1
|
Wu L, Sun W, Huang L, Sun L, Dou J, Lu G. Calcium Imaging in Vivo: How to Correctly Select and Apply Fiber Optic Photometric Indicators. Organogenesis 2025; 21:2489667. [PMID: 40186873 PMCID: PMC11980459 DOI: 10.1080/15476278.2025.2489667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025] Open
Abstract
Fiber-photometric is a novel optogenetic method for recording neural activity in vivo, which allows the use of calcium indicators to observe and study the relationship between neural activity and behavior in free-ranging animals. Calcium indicators also convert changes in calcium concentration in cells or tissues into recordable fluorescent signals, which can then be observed using the system of fiber-photometric. To date, there is a paucity of relevant literature on the proper selection and application of fiber-photometric indicators. Therefore, this paper will detail how to correctly select and apply fiber-photometer indicators in four sections: the basic principle of optical fiber photometry, the selection of calcium fluorescent probes and viral vector systems, and the measurement of specific expression of fluorescent proteins in specific tissues. Therefore, the correct use of suitable fiber optic recording indicators will greatly assist researchers in exploring the link between neuronal activity and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lanxia Wu
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, China
| | - Wenxuan Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Linjie Huang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jinhua Dou
- Mental Health Education Center, Shandong Second Medical University, Weifang, Shandong, China
| | - Guohua Lu
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Lai Y, Wang J, Xie N, Liu G, Lacap-Bugler DC. Identification of a novel forkhead transcription factor MtFKH1 for cellulase and xylanase gene expression in Myceliophthora thermophila (ATCC 42464). Microbiol Res 2025; 294:128097. [PMID: 39970722 DOI: 10.1016/j.micres.2025.128097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Myceliophthora thermophila is a thermophilic fungus, known to produce industrially important enzymes in biorefineries. The mechanism underlying cellulase and xylanase expression in filamentous fungi is a complex regulatory network controlled by numerous transcription factors (TFs). These TFs in M. thermophila remain unclear. Here, we identified and characterised a novel cellulase and xylanase regulator MtFKH1 in M. thermophila through comparative transcriptomic and genetic analyses. Five of the eight potential TFs, which showed differential expression levels when grown on Avicel and glucose, were successfully deleted using the newly designed CRISPR/Cas9 system. This system identified the forkhead TF MtFKH1. The disruption of Mtfkh1 elevated the cellulolytic and xylanolytic enzyme activities, whereas the overexpression of Mtfkh1 led to considerable decrease in cellulase and xylanase production in M. thermophila cultivated on Avicel. The loss of Mtfkh1 also exhibited an impairment in sporulation in M. thermophila. Real-time quantitative reverse transcription PCR (RT-qPCR) and the electrophoretic mobility shift assays (EMSAs) demonstrated that MtFKH1 regulates the gene expression and specifically bind to the promoter regions of genes encoding β-glucosidase (bgl1/MYCTH_66804), cellobiohydrolase (cbh1/MYCTH_109566), and xylanase (xyn1/MYCTH_112050), respectively. Furthermore, DNase I footprinting analysis identified binding motif of MtFKH1 in the upstream region of Mtbgl1, with strongest binding affinity. Finally, transcriptomic profiling and Gene Ontology (GO) enrichment analyses of Mtfkh1 deletion mutant revealed that the regulon of MtFKH1 were significantly prevalent in hydrolase activity (acting on glycosyl bonds), polysaccharide binding, and carbohydrate metabolic process functional categories. These findings expand our knowledge on how forkhead transcription factor regulates lignocellulose degradation and provide a novel target for engineering of fungal cell factories with the hyperproduction of cellulase and xylanase.
Collapse
Affiliation(s)
- Yapeng Lai
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | | |
Collapse
|
3
|
Meng Q, Abraham B, Hu J, Jiang Y. Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei. BIORESOURCE TECHNOLOGY 2025; 419:132015. [PMID: 39719201 DOI: 10.1016/j.biortech.2024.132015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T. reesei, as well as enzymatic cellulose hydrolysis. However, many unknowns still hinder the rational design of strains for robust cellulase production, with an optimized ratio of cellulolytic enzymes to reduce the required dosage for cellulose hydrolysis. Moreover, large-scale cellulase production relies on submerged fermentation, which suffers from several mass transfer limitations. As the mycelia grow, the fermentation broth rapidly develops non-Newtonian properties, necessitating energy-intensive mixing and aeration to facilitate oxygen transfer essential for strain growth. Herein, this paper critically reviews updated progress in these regards, highlights challenges, and outlines potential solutions.
Collapse
Affiliation(s)
- Qingshan Meng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Brett Abraham
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Yi Jiang
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Bandbe CD, Patil KS, Pathan EK. Tuning fungal promoters for the expression of eukaryotic proteins. World J Microbiol Biotechnol 2024; 40:400. [PMID: 39617818 DOI: 10.1007/s11274-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Fungal systems, yeast as well as filamentous fungi, are effective platforms for producing recombinant eukaryotic proteins because of their efficient secretion, robust development features, and capacity for post-translational modification. However, to achieve optimum protein expression in fungal hosts, a precise regulation of gene expression levels is necessary. Promoters are critical cis-regulatory regions that drive gene expression. Therefore, understanding the structure and function of fungal promoters and the factors that influence their performance is an essential step in developing yeast and filamentous fungal platforms as hosts for the expression and secretion of eukaryotic proteins. However, literature on the characterization of filamentous fungal promoters is non-exhaustive. The present review attempts to provide a comprehensive account of available information and future applications of fungal promoters. The properties of promoters from different classes of fungi are discussed with respect to their general structure, the core and proximal components that constitute the fungal promoters, types of fungal promoters based on their functions etc. Furthermore, the utility of fungal promoters for applications in healthcare, biofuels, agriculture and biotechnology are also discussed. The comprehensive understanding of fungal promoters will help in developing tailored promoters, paving the way for the optimum production of economically important eukaryotic proteins in different host organisms.
Collapse
Affiliation(s)
- Charvi D Bandbe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Karan S Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
5
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Yang J, Reyes Loaiciga C, Yue HR, Hou YJ, Li J, Li CX, Li J, Zou Y, Zhao S, Zhang FL, Zhao XQ. Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. ( Harzianum Clade) LZ117. J Fungi (Basel) 2024; 10:697. [PMID: 39452649 PMCID: PMC11508783 DOI: 10.3390/jof10100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Trichoderma species have been reported as masters in producing cellulolytic enzymes for the biodegradation of lignocellulolytic biomass and biocontrol agents against plant pathogens and pests. In our previous study, a novel Trichoderma strain LZ117, which shows potent capability in cellulase production, was isolated. Herein, we conducted multilocus phylogenetic analyses based on DNA barcodes and performed time-scaled phylogenomic analyses using the whole genome sequences of the strain, annotated by integrating transcriptome data. Our results suggest that this strain represents a new species closely related to T. atrobrunneum (Harzianum clade). Genes encoding carbohydrate-active enzymes (CAZymes), transporters, and secondary metabolites were annotated and predicted secretome in Trichoderma sp. LZ117 was also presented. Furthermore, genetic manipulation of this strain was successfully achieved using PEG-mediated protoplast transformation. A putative transporter gene encoding maltose permease (Mal1) was overexpressed, which proved that this transporter does not affect cellulase production. Moreover, overexpressing the native Cre1 homolog in LZ117 demonstrated a more pronounced impact of glucose-caused carbon catabolite repression (CCR), suggesting the importance of Cre1-mediated CCR in cellulase production of Trichoderma sp. LZ117. The results of this study will benefit further exploration of the strain LZ117 and related species for their applications in bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Cristopher Reyes Loaiciga
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Ya-Jing Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.-J.H.); (S.Z.)
| | - Jun Li
- Shanghai CHANDO Group Co., Ltd., Shanghai 200233, China; (J.L.); (Y.Z.)
| | - Cheng-Xi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology, Bengbu Medical University, Bengbu 233000, China;
| | - Jing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Yue Zou
- Shanghai CHANDO Group Co., Ltd., Shanghai 200233, China; (J.L.); (Y.Z.)
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.-J.H.); (S.Z.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| |
Collapse
|
7
|
Ning YN, Liang X, Shen X, Tian D, Li WT, Luo XM, Feng JX, Zhao S. A RsrC-RsrA-RsrB transcriptional circuit positively regulates polysaccharide-degrading enzyme biosynthesis and development in Penicillium oxalicum. Commun Biol 2024; 7:848. [PMID: 38992164 PMCID: PMC11239660 DOI: 10.1038/s42003-024-06536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Filamentous fungi produce polysaccharide-degrading enzymes, which is controlled by poorly understood transcriptional circuits. Here we show that a circuit comprising RsrC-RsrA-RsrB (Rsr: production of raw-starch-degrading enzyme regulator) that positively regulates production of raw starch-degrading enzymes in Penicillium oxalicum. Transcription factor (TF) RsrA is essential for biosynthesis of raw starch-degrading enzymes. RsrB and RsrC containing Zn2Cys6- and C2H2-zinc finger domains, act downstream and upstream of RsrA, respectively. RsrA activates rsrB transcription, and three nucleotides (G-286, G-287 and G-292) of rsrB promoter region are required for RsrA, in terms of TF, for binding. RsrB165-271 binds to DNA sequence 5'-TCGATCAGGCACGCC-3' in the promoter region of the gene encoding key raw-starch-degrading enzyme PoxGA15A. RsrC specifically binds rsrA promoter, but not amylase genes, to positively regulate the expression of rsrA and the production of raw starch-degrading enzymes. These findings expand complex regulatory network of fungal raw starch-degrading enzyme biosynthesis.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xue-Mei Luo
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
| |
Collapse
|
8
|
Daroodi Z, Taheri P. The genus Acrophialophora: History, phylogeny, morphology, beneficial effects and pathogenicity. Fungal Genet Biol 2024; 171:103875. [PMID: 38367800 DOI: 10.1016/j.fgb.2024.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The genus Acrophialophora is a thermotolerant fungus, which is widely distributed in temperate and tropical zones. This fungus is classified in Ascomycota and belongs to the Chaetomiaceae family and the genera of Parathielavia, Pseudothielavia and Hyalosphaerella are closely related to Acrophialophora. For this genus have been reported 28 species so far, which two species of Acrophialophora jodhpurensis and Acrophialophora teleoafricana produce only sexual phase and other species produce asexual form. Therefore, producing both sexual and asexual forms were not reported by any species. Many applications were reported by some species in agriculture, pharmacy and industry. Production of enzymes, antimicrobial metabolites and plant growth-promoting factors were reported by some species. The species of A. nainiana is used in the industries of textile, fruit juice, pulp and paper due to extracellular enzyme production. Also, other species produce extracellular enzymes that can be used in various industries. The species Acrophialophora are used in the composting industry due to the production of various enzymes and to be thermotolerant. In addition, some species were isolated from hostile environmental conditions. Therefore has been suggested that it can be used for mycoremediation. Also, antimicrobial metabolites of Acrophialophora have been reported to be effective against human and plant pathogens. In contrast to the beneficial effects described, the Acrophialophora pathogenicity has been rarely reported. Two species A. fusispora and A. levis are opportunistic fungi and have been reported as pathogens in humans, animals and plants. Currently, the development and applications of Acrophialophora species have increased more than past. To our knowledge, there is no report with comprehensive information on the species of Acrophialophora, which include their disadvantage and beneficial effects, particularly in agriculture. Therefore, it seems necessary to pay more in-depth attention to the application of this genus as a beneficial fungus in agriculture, pharmaceutical and industry. This review is focused on the history, phylogeny, morphology, valuable roles of Acrophialophora and pathogenicity.
Collapse
Affiliation(s)
- Zoha Daroodi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Zhou Q, Huang D, Yang H, Hong Z, Wang C. Improvement of Carotenoids' Production by Increasing the Activity of Beta-Carotene Ketolase with Different Strategies. Microorganisms 2024; 12:377. [PMID: 38399781 PMCID: PMC10891602 DOI: 10.3390/microorganisms12020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Canthaxanthin is an important antioxidant with wide application prospects, and β-carotene ketolase is the key enzyme involved in the biosynthesis of canthaxanthin. However, the challenge for the soluble expression of β-carotene ketolase is that it hinders the large-scale production of carotenoids such as canthaxanthin and astaxanthin. Hence, this study employed several strategies aiming to improve the soluble expression of β-carotene ketolase and its activity, including selecting optimal expression vectors, screening induction temperatures, adding soluble expression tags, and adding a molecular chaperone. Results showed that all these strategies can improve the soluble expression and activity of β-carotene ketolase in Escherichia coli. In particular, the production of soluble β-carotene ketolase was increased 8 times, with a commercial molecular chaperon of pG-KJE8, leading to a 1.16-fold enhancement in the canthaxanthin production from β-carotene. Interestingly, pG-KJE8 could also enhance the soluble expression of β-carotene ketolase derived from eukaryotic microalgae. Further research showed that the production of canthaxanthin and echinenone was significantly improved by as many as 30.77 times when the pG-KJE8 was added, indicating the molecular chaperone performed differently among different β-carotene ketolase. This study not only laid a foundation for further research on the improvement of β-carotene ketolase activity but also provided new ideas for the improvement of carotenoid production.
Collapse
Affiliation(s)
- Qiaomian Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| | - Haihong Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Zeyu Hong
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| |
Collapse
|
10
|
Adnan M, Ma X, Xie Y, Waheed A, Liu G. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei. Int J Mol Sci 2023; 24:17202. [PMID: 38139031 PMCID: PMC10743782 DOI: 10.3390/ijms242417202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.
Collapse
Affiliation(s)
| | | | | | | | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (X.M.); (Y.X.)
| |
Collapse
|
11
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Adnan M, Islam W, Waheed A, Hussain Q, Shen L, Wang J, Liu G. SNARE Protein Snc1 Is Essential for Vesicle Trafficking, Membrane Fusion and Protein Secretion in Fungi. Cells 2023; 12:1547. [PMID: 37296667 PMCID: PMC10252874 DOI: 10.3390/cells12111547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fungi are an important group of microorganisms that play crucial roles in a variety of ecological and biotechnological processes. Fungi depend on intracellular protein trafficking, which involves moving proteins from their site of synthesis to the final destination within or outside the cell. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are vital components of vesicle trafficking and membrane fusion, ultimately leading to the release of cargos to the target destination. The v-SNARE (vesicle-associated SNARE) Snc1 is responsible for anterograde and retrograde vesicle trafficking between the plasma membrane (PM) and Golgi. It allows for the fusion of exocytic vesicles to the PM and the subsequent recycling of Golgi-localized proteins back to the Golgi via three distinct and parallel recycling pathways. This recycling process requires several components, including a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), a retromer submit, and the COPI coat complex. Snc1 interacts with exocytic SNAREs (Sso1/2, Sec9) and the exocytic complex to complete the process of exocytosis. It also interacts with endocytic SNAREs (Tlg1 and Tlg2) during endocytic trafficking. Snc1 has been extensively investigated in fungi and has been found to play crucial roles in various aspects of intracellular protein trafficking. When Snc1 is overexpressed alone or in combination with some key secretory components, it results in enhanced protein production. This article will cover the role of Snc1 in the anterograde and retrograde trafficking of fungi and its interactions with other proteins for efficient cellular transportation.
Collapse
Affiliation(s)
- Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Abdul Waheed
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quaid Hussain
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Ling Shen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Li N, Qiu Z, Cai W, Shen Y, Wei D, Chen Y, Wang W. The Ras small GTPase RSR1 regulates cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:87. [PMID: 37218014 PMCID: PMC10204303 DOI: 10.1186/s13068-023-02341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable resource in the world and has attracted widespread attention. It can be hydrolyzed into sugars with the help of cellulases and hemicellulases that are secreted by filamentous fungi. Several studies have revealed that the Ras small GTPase superfamily regulates important cellular physiological processes, including synthesis of metabolites, sporulation, and cell growth and differentiation. However, it remains unknown how and to what extent Ras small GTPases participate in cellulase production. RESULTS In this study, we found that the putative Ras small GTPase RSR1 negatively regulated the expression of cellulases and xylanases. Deletion of rsr1 (∆rsr1) significantly increased cellulase production and decreased the expression levels of ACY1-cAMP-protein kinase A (PKA) signaling pathway genes and the concentration of intracellular cyclic adenosine monophosphate (cAMP). Loss of acy1 based on ∆rsr1 (∆rsr1∆acy1) could further increase cellulase production and the expression levels of cellulase genes, while overexpression of acy1 based on ∆rsr1 (∆rsr1-OEacy1) significantly reduced cellulase production and transcriptional levels of cellulase genes. In addition, our results revealed that RSR1 negatively controlled cellulase production via the ACY1-cAMP-PKA pathway. Transcriptome analysis revealed significantly increased expression of three G-protein coupled receptors (GPCRs; tre62462, tre58767, and tre53238) and approximately two-fold higher expression of ACE3 and XYR1, which transcriptionally activated cellulases with the loss of rsr1. ∆rsr1∆ tre62462 exhibited a decrease in cellulase activity compared to ∆rsr1, while that of ∆rsr1∆tre58767 and ∆rsr1∆tre53238 showed a remarkable improvement compared to ∆rsr1. These findings revealed that GPCRs on the membrane may sense extracellular signals and transmit them to rsr1 and then to ACY1-cAMP-PKA, thereby negatively controlling the expression of the cellulase activators ACE3 and XYR1. These data indicate the crucial role of Ras small GTPases in regulating cellulase gene expression. CONCLUSIONS Here, we demonstrate that some GPCRs and Ras small GTPases play key roles in the regulation of cellulase genes in Trichoderma reesei. Understanding the roles of these components in the regulation of cellulase gene transcription and the signaling processes in T. reesei can lay the groundwork for understanding and transforming other filamentous fungi.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Zhouyuan Qiu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wanchuan Cai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
- Jiangsu Yiming Biological Technology Co., Ltd., Suqian, 223699, Jiangsu, China.
| |
Collapse
|
14
|
Ma C, Liu J, Tang J, Sun Y, Jiang X, Zhang T, Feng Y, Liu Q, Wang L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb Cell Fact 2023; 22:97. [PMID: 37161391 PMCID: PMC10170752 DOI: 10.1186/s12934-023-02104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.
Collapse
Affiliation(s)
- Chixiang Ma
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Jialong Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Tang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanlu Sun
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Xiaojie Jiang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Tongtong Zhang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qinghua Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
15
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
16
|
Dos Santos UR, Dos Santos JL. Trichoderma after crossing kingdoms: infections in human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:97-126. [PMID: 36748123 DOI: 10.1080/10937404.2023.2172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trichoderma is a saprophytic fungus that is used worldwide as a biocontrol and biofertilizer agent. Although considered nonpathogenic until recently, reports of human infections produced by members of the Trichoderma genus are increasing. Numerous sources of infection were proposed based upon patient data and phylogenetic analysis, including air, agriculture, and healthcare facilities, but the deficit of knowledge concerning Trichoderma infections makes patient treatment difficult. These issues are compounded by isolates that present profiles which exhibit high minimum inhibitory concentration values to available antifungal drugs. The aim of this review is to present the global distribution and sources of infections that affect both immunocompetent and immunocompromised hosts, clinical features, therapeutic strategies that are used to treat patients, as well as highlighting treatments with the best responses. In addition, the antifungal susceptibility profiles of Trichoderma isolates that have emerged in recent decades were examined and which antifungal drugs need to be further evaluated as potential candidates to treat Trichoderma infections are also indicated.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
17
|
Abstract
Nematode-trapping fungi (NTF) are the majority of carnivorous microbes to capture nematodes through diverse and sophisticated trapping organs derived from hyphae. They can adopt carnivorous lifestyles in addition to saprophytism to obtain extra-nutrition from nematodes. As a special group of fungi, the NTF are not only excellent model organism for studying lifestyle transition of fungi but also natural resources of exploring biological control of nematodes. However, the carnivorous mechanism of NTF remains poorly understood. Nowadays, the omics studies of NTF have provided numerous genes and pathways that are associated with the phenotypes of carnivorous traits, which need molecular tools to verify. Here, we review the development and progress of gene manipulation tools in NTF, including methodology and strategy of transformation, random gene mutagenesis methods and target gene mutagenesis methods. The principle and practical approach for each method was summarized and discussed, and the basic operational flow for each tool was described. This paper offers a clear reference and instruction for researchers who work on NTF as well as other group of fungi.
Collapse
Affiliation(s)
- Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Arai T, Ichinose S, Shibata N, Kakeshita H, Kodama H, Igarashi K, Takimura Y. Inducer-free cellulase production system based on the constitutive expression of mutated XYR1 and ACE3 in the industrial fungus Trichoderma reesei. Sci Rep 2022; 12:19445. [PMID: 36376415 PMCID: PMC9663580 DOI: 10.1038/s41598-022-23815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei is a widely used host for producing cellulase and hemicellulase cocktails for lignocellulosic biomass degradation. Here, we report a genetic modification strategy for industrial T. reesei that enables enzyme production using simple glucose without inducers, such as cellulose, lactose and sophorose. Previously, the mutated XYR1V821F or XYR1A824V was known to induce xylanase and cellulase using only glucose as a carbon source, but its enzyme composition was biased toward xylanases, and its performance was insufficient to degrade lignocellulose efficiently. Therefore, we examined combinations of mutated XYR1V821F and constitutively expressed CRT1, BGLR, VIB1, ACE2, or ACE3, known as cellulase regulators and essential factors for cellulase expression to the T. reesei E1AB1 strain that has been highly mutagenized for improving enzyme productivity and expressing a ß-glucosidase for high enzyme performance. The results showed that expression of ACE3 to the mutated XYR1V821F expressing strain promoted cellulase expression. Furthermore, co-expression of these two transcription factors also resulted in increased productivity, with enzyme productivity 1.5-fold higher than with the conventional single expression of mutated XYR1V821F. Additionally, that productivity was 5.5-fold higher compared to productivity with an enhanced single expression of ACE3. Moreover, although the DNA-binding domain of ACE3 had been considered essential for inducer-free cellulase production, we found that ACE3 with a partially truncated DNA-binding domain was more effective in cellulase production when co-expressed with a mutated XYR1V821F. This study demonstrates that co-expression of the two transcription factors, the mutated XYR1V821F or XYR1A824V and ACE3, resulted in optimized enzyme composition and increased productivity.
Collapse
Affiliation(s)
- Toshiharu Arai
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Sakurako Ichinose
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Nozomu Shibata
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Hiroshi Kakeshita
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan.
| | - Hiroshi Kodama
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Kazuaki Igarashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| |
Collapse
|