1
|
Alesandra Stinghen Garcia Lonni A, Dahmer D, Almeida Pacheco da Costa I, Cristina DiCiaula M, Roberta Ritter M, Luciano Bruschi M, Baesso Guimarães F, Carlos Bento A, Hillmann Rohling J, Vieira de Souza Leite Mello E, Raquel Marçal Natali M, Luciano Baesso M, Carlos Palazzo de Mello J. Evaluation of a multiple microemulsion from Trichilia catigua extract and the percutaneous penetration through skin by Phase-Resolved photoacoustic spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121152. [PMID: 35316628 DOI: 10.1016/j.saa.2022.121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Emulsion systems have been a breakthrough in cosmetic products, providing performance and effectiveness of products that use this technological strategy for drug delivery systems. In this sense, the microemulsion of the multiple emulsion W/O/W type containing a standardized extract of Trichilia catigua with high levels of polyphenols and antioxidants has great potential for cosmetic use. The aim of this study was to evaluate the formulations safety through the analysis of toxicity, comedogenicity, and histopathology in rabbits and apply the Phase-Resolved Photoacoustic Spectroscopy method to determine the formulation percutaneous penetration through the skin. The ex vivo experiments were performed in the ears of albino New Zealand rabbits treated twice a day for 14 days. The results of histological, hematological, and blood chemistry showed that the formulations are safe. Histopathological analysis showed no tissue reaction in any of the analyzed organs (liver and kidneys), confirming the absence of toxicity. Histological analysis showed that the formulations with extract of T. catigua demonstrated mild-moderately comedogenic and acanthosis compared to the control group. Inflammatory reactions, erythema, and desquamation were not observed in treated and controls animals. The phase-resolved photoacoustic spectroscopy method showed the penetration of the developed formulations throughout the rabbit's skin, identifying their absorption bands at the dermal side of the skin. In conclusion, the results of this study provide a step towards the application of the developed natural antioxidant encapsulated in a multiple microemulsion for skincare, concerned with the physical, chemical, and biological properties of the formulation.
Collapse
Affiliation(s)
| | - Débora Dahmer
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Av. Robert Koch, 60, 86038-350, Londrina, Paraná, Brazil
| | - Isabela Almeida Pacheco da Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biologia Farmacêutica, Palafito, Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Maria Cristina DiCiaula
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biologia Farmacêutica, Palafito, Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Mariane Roberta Ritter
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biologia Farmacêutica, Palafito, Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Francine Baesso Guimarães
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Antonio Carlos Bento
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Jurandir Hillmann Rohling
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | | | - Maria Raquel Marçal Natali
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Mauro Luciano Baesso
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - João Carlos Palazzo de Mello
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biologia Farmacêutica, Palafito, Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
2
|
Carabajal MPA, Piloto-Ferrer J, Nicollela HD, Squarisi IS, Prado Guissone AP, Esperandim TR, Tavares DC, Isla MI, Zampini IC. Antigenotoxic, antiproliferative and antimetastatic properties of a combination of native medicinal plants from Argentina. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113479. [PMID: 33091491 DOI: 10.1016/j.jep.2020.113479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jarilla is the common name of an appreciated group of native plants from the semi-arid region in Argentina (Larrea cuneifolia Cav., Larrea divaricata Cav. and Zuccagnia punctata Cav.) that have been historically consumed to heal respiratory, musculoskeletal and skin ailments, as well as recommended for weakness/tiredness, hypertension, diabetes and cancer treatment. It was previously reported that some biological properties could be improved when these plants are used jointly. Infusions of a defined mixture, composed by three Jarilla species, L. cuneifolia: L. divaricata: Z. punctata (0.5:0.25:0.25) (HM2) showed synergistic and additive effect on antioxidant activity even after passing through the gastro-duodenal tract. AIM OF THE STUDY The main purpose of this work was to evaluate antigenotoxic, antitumor, and anti-metastatic properties of the Jarilla species that grow in the Northwest of Argentina and a herbal combination of them. MATERIAL AND METHODS Infusions of Jarilla mixture (HM2), and of each single plant species were prepared. Phenolic profiles of infusions were analyzed by HPLC-ESI-MS/MS and two relevant chemical markers were quantified. The antigenotoxic activity was evaluated by using the Ames test and the Cytokinesis-Block Micronucleus (CBMN) assay against direct mutagens. Evaluations of both cytotoxicity and antiproliferative effects were conducted on tumor and non-tumor cell lines. Both in vivo tumoral growth and metastasis inhibition were evaluated by using a carcinoma model on Balb/c mice. RESULTS HM2 mix could suppress genetic and chromosome mutations induced by 4-nitro-o-phenylendiamine (4-NPD) and doxorubicin. Herbal mixture and single plant infusions showed cytotoxic effect against mammary, uterus, and brain tumoral cells without a selective action vs normal human cell line. HM2 mix was able to reduce mammary tumor mass on the Balb/c mice model and showed a significant reduction in the number of metastatic nodules in the lungs. CONCLUSIONS Our results suggest that the combinations of three Jarilla species from northwest Argentina would be a promising alternative to treat or slow down the development of chronic diseases, such as cancer.
Collapse
Affiliation(s)
- Monica Patricia Antonella Carabajal
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo 1469, 4000, San Miguel de Tucumán, Tucumán, Argentina.
| | - Janet Piloto-Ferrer
- Departamento de Toxicología Genética y Antitumorales, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/Puentes Grandes y Boyeros, La Habana, Cuba.
| | - Heloiza Diniz Nicollela
- Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| | - Iara Silva Squarisi
- Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| | - Ana Paula Prado Guissone
- Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| | | | - Denise Crispim Tavares
- Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo 1469, 4000, San Miguel de Tucumán, Tucumán, Argentina.
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo 1469, 4000, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
3
|
Delerue T, Fátima Barroso M, Dias-Teixeira M, Figueiredo-González M, Delerue-Matos C, Grosso C. Interactions between Ginkgo biloba L. and Scutellaria baicalensis Georgi in multicomponent mixtures towards cholinesterase inhibition and ROS scavenging. Food Res Int 2020; 140:109857. [PMID: 33648175 DOI: 10.1016/j.foodres.2020.109857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/04/2020] [Accepted: 10/27/2020] [Indexed: 02/03/2023]
Abstract
This study gives new insights to understand the type of interactions between Ginkgo biloba L. and Scutellaria baicalensis Georgi, two Chinese medicinal plants with well documented neuroprotective effects, on three targets in Alzheimer's disease (AD): acetylcholinesterase (AChE) and butyrylcholnesterase (BuChE) inhibition and hydrogen peroxide scavenging. Individual samples, binary mixtures with different proportions of both plant species, and also a commercial multicomponent combination containing both plants together with unroasted Coffea arabica L. and quercetin-3-O-rutinoside were used to perform this in vitro evaluation. Sample phenolic profiles were also determined by HPLC-DAD, showing the presence of several flavonoid glycosides, phenolic acids and a methylxanthine. In order to investigate the possible synergism/antagonism interaction, data obtained were analyzed by CompuSyn software. The results showed that G. biloba and S. baicalensis alone display better activities than in mixtures, most of the interactions exhibiting different degrees of antagonism. A slight synergism interaction was only observed for the commercial multicomponent mixture tested against H2O2. Further analysis was carried out to understand which compounds could be responsible for the antagonistic interaction. Seventeen single pure compounds present in all extracts were tested against AChE inhibition, most of them displaying weak or no activity. Only caffeine had a remarkable activity. Five different binary and quaternary mixture compositions were design to deepen the interaction between these compounds, revealing mainly phenolic acid-flavonoid, flavonoid-flavonoid and methylxanthine-flavonoid-phenolic acid antagonistic interactions. These results clearly show that, for the targets evaluated, there is no potentiation of the neuroprotective effect by combining S. baicalensis and G. biloba extracts.
Collapse
Affiliation(s)
- Teresa Delerue
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - M Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; NICiTeS-Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa, Portugal
| | - Maria Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| |
Collapse
|
4
|
Khan H, Belwal T, Efferth T, Farooqi AA, Sanches-Silva A, Vacca RA, Nabavi SF, Khan F, Prasad Devkota H, Barreca D, Sureda A, Tejada S, Dacrema M, Daglia M, Suntar İ, Xu S, Ullah H, Battino M, Giampieri F, Nabavi SM. Targeting epigenetics in cancer: therapeutic potential of flavonoids. Crit Rev Food Sci Nutr 2020; 61:1616-1639. [PMID: 32478608 DOI: 10.1080/10408398.2020.1763910] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irrespective of sex and age, cancer is the leading cause of mortality around the globe. Therapeutic incompliance, unwanted effects, and economic burdens imparted by cancer treatments, are primary health challenges. The heritable features in gene expression that are propagated through cell division and contribute to cellular identity without a change in DNA sequence are considered epigenetic characteristics and agents that could interfere with these features and are regarded as potential therapeutic targets. The genetic modification accounts for the recurrence and uncontrolled changes in the physiology of cancer cells. This review focuses on plant-derived flavonoids as a therapeutic tool for cancer, attributed to their ability for epigenetic regulation of cancer pathogenesis. The epigenetic mechanisms of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are discussed. The outstanding results of preclinical studies encourage researchers to design several clinical trials on various flavonoids to ascertain their clinical strength in the treatment of different cancers. The results of such studies will define the clinical fate of these agents in future.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Porto, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department, Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - İpek Suntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Investigation of 8 exogenous medicines illegally added into Guangdong herbal teas by solid phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
|
7
|
Vilamarim R, Bernardo J, Videira RA, Valentão P, Veiga F, Andrade PB. An egg yolk’s phospholipid-pennyroyal nootropic nanoformulation modulates monoamino oxidase-A (MAO-A) activity in SH-SY5Y neuronal model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Mancini S, Nardo L, Gregori M, Ribeiro I, Mantegazza F, Delerue-Matos C, Masserini M, Grosso C. Functionalized liposomes and phytosomes loading Annona muricata L. aqueous extract: Potential nanoshuttles for brain-delivery of phenolic compounds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:233-244. [PMID: 29655691 DOI: 10.1016/j.phymed.2018.03.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Multi-target drugs have gained significant recognition for the treatment of multifactorial diseases such as depression. Under a screening study of multi-potent medicinal plants with claimed antidepressant-like activity, the phenolic-rich Annona muricata aqueous extract (AE) emerged as a moderate monoamine oxidase A (hMAO-A) inhibitor and a strong hydrogen peroxide (H2O2) scavenger. PURPOSE In order to protect this extract from gastrointestinal biotransformation and to improve its permeability across the blood-brain barrier (BBB), four phospholipid nanoformulations of liposomes and phytosomes functionalized with a peptide ligand promoting BBB crossing were produced. METHODS AE and nanoformulations were characterized by HPLC-DAD-ESI-MSn, HPLC-DAD, spectrophotometric, fluorescence and dynamic light scattering methods. Cytotoxicity and permeability studies were carried out using an in vitro transwell model of the BBB, composed of immortalized human microvascular endothelial cells (hCMEC/D3), and in vitro hMAO-A inhibition and H2O2 scavenging activities were performed with all samples. RESULTS The encapsulation/binding of AE was more efficient with phytosomes, while liposomes were more stable, displaying a slower extract release over time. In general, phytosomes were less toxic than liposomes in hCMEC/D3 cells and, when present, cholesterol improved the permeability across the cell monolayer of all tested nanoformulations. All nanoformulations conserved the antioxidant potential of AE, while phosphatidylcholine interfered with MAO-A inhibition assay. CONCLUSIONS Overall, phytosome formulations registered the best performance in terms of binding efficiency, enzyme inhibition and scavenging activity, thus representing a promising multipotent phenolic-rich nanoshuttle for future in vivo depression treatment.
Collapse
Affiliation(s)
- Simona Mancini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20126 Milano, Italy
| | - Luca Nardo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20126 Milano, Italy
| | - Maria Gregori
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20126 Milano, Italy
| | - Inês Ribeiro
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Francesco Mantegazza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20126 Milano, Italy
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Massimo Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20126 Milano, Italy
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| |
Collapse
|
9
|
Bernardo J, Ferreres F, Gil-Izquierdo Á, Videira RA, Valentão P, Veiga F, Andrade PB. In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:247-255. [PMID: 28970152 DOI: 10.1016/j.jep.2017.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Trichilia catigua A. Juss. (Meliaceae), popularly known as "big catuaba", is traditionally used in Brazilian folk medicine for its neuroactive potential as memory stimulant, and antinociceptive and antidepressant effects. AIM OF THE STUDY To study the aqueous extract of T. catigua bark as dual inhibitor of monoamine oxidase A (MAO-A) and acetylcholinesterase (AChE). To explore its antioxidant potential through interaction with xanthine/xanthine oxidase (X/XO) pathway, and to attempt a relationship between its phenolic profile and effects displayed. MATERIALS AND METHODS Phenolic profiling was achieved by HPLC-DAD-ESI/MSn and UPLC-ESI-QTOF-MS analyses. The capacity to inhibit hMAO-A was assessed in vitro, as was that for AChE, evaluated in rat brain homogenates. The direct inhibition of the X/XO pathway and the scavenging of superoxide anion radical were the selected in vitro models to explore the antioxidant potential. The cytotoxic effects were assayed in the human neuronal SH-SY5Y cells by MTT reduction, after direct exposure (24h). RESULTS Twenty-six compounds were identified and quantified (551.02 ± 37.61mg/g of lyophilized extract). The phenylpropanoid substituted flavan-3-ols were the most representative compounds (~81% of quantified mass). The extract inhibited hMAO activity in a concentration-dependent manner (IC50 = 121.06 ± 2.13μg/mL). A mixed model of inhibition of AChE activity was observed, reflected by the pronounced increase of Km values and a more discreet effect over the Vmax parameters, calculated from Michaelis-Menten fitted equations. In addition, it was demonstrated that the extract directly inhibits the X/XO pathway (IC50 = 121.06 ± 2.13μg/mL) and also imbalances the oxidative stress acting as superoxide anion radical scavenger (EC50 = 104.42 ± 10.67μg/mL), an oxidative by-product of this reaction. All these neuroprotective and neurotrophic effects were displayed within the non-toxic range of concentrations (0.063-0.500μg/mL) in SH-SY5Y cells. CONCLUSIONS Our results validate the traditional use of T. catigua bark for its neuroactive and neuroprotective potential. A novel approach upon its application towards the management of neurodegenerative and related symptomatology was likewise demonstrated.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Research Group on quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Research Group on quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Romeu António Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Francisco Veiga
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Coimbra, Coimbra, Portugal; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba 3000-548 Coimbra, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Bernardo J, Ferreres F, Gil-Izquierdo Á, Valentão P, Andrade PB. Medicinal species as MTDLs: Turnera diffusa Willd. Ex Schult inhibits CNS enzymes and delays glutamate excitotoxicity in SH-SY5Y cells via oxidative damage. Food Chem Toxicol 2017; 106:466-476. [PMID: 28606766 DOI: 10.1016/j.fct.2017.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/09/2023]
Abstract
One of the most promising approaches to confront the complexity of central nervous system disorders are new multi-target directed ligands (MTDLs). Five medicinal species (Cereus grandiflorus (L.) Mill., Hyssopus officinalis L., Acorus calamus L., Silybum marianum L. Gaertn. and Turnera diffusa Willd. Ex Schult), selected for their ethnopharmacological relevance, were object for in vitro screening. The aqueous extract of T. diffusa revealed the strongest neuroactive potential, inhibiting monoamine oxidase-A (IC50 = 129.80 ± 11.97 μg/mL), and acetyl- and butyrylcholinesterase (IC25 = 0.352 ± 0.011 and 0.370 ± 0.036 mg/mL, respectively). Its phenolic profile was established for the first time by HPLC-DAD-ESI/MSn. Twenty-six out of thirty-seven compounds were newly identified in this species. The pre-treatment with this flavonoid-rich extract promoted a rightward shift of the glutamate concentration neuronal cell (SH-SY5Y) death response curve. Furthermore, it significantly reduced the early phase formation of intracellular reactive species after glutamate and t-BHP exposure, suggesting that neuroprotection in SH-SY5Y cells was, in part, mediated by antioxidant mechanisms.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
11
|
Exploratory Studies on the in Vitro
Anti-inflammatory Potential of Two Herbal Teas (Annona muricata
L. and Jasminum grandiflorum
L.), and Relation with Their Phenolic Composition. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
|
12
|
Longhini R, Lonni AA, Sereia AL, Krzyzaniak LM, Lopes GC, Mello JCPD. Trichilia catigua : therapeutic and cosmetic values. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Magalhães SCQ, Taveira M, Cabrita ARJ, Fonseca AJM, Valentão P, Andrade PB. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem 2016; 215:177-84. [PMID: 27542465 DOI: 10.1016/j.foodchem.2016.07.152] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Twenty-nine mature raw varieties of grain legume seeds (chickpeas, field peas, faba beans, common vetch and lupins) produced in Europe were investigated for their phenolic profile by means of high performance liquid chromatography coupled to diode array detection (HPLC-DAD). To the best of our knowledge, this study reported for the first time the phenolic composition of mature raw seeds of chickpea type Desi, field pea and common vetch. Phenolic acids were predominant compounds in chickpeas, field peas and common vetch compared to flavonoids, whereas the opposite was observed for lupin seeds. Yellow lupins presented the highest levels of total phenolic compounds followed by narrow-leafed lupins (in average 960 and 679mg/kg, dry basis, respectively), whereas Kabuli chickpeas got the lowest ones (in average 47mg/kg, dry basis). Principal component analysis revealed that flavones and total levels of phenolic compounds were responsible for nearly 51% of total data variability.
Collapse
Affiliation(s)
- Sara C Q Magalhães
- REQUIMTE/LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Marcos Taveira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana R J Cabrita
- REQUIMTE/LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - António J M Fonseca
- REQUIMTE/LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2645-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|