1
|
Long Q, Li S, Zuo T, Duan X, Wu X, Chang L, Zhang Y, Wang Y, Zhang Z, Xu P. Quantitative redox proteomics links thioredoxin to heavy ion resistance in Deinococcus radiodurans. Free Radic Biol Med 2025; 229:225-236. [PMID: 39710107 DOI: 10.1016/j.freeradbiomed.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Heavy ion radiotherapy is an effective treatment for tumors, but its therapeutic efficacy is limited in cancer cells with radiation resistance. Deinococcus radiodurans, well known for its extremely resisting various stresses, was used to explore radioresistant mechanism. We used quantitative redox proteomics to track the dynamic changes in the global redox state after 12C6+ irradiation. The redox-relevant metabolic signaling pathway was significantly changed, where thioredoxin 2 (DrTrx2) was found to shift towards more reduced status than other redox proteins, promoting great interest to explore the role of DrTrx2 redox in radioresistance. Both the reduction ratio and expression level of DrTrx2 were shown to affect the radioresistant phenotype under varying doses of 60Co irradiation. Additionally, the reduction at the active site was confirmed to provide the radioresistance to DrTrx2, further revealing the universality of DrTrx2 in radiation protection. Furthermore, we used radiation-sensitive Escherichia coli strain as host cells to analyze change of DrTrx2 interactome after UV radiation. Compared with the control, UV radiation induction altered the interaction of DrTrx2 with substrate proteins. The significantly altered proteins were enriched in DNA repair, base analogs metabolism, mitochondrial metabolism, RNA metabolism, transcription, translation, antioxidation, and so on. Therefore, DrTrx2 improved radioresistance by changing interaction with substrate proteins and their reduced states. Overall, this study provides a landscape of the radiation-induced dynamic change of redox state and the protein interaction, which provides novel insights for better understanding radioresistant mechanism and improving therapeutic efficiency of heavy ion irradiation for cancers.
Collapse
Affiliation(s)
- Qi Long
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Shuang Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Tao Zuo
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Xiaoxiao Duan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolin Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Yali Zhang
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenpeng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China.
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Anjou C, Lotoux A, Morvan C, Martin-Verstraete I. From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environ Microbiol 2024; 26:e16668. [PMID: 38899743 DOI: 10.1111/1462-2920.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The thioredoxin (Trx) system, found universally, is responsible for the regeneration of reversibly oxidized protein thiols in living cells. This system is made up of a Trx and a Trx reductase, and it plays a central role in maintaining thiol-based redox homeostasis by reducing oxidized protein thiols, such as disulfide bonds in proteins. Some Trxs also possess a chaperone function that is independent of thiol-disulfide exchange, in addition to their thiol-disulfide reductase activity. These two activities of the Trx system are involved in numerous physiological processes in bacteria. This review describes the diverse physiological roles of the Trx system that have emerged throughout bacterial evolution. The Trx system is essential for responding to oxidative and nitrosative stress. Beyond this primary function, the Trx system also participates in redox regulation and signal transduction, and in controlling metabolism, motility, biofilm formation, and virulence. This range of functions has evolved alongside the diversity of bacterial lifestyles and their specific constraints. This evolution can be characterized by the multiplication of the systems and by the specialization of cofactors or targets to adapt to the constraints of atypical lifestyles, such as photosynthesis, insect endosymbiosis, or spore-forming bacteria.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Natarajan D, Prasad NR, Sudharsan M, Bharathiraja P, Lakra DS. Auranofin sensitizes breast cancer cells to paclitaxel chemotherapy by disturbing the cellular redox system. Cell Biochem Funct 2023; 41:1305-1318. [PMID: 37792847 DOI: 10.1002/cbf.3865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
The intrinsic redox status of cancer cells limits the efficacy of chemotherapeutic drugs. Auranofin, a Food and Drug Administration-approved gold-containing compound, documented with effective pharmacokinetics and safety profiles in humans, has recently been repurposed for anticancer activity. This study examined the paclitaxel-sensitizing effect of auranofin by targeting redox balance in the MDA-MB-231 and MCF-7 breast cancer cell lines. Auranofin treatment depletes the activities of superoxide dismutase, catalase, and glutathione peroxidase and alters the redox ratio in the breast cancer cell lines. Furthermore, it has been noticed that auranofin augmented paclitaxel-mediated cytotoxicity in a concentration-dependent manner in both MDA-MB-231 and MCF-7 cell lines. Moreover, auranofin increased the levels of intracellular reactive oxygen species (observed using 2, 7-diacetyl dichlorofluorescein diacetate staining) and subsequently altered the mitochondrial membrane potential (rhodamine-123 staining) in a concentration-dependent manner. Further, the expression of apoptotic marker p21 was found to be higher in auranofin plus paclitaxel-treated breast cancer cells compared to paclitaxel-alone treatment. Thus, the present results illustrate the chemosensitizing property of auranofin in MDA-MB-231 and MCF-7 breast cancer cell lines via oxidative metabolism. Therefore, auranofin could be considered a chemosensitizing agent during cancer chemotherapy.
Collapse
Affiliation(s)
- Deepika Natarajan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - M Sudharsan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Deepa Swati Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
4
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
5
|
The radioresistant and survival mechanisms of Deinococcus radiodurans. RADIATION MEDICINE AND PROTECTION 2023. [DOI: 10.1016/j.radmp.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
6
|
Antibacterial Activity of Ebselen. Int J Mol Sci 2023; 24:ijms24021610. [PMID: 36675123 PMCID: PMC9864093 DOI: 10.3390/ijms24021610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Ebselen is a low-molecular-weight organoselenium compound that has been broadly studied for its antioxidant, anti-inflammatory, and cytoprotective properties. These advantageous properties were initially associated with mimicking the activity of selenoprotein glutathione peroxidase, but the biomedical impact of this compound appear to be far more complex. Ebselen serves as a substrate or inhibitor with multiple protein/enzyme targets, whereas inhibition typically originates from the covalent modification of cysteine residues by opening the benzisoselenazolone ring and S-Se bond formation. The inhibition of enzymes of various classes and origins has been associated with substantial antimicrobial potential among other activities. In this contribution, we summarize the current state of the art regarding the antibacterial activity of ebselen. This activity, alone and in combination with commercial pharmaceuticals, against pathogens, including those resistant to drugs, is presented, together with the molecular mechanism behind the reactivity. The specific inactivation of thioredoxin reductase, bacterial toxins, and other resistance factors is considered to have certain therapeutic implications. Synergistic action and sensitization to common antibiotics assisted with the use of ebselen appear to be promising directions in the treatment of persistent infections.
Collapse
|
7
|
M S, N RP, Rajendrasozhan S. Bacterial redox response factors in the management of environmental oxidative stress. World J Microbiol Biotechnol 2022; 39:11. [PMID: 36369499 DOI: 10.1007/s11274-022-03456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bacteria evolved to survive in the available environmental chemosphere via several cellular mechanisms. A rich pool of antioxidants and stress regulators plays a significant role in the survival of bacteria in unfavorable environmental conditions. Most of the microbes exhibit resistant phenomena in toxic environment niches. Naturally, bacteria possess efficient thioredoxin reductase, glutaredoxin, and peroxiredoxin redox systems to handle environmental oxidative stress. Further, an array of transcriptional regulators senses the oxidative stress conditions. Transcription regulators, such as OxyR, SoxRS, PerR, UspA, SsrB, MarA, OhrR, SarZ, etc., sense and transduce bacterial oxidative stress responses. The redox-sensitive transcription regulators continuously recycle the utilized antioxidant enzymes during oxidative stress. These regulators promote the expression of antioxidant enzymes such as superoxide dismutase, catalase, and peroxides that overcome oxidative insults. Therefore, the transcriptional regulations maintain steady-state activities of antioxidant enzymes representing the resistance against host cell/environmental oxidative insults. Further, the redox system provides reducing equivalents to synthesize biomolecules, thereby contributing to cellular repair mechanisms. The inactive transcriptional regulators in the undisturbed cells are activated by oxidative stress. The oxidized transcriptional regulators modulate the expression of antioxidant and cellular repair enzymes to survive in extreme environmental conditions. Therefore, targeting these antioxidant systems and response regulators could alter cellular redox homeostasis. This review presents the mechanisms of different redox systems that favor bacterial survival in extreme environmental oxidative stress conditions.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India.
| | | |
Collapse
|
8
|
Xu Q, Zhang J, Zhao Z, Chu Y, Fang J. Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119323. [PMID: 35793738 DOI: 10.1016/j.bbamcr.2022.119323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis, while dysregulation of redox homeostasis is a hallmark for cancer cells. Thus, there is considerable potential to inhibit the aberrantly upregulated TrxR in cancer cells to discover selective cancer therapeutic agents. Nevertheless, the structural types of TrxR inhibitors presented currently are still relatively limited. We herein report that PACMA 31, previously reported to inhibit protein disulfide isomerase (PDI), is a potent TrxR inhibitor. PACMA 31 possesses a pharmacophore scaffold that is structurally different from the announced TrxR inhibitors and exhibits effective cytotoxicity against cervical cancer cells. Our results reveal that PACMA 31 selectively inhibits TrxR over the related glutathione reductase (GR) and in the presence of reduced glutathione (GSH). Further studies with mutant enzyme and molecular docking suggest that the propynamide fragment of PACMA 31 interacts covalently with the selenocysteine residue of TrxR. Moreover, PACMA 31 effectively and selectively curbs TrxR activity in cells and further stimulates the production of reactive oxygen species (ROS) at low micromolar concentrations, which in turn triggers the accumulation of oxidized thioredoxin (Trx) and GSSG in cells. Follow-up studies demonstrate that PACMA 31 targets TrxR in cells to induce oxidative stress-mediated cancer cell apoptosis. Our results provide a new structural type of TrxR inhibitor that may serve as a useful probe for investigating the biology of TrxR-implicated pathways, and uncover a new target of PACMA 31 that contributes to it becoming a candidate for cancer treatment.
Collapse
Affiliation(s)
- Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China..
| | - Zhengjia Zhao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
9
|
M S, N RP, Chakraborty A, Rajendrasozhan S. Proteomic profiling of Deinococcus radiodurans with response to thioredoxin reductase inhibitor and ionizing radiation treatment. J Proteomics 2022; 267:104697. [PMID: 35995383 DOI: 10.1016/j.jprot.2022.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
This study explains the importance of cellular redox system in preserving the proteome of the radioresistant Deinococcus radiodurans. The thioredoxin reductase (TrxR) redox system was inhibited by ebselen (10 μM), and then the bacterium was exposed to 4 kGy of ionizing radiation. The differentially expressed proteins were analyzed using label-free quantitative (LFQ) proteomics. The 4 kGy radiation treatment increases the expression of stress response proteins like osmotically inducible protein OsmC, catalase, and metallophosphoesterase compared to control. Ebselen plus radiation treatment augments oxidoreductases proteins in D. radiodurans. Further, the proteins involved in glycolysis, tricarboxylic acetic acid (TCA) and proteins like proteases, peptidase, and peptide transporters were significantly decreased in the ebselen plus radiation group compared to radiation treated group. Further, ebselen plus radiation treatment increases the ATP-binding cassette (ABC) transporters involved in the efflux of toxic chemicals and nutrient uptake and the stress response related membrane protein like S-layer homology domain-containing protein in D. radiodurans. Thus, the results show that the altered redox status via inhibition of TrxR redox system significantly affects the expression of essential cellular proteins for the survival. The cellular content of D. radiodurans may be used to handle redox imbalances in the normal cells during cancer radiotherapy. SIGNIFICANCE: Deinococcus radiodurans is a popular radioresistance organism with efficient antioxidant systems and DNA repair mechanisms. There are many antioxidant systems and small molecules that responsible for its resistance. The importance of thiol based antioxidant systems in its resistance property has not fully studied yet. Thioredoxin reductase is an important disulfide containing protein that involved in maintaining redox homeostasis. The TrxR inhibition affects the cell survival and synthesis of molecules against ionizing radiation. In this study we are reporting the effects of TrxR inhibitor on proteome of D. radiodurans upon ionizing radiation. This study reveals the significance of TrxR antioxidant system on the proteome of D. radiodurans. The inhibition of TrxR antioxidant system and the subsequent disturbances in the proteome content makes the organism vulnerable to oxidative stress.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 700098, West Bengal, India
| | | |
Collapse
|