1
|
Tadesse BT, Zhao S, Gu L, Jers C, Mijakovic I, Solem C. Genome analysis reveals a biased distribution of virulence and antibiotic resistance genes in the genus Enterococcus and an abundance of safe species. Appl Environ Microbiol 2025; 91:e0041525. [PMID: 40202320 DOI: 10.1128/aem.00415-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Enterococci are lactic acid bacteria (LAB) that, as their name implies, often are found in the gastrointestinal tract of animals. Like many other gut-dwelling LAB, for example, various lactobacilli, they are frequently found in other niches as well, including plants and fermented foods from all over the world. In fermented foods, they contribute to flavor and other organoleptic properties, help extend shelf life, and some even possess probiotic properties. There are many positive attributes of enterococci; however, they have been overshadowed by the occurrence of antibiotic-resistant and virulent strains, often reported for the two species, Enterococcus faecalis and Enterococcus faecium. More than 40,000 whole-genome sequences covering 64 Enterococcus type species are currently available in the National Center for Biotechnology Information repository. Closer inspection of these sequences revealed that most represent the two gut-dwelling species E. faecalis and E. faecium. The remaining 62 species, many of which have been isolated from plants, are thus quite underrepresented. Of the latter species, we found that most carried no potential virulence and antibiotic resistance genes, an observation that is aligned with these species predominately occupying other niches. Thus, the culprits found in the Enterococcus genus mainly belong to E. faecalis, and a biased characterization has resulted in the opinion that enterococci do not belong in food. Since enterococci possess many industrially desirable traits and frequently are found in other niches besides the gut of animals, we suggest that their use as food fermentation microorganisms is reconsidered.IMPORTANCEWe have retrieved a large number of Enterococcus genome sequences from the National Center for Biotechnology Information repository and have scrutinized these for the presence of virulence and antibiotic resistance genes. Our results show that such genes are prevalently found in the two species Enterococcus faecalis and Enterococcus faecium. Most other species do not harbor any virulence and antibiotic resistance genes and display great potential for use as food fermentation microorganisms or as probiotics. The study contributes to the current debate on enterococci and goes against the mainstream perception of enterococci as potentially dangerous microorganisms that should not be associated with food and health.
Collapse
Affiliation(s)
- Belay Tilahun Tadesse
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Chalmers University of Technology, Gothenburg, Sweden
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Aranda-Carrillo SG, Del Carmen Ramos-Sustaita L, Cárdenas-Castro AP, Gutiérrez-Sarmiento W, Sánchez-Burgos JA, Ruíz-Valdiviezo VM, Sáyago-Ayerdi SG. Microbiota modulation and microbial metabolites produced during the in vitro colonic fermentation of Psidium guajava species. Food Res Int 2025; 208:116228. [PMID: 40263797 DOI: 10.1016/j.foodres.2025.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The interaction between gut microbiota and its metabolites is a growing area of research. Therefore, this study analyzed the bioactive compound profile of the indigestible fraction (IF) from Psidium species and evaluated its effects on microbiota composition during in vitro colonic fermentation. Hydroxycinnamic acids, hydroxybenzoic acids, and ellagitannins were the predominant phenolic compounds, with P. friedrichsthalianum ('Cas') exhibiting the highest concentrations. During in vitro colonic fermentation, a reduction in bacterial genera such as Enterobacteriaceae and Klebsiella was observed, while Faecalibacterium, Oscillibacter, Dialister, and Ruminococcaceae positively correlated with phenolic microbial metabolites. These findings suggest that the IF of Psidium species modulates gut microbiota composition and potentially contributes to the production of beneficial metabolites during human colonic fermentation, reinforcing the role of whole fruit consumption as a comprehensive matrix of nutrients and bioactive compounds beneficial to gut health.
Collapse
Affiliation(s)
- Suecia Grissol Aranda-Carrillo
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Lourdes Del Carmen Ramos-Sustaita
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla-Gutiérrez, Departamento de Ingeniería Química y Bioquímica, Laboratory of Molecular Biology, Carretera Panamericana km 1080, CP 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Alicia Paulina Cárdenas-Castro
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Wilbert Gutiérrez-Sarmiento
- Chiapas Medicinal Plant Research Center, Pharmacobiology Experimental Laboratory, Autonomus University of Chiapas, Tuxtla Gutierrez, Chiapas, Mexico
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla-Gutiérrez, Departamento de Ingeniería Química y Bioquímica, Laboratory of Molecular Biology, Carretera Panamericana km 1080, CP 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
3
|
Casado A, Fernández E, González H, Fernández M, Alvarez MA, Ladero V. Isolation and Characterization of β-Phenylethylamine-Producing Lactic Acid Bacteria from Dairy Products. Microorganisms 2025; 13:966. [PMID: 40431140 PMCID: PMC12114284 DOI: 10.3390/microorganisms13050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
β-phenylethylamine (PEA) is a neuroactive trace amine synthesized by the enzymatic decarboxylation of phenylalanine. PEA is involved in the improvement of mood and attention. Functional foods enriched in this compound could, therefore, be of interest to the food industry. PEA is produced by microbial activity in certain foods, but usually only in small amounts. The search for PEA-producing microorganisms with good technological properties is thus a pre-requisite if such functional foods are to be produced. This work reports the isolation of thirty-three PEA-producing bacterial strains from samples of different dairy products. They belong to the genus Enterococcus, and the species Levilactobacillus brevis. Identified strains of Enterococcus durans were then selected for technological characterization. Some of them showed properties of interest. In this species, PEA was determined to be produced via the action of tyrosine decarboxylase, encoded by the gene tdcA. This implies that, apart from PEA, a concomitant production of tyramine, a toxic biogenic amine, was observed.
Collapse
Affiliation(s)
- Angel Casado
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Asturias, Spain; (A.C.); (E.F.); (H.G.); (M.F.); (M.A.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Eva Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Asturias, Spain; (A.C.); (E.F.); (H.G.); (M.F.); (M.A.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Héctor González
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Asturias, Spain; (A.C.); (E.F.); (H.G.); (M.F.); (M.A.A.)
| | - María Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Asturias, Spain; (A.C.); (E.F.); (H.G.); (M.F.); (M.A.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Miguel A. Alvarez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Asturias, Spain; (A.C.); (E.F.); (H.G.); (M.F.); (M.A.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Asturias, Spain; (A.C.); (E.F.); (H.G.); (M.F.); (M.A.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Sharma A, Bansal S, Moore MD, Luo Y, Schneider KR, Zhang B. Exploring the Frontiers of Nanopore Sequencing in Food Safety and Food Microbiology. Annu Rev Food Sci Technol 2025; 16:219-244. [PMID: 39805043 DOI: 10.1146/annurev-food-072023-034549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Foodborne illnesses are a significant global public health challenge, with an estimated 600 million cases annually. Conventional food microbiology methods tend to be laborious and time consuming, pose difficulties in real-time utilization, and can display subpar accuracy or typing capabilities. With the recent advancements in third-generation sequencing and microbial omics, nanopore sequencing technology and its long-read sequencing capabilities have emerged as a promising platform. In recent years, nanopore sequencing technology has been benchmarked for its amplicon sequencing, whole-genome and transcriptome analysis, meta-analysis, and other advanced omics approaches. This review comprehensively covers nanopore sequencing technology's current advances in food safety applications, including outbreak investigation, pathogen surveillance, and antimicrobial resistance profiling. Despite significant progress, ongoing research and development are crucial to overcoming challenges in sequencing chemistry, accuracy, bioinformatics, and real-time adaptive sampling to fully realize nanopore sequencing technology's potential in food safety and food microbiology.
Collapse
Affiliation(s)
- Arnav Sharma
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA;
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Sherry Bansal
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA;
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Yaguang Luo
- Environmental Microbial & Food Safety Lab and Food Quality Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland, USA
| | - Keith R Schneider
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA;
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
5
|
Zhou C, Chang X, Zou Y, Zhao F, Zhou G, Ye K. The mechanism of Enterococcus faecium on the virulence of Listeria monocytogenes during the storage of fermented sausages by whole genome analysis. Int J Food Microbiol 2024; 422:110826. [PMID: 39024730 DOI: 10.1016/j.ijfoodmicro.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
This study investigated the safety characteristics and potential probiotic properties of Enterococcus faecium by using whole genome analysis, and then explored the effect of this strain on the virulence of Listeria monocytogenes in vitro and during the storage of fermented sausages. Results showed that E. faecium B1 presented enterocin A, B, and P, enterolysin A, and UviB, and the exotoxin related genes and exoenzyme related genes were not detected in the genome of E. faecium B1. However, the adherence genes including acm and scm were present in this strain, which also positively correlated with characteristics related to probiotic potential. In addition, E. faecium could adapt to the condition of fermented sausages, and decrease the survival of L. monocytogenes in vitro and in vivo. The expression of the virulence genes (prfA, hly, inlA, and inlB) and sigB-related genes (prli42, rsbT, rsbU, rsbV, rsbW, and sigB) were all inhibited by E. faecium B1 to different extents during the storage of fermented sausages at 4 °C. Moreover, compared with the E. faecium B1 group, the expression level of entA, entB, and entP genes of E. faecium B1 in the co-culture of fermented sausages was increased during the storage, which may be the inhibition mechanism of E. faecium B1 on L. monocytogenes. These results demonstrated that E. faecium B1 could potentially be used as bio-protection to control L. monocytogenes in meat products.
Collapse
Affiliation(s)
- Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Xiaochen Chang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
6
|
Wigmore SM, Greenhill AR, Bean DC. Isolation and characterization of enterococci from poultry reveals high incidence of Enterococcus thailandicus in Victoria, Australia. J Appl Microbiol 2024; 135:lxae194. [PMID: 39081072 DOI: 10.1093/jambio/lxae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
AIMS Antibiotic resistance is a global health crisis. Roughly two-thirds of all antibiotics used are in production animals, which have the potential to impact the development of antibiotic resistance in bacterial pathogens of humans. There is little visibility on the extent of antibiotic resistance in the Australian food chain. This study sought to establish the incidence of antibiotic resistance among enterococci from poultry in Victoria. METHODS AND RESULTS In 2016, poultry from a Victorian processing facility were swabbed immediately post-slaughter and cultured for Enterococcus species. All isolates recovered were speciated and tested for antibiotic susceptibility to 12 antibiotics following the Clinical Laboratory Standards Institute guidelines. A total of 6 farms and 207 birds were sampled and from these 285 isolates of Enterococcus were recovered. Eight different enterococcal species were identified as follows: E. faecalis (n = 122; 43%), E. faecium (n = 92; 32%), E. durans (n = 35; 12%), E. thailandicus (n = 23; 8%), E. hirae (n = 10; 3%), and a single each of E. avium, E. gallinarum, and E. mundtii. Reduced susceptibility to older classes of antibiotics was common, in particular: erythromycin (73%), rifampin (49%), nitrofurantoin (40%), and ciprofloxacin (39%). Two vancomycin-intermediate isolates were recovered, but no resistance was detected to either linezolid or gentamicin. CONCLUSIONS The relatively high numbers of a recently described species, E. thailandicus, suggest this species might be well adapted to colonize poultry. The incidence of antibiotic resistance is lower in isolates from poultry than in human medicine in Australia. These results suggest that poultry may serve as a reservoir for older antibiotic resistance genes but is not driving the emergence of antimicrobial resistance in human bacterial pathogens. This is supported by the absence of resistance to linezolid and gentamicin.
Collapse
Affiliation(s)
- Sarah M Wigmore
- Microbiology Research Group, Institute of Innovation, Science and Sustainability, Federation University Australia, Mount Helen Campus, PO Box 663, Ballarat, VIC 3353, Australia
| | - Andrew R Greenhill
- Microbiology Research Group, Institute of Innovation, Science and Sustainability, Federation University Australia, Gippsland Campus, PO Box 3191, Churchill, VIC 3841, Australia
| | - David C Bean
- Microbiology Research Group, Institute of Innovation, Science and Sustainability, Federation University Australia, Mount Helen Campus, PO Box 663, Ballarat, VIC 3353, Australia
| |
Collapse
|
7
|
Lejri R, Ellafi A, Valero Tebar J, Chaieb M, Mekki A, Džunková M, Ben Younes S. Phenotypic characterization for bioremediation suitability of isolates from Southern Tunisian tannery effluent. Microbiol Res 2024; 285:127771. [PMID: 38788351 DOI: 10.1016/j.micres.2024.127771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Effluents from the leather tanning industry contain diverse pollutants, including hazardous heavy metals, posing threats to public health and the surrounding environment. Indigenous bacterial isolates can represent an eco-friendly approach for tannery wastewater treatment; however, phenotypic characterization is necessary to determine whether these strains are suitable for bioremediation. In the present study, we analyzed seven new Enterococcus faecium strains and two new Bacillus subtillis strains isolated from effluents from the Southern Tunisian Tannery (ESTT). We evaluated phenotypic features beneficial for bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities. Additionally, we examined characteristics naturally occurring in environmental bacteria but less desirable in strains selected for bioremediation, such as antibiotic resistances and pathogenicity indicators. The observed phenotypes were then compared with whole-genome analysis. We observed biofilm production in two slime-producing bacteria, B. licheniformis RLT6, and E. faecium RLT8. Hydrophobicity of E. faecium strains RLT1, RLT5, RLT8, and RLT9, as well as B. licheniformis RLT6 correlated positively with increasing ESTT concentration. Exoenzyme activities were detected in E. faecium strains RLT2, RLT4, and RLT7, as well as B. licheniformis RLT6. As anticipated, all strains exhibited common resistances to antibiotics and hemolysis, which are widespread in nature and do not hinder their application for bioremediation. Importantly, none of the strains exhibited the pathogenic hypermucoviscosity phenotype. To the best of our knowledge, this is the first report consolidating all these phenotypic characteristics concurrently, providing a complete overview of strains suitability for bioremediation. IMPORTANCE: The study evaluates the bioremediation potential of seven Enterococcus faecium strains and two Bacillus subtillis strains isolated from the effluents from the Southern Tunisian tannery (ESTT), which pose threats to public health and environmental integrity. The analysis primarily examines the phenotypic traits crucial to bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities, as well as characteristics naturally occurring in environmental bacteria related to heavy metal resistance, such as antibiotic resistances. Several strains were found to have high bioremediation potential and exhibit only antibiotic resistances commonly found in nature, ensuring their application for bioremediation remains uncompromised. The results of the exhaustive phenotypic analysis are contrasted with the whole genome sequences of the nine strains, underscoring the appropriateness of these bacterial strains for eco-friendly interventions in tannery wastewater treatment.
Collapse
Affiliation(s)
- Rokaia Lejri
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Ali Ellafi
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Analysis, treatment and valorization of environment pollutants and products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Juan Valero Tebar
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46980, Spain
| | - Mohamed Chaieb
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Ali Mekki
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46980, Spain.
| | - Sonia Ben Younes
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Population health, environmental aggressors and alternative therapies (LR24ES10), Faculty of Medicine of Tunis.
| |
Collapse
|