungi (PGPF) improved the plant health and control plant infections. In this study, two fungal strains as PGPF were isolated and identified as Aspergillus fumigatus and Rhizopus oryzae using molecular method. The extracts of A. fumigatus and R. oryzae exhibited promising antifungal activity against F. oxysporum in vitro. Moreover, antagonistic effect of A. fumigatus and R. oryzae against F. oxysporum causing tomato wilt disease was evaluated in vivo. Disease severity and growth markers were recorded and in vitro antagonistic activity assay of the isolated A. fumigatus and R. oryzae against Fusarium oxysporum was measured. Physiological markers of defense in plant as response to stimulate systemic resistance (SR) were recorded. Our results indicated that A. fumigatus and R. oryzae decreased the percentage of disease severity by 12.5 and 37.5%, respectively. In addition, they exhibited relatively high protection percentage of 86.35 and 59.06% respectively. Fusarium wilt was declined the growth parameters, photosynthetic pigments, total soluble carbohydrate, and total soluble protein, whereas content of free proline, total phenols, and the activity of antioxidant enzymes activity increased under infection. Moreover, application of A. fumigatus and R. oryzae on infected plants successfully recovered the loss of morphological traits, photosynthetic pigment total carbohydrates, and total soluble proteins in comparison to infected control plants. PGPF strains in both non-infected and infected plants showed several responses in number and density of peroxidase (POD) and polyphenol oxidase (PPO) isozymes.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt
| | - Deiaa A El-Wakil
- Department of Biology, Faculty of Science, Jazan University, Jazan, 82817, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt.
| |
Collapse
|
21
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
22
|
Genomic and Experimental Analysis of the Biostimulant and Antagonistic Properties of Phytopathogens of Bacillus safensis and Bacillus siamensis. Microorganisms 2022; 10:microorganisms10040670. [PMID: 35456723 PMCID: PMC9024481 DOI: 10.3390/microorganisms10040670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
The B. safensis RGM 2450 and B. siamensis RGM 2529 strains were isolated from the rhizosphere of plants presenting resilience to abiotic and biotic stress conditions. To understand the implications of bacteria in resilience, a genomic and experimental analysis was carried out on their biostimulant and phytopathogenic antagonist properties. Genome analyses of both strains indicated that they have the potential to synthesize bioactive compounds such as the battery of non-ribosomal peptides, polyketides, extracellular enzymes and phytohormones. These results were consistent with the antagonistic activities of both strains against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Fusarium oxysporum and Phytophtora cinnamomi. They also showed the capacity to solubilize phosphorus, fix nitrogen and produce indole acetic acid. This was observed in tomato seedlings grown from seeds inoculated with the mixture of strains which presented significantly greater length as well as wet and dry weight in comparison with the treatments individually inoculated with each strain and the control. Accordingly, the combination of B. safensis RGM 2450 and B. siamensis RGM 2529 showed synergistic biostimulant activity. These findings contribute new knowledge of the genomic and metabolomic properties taking part in the symbiotic interactions between these strains and the plants and uphold the combined use of both strains as a biostimulant.
Collapse
|
23
|
Santoso I, Fadhilah QG, Safitri SD, Handayani S, Maryanto AE, Yasman Y. Inhibition of the phytopathogenic fungi Curvularia lunata BM and Ganoderma sp. TB4 by antifungal compounds produced by Bacillus siamensis LDR grown on hanjeli (Coix lacryma-jobi L.) starch. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacillus siamensis LDR was tested for its potential as a biocontrol agent against the phytopathogenic fungi Curvularia lunata BM and Ganoderma sp. TB4. Fermentation of B. siamensis LDR for the production of antifungal compound was performed in modified Czapex-Dox broth using hanjeli (Coix lacryma-jobi L.) starch as carbon source. The Bacillus siamensis LDR inoculum was 105 CFU/ mL, and fermentation was conducted for up to 16 days. Antibiosis assay conducted to test the antifungal activity of filtrate medium. The results showed inhibition of C. lunata BM and Ganoderma sp. TB4 were 47.08% and 85.99%, respectively on 14th day of fermentation. Antifungal assay of the crude extract from filtrate medium revealed growth inhibition of C. lunata BM (60.70%) and Ganoderma sp. TB4 (65.25%). Thin layer chromatography of the crude extract revealed pink-colored spots indicative of lipopeptide compounds. Analysis of the crude extract by ultraperformance liquid chromatography-mass spectrometry was tentatively identified as iturin A, bacillomycin F, and surfactin.
Collapse
|
24
|
Jiang Z, Li R, Tang Y, Cheng Z, Qian M, Li W, Shao Y. Transcriptome Analysis Reveals the Inducing Effect of Bacillus siamensis on Disease Resistance in Postharvest Mango Fruit. Foods 2022; 11:107. [PMID: 35010233 PMCID: PMC8750277 DOI: 10.3390/foods11010107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Postharvest anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the most important postharvest diseases of mangoes worldwide. Bacillus siamensis (B. siamensis), as a biocontrol bacteria, has significant effects on inhibiting disease and improving the quality of fruits and vegetables. In this study, pre-storage application of B. siamensis significantly induced disease resistance and decreased disease index (DI) of stored mango fruit. To investigate the induction mechanisms of B. siamensis, comparative transcriptome analysis of mango fruit samples during the storage were established. In total, 234,808 unique transcripts were assembled and 56,704 differentially expressed genes (DEGs) were identified by comparative transcriptome analysis. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs showed that most of the DEGs involved in plant-pathogen interaction, plant hormone signal transduction, and biosynthesis of resistant substances were enriched. Fourteen DEGs related to disease-resistance were validated by qRT-PCR, which well corresponded to the FPKM value obtained from the transcriptome data. These results indicate that B. siamensis treatment may act to induce disease resistance of mango fruit by affecting multiple pathways. These findings not only reveal the transcriptional regulatory mechanisms that govern postharvest disease, but also develop a biological strategy to maintain quality of post-harvest mango fruit.
Collapse
Affiliation(s)
- Zecheng Jiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Yue Tang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Ziyu Cheng
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Minjie Qian
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|