1
|
Chen L, Yu T, Huang L, Lu Q, Zhang W, Zhang L. Effective extraction of trace cytokinins in plants based on a carboxyl functionalized microporous organic network. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3320-3330. [PMID: 40197978 DOI: 10.1039/d5ay00123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cytokinin (CK) is a type of hormone that exists widely in plants and plays a significant role in promoting cell proliferation and division. Developing a rapid and sensitive method for the detection of trace CKs remains challenging. Microporous organic networks (MONs) are novel materials widely used in sample preparation owing to their excellent extraction performance. Therefore, a dispersive solid phase extraction method based on carboxylated microporous organic networks (MON-2COOH), combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the detection of four CKs was developed. Upon introducing a carboxyl group into pure MON, the MON-2COOH material had excellent stability, high porosity, and a good dispersion effect, and provided more interaction sites to achieve good adsorption of target compounds. Under the best conditions, the established dSPE-UPLC-MS/MS method had the advantages of low adsorbent dosage (2 mg), low detection limit (1.0-10.0 pg mL-1) and good reproducibility (RSD ≤ 6.54%, n = 5). Synergistic extraction mechanisms involving π-π, hydrogen bonding and hydrophobic interactions were elucidated using both density functional theory calculations and experimental data. This work also confirmed the feasibility of functionalized MONs as satisfactory adsorbents for the enrichment of small organic compounds.
Collapse
Affiliation(s)
- Li Chen
- College of Biological Science and Engineering, Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350116, China
| | - Tao Yu
- College of Biological Science and Engineering, Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350116, China
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou 350116, China.
| | - Le Huang
- College of Biological Science and Engineering, Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350116, China
| | - Qiaomei Lu
- College of Biological Science and Engineering, Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350116, China
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou 350116, China.
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education), College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Wenmin Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education), College of Chemistry, Fuzhou University, Fuzhou 350116, China.
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou 350108, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education), College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
2
|
Shang K, Wang C, Wang X, Wang Y, Xu K, Zhou S, Liu H, Zhu X, Zhu C. Non-Specific Lipid Transfer Protein StLTP6 Promotes Virus Infection by Inhibiting Jasmonic Acid Signalling Pathway in Response to PVS TGB1. PLANT, CELL & ENVIRONMENT 2025; 48:2343-2356. [PMID: 39601376 DOI: 10.1111/pce.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Plant viruses rely on host factors for successful infection. Non-specific lipid transfer proteins (nsLTPs) play critical roles in plant-pathogen interactions; however, their functions and underlying molecular mechanisms in viral infections remain largely unknown. Jasmonic acid (JA) is a crucial regulatory hormone in the process of plant resistance to viral infection. In this study, we screened and verified that StLTP6, a previously identified pro-viral factor, interacts with the silencing suppressor triple gene block1 (TGB1) of potato virus S (PVS). The PVS TGB1 induces the expression of StLTP6, and both co-localize in the cytoplasm. Furthermore, StLTP6 interacts with allene oxide cyclase and inhibits its accumulation, thereby suppressing JA synthesis and attenuating RNA silencing antiviral resistance. In summary, we elucidated the molecular mechanism by which PVS TGB1 interacts with StLTP6 to facilitate PVS infection. These findings broaden our understanding of the biological roles of nsLTPs and provide a new antiviral target for potato research.
Collapse
Affiliation(s)
- Kaijie Shang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chenchen Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xipan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yubo Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaihao Xu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shumei Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changxiang Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
3
|
Guo H, Li J, Liu Y, Fernández-Pascual E. Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109371. [PMID: 39667083 DOI: 10.1016/j.plaphy.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism. The results indicated that GA contents increased, while IAA, ABA and JA contents decreased during seed germination. GA3 increased significantly in the two germination stages (i.e. imbibition and radicle protrusion), and it was more abundant than GA1 and GA4. In addition, the relative content of most lipids decreased during germination, and the differentially changed metabolites were significantly enriched in lipid metabolic pathways based on KEGG analysis. WGCNA indicated that GA3 was correlated with more genes in lipid metabolic pathways. Transcriptomic analysis further revealed that differentially expressed genes (DEGs) related to fatty acid biosynthesis, glycerolipid metabolism, glycerophospholipid metabolism and starch and sucrose metabolism were upregulated under GA3 application, such as the acetyl-CoA carboxylase biotin carboxyl carrier protein (ACCB), fatty acyl-ACP thioesterase B (FATB), diacylglycerol acyltransferase (DGAT) and DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1). Therefore, our study supports the hypothesis that GA promotes seed germination in P. chinensis by enhancing lipid mobilization. This study proposes a novel mechanism of lipid responses to exogenous GA, which contributes to a deep understanding of germination of oleaginous seeds.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Eduardo Fernández-Pascual
- Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain
| |
Collapse
|
4
|
Hua Y, Chen S, Tong T, Li X, Ji R, Xu Q, Zhang Y, Dai X. Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404210. [PMID: 39540297 PMCID: PMC11727372 DOI: 10.1002/advs.202404210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle. In this study, non-targeted and targeted metabolomic approaches are employed to analyze 51 plant hormones and 1,177 metabolites, revealing novel insights. The findings demonstrate that low concentrations of SPB exerted multiple beneficial effects on rice roots, leaves, and the root-soil system, facilitating rapid cell division and enhancing antioxidant defense mechanisms. These results provide a vital foundation for understanding ATH metabolic pathways and advocating for widespread SPB application, offering significant implications for sustainable land management.
Collapse
Affiliation(s)
- Yu Hua
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Shuxian Chen
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Tong Tong
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Xiaoou Li
- Nantong Yuezichun Biological Agriculture Technology Co., LtdNantong226000China
| | - Rongting Ji
- Nanjing Institute of Environmental ScienceMinistry of Ecology and Environment of the People's Republic of ChinaNanjing210042China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Yue Zhang
- China Civil Engineering Society Water Industry AssociationBeijing100082China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
5
|
Ma R, Zhang Y, Zhao J, Zheng Y, Xue L, Lei J. A systematic regulatory network related to bulbil formation in Lilium lancifolium based on metabolome and transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:969. [PMID: 39407139 PMCID: PMC11481762 DOI: 10.1186/s12870-024-05654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lilium lancifolium is a special wild triploid species native to China and can produce abundant bulbils on its stem under natural conditions, which is very valuable to study bulbil organogenesis in plants. Although similar to the lateral and tillering principles, the molecular mechanism underlying bulbil formation has remained incompletely understood. RESULTS The metabolome and transcriptome of L. lancifolium bulbils across four development stages were analyzed. The pairwise comparison of metabolomes across the four stages identified 17 differential hormones, predominantly auxin (IAA), cytokinin (CK), and jasmonic acid (JA). Short Time-series Expression Miner (STEM) trend analysis of differential genes revealed four significant trends across these stages. The KEGG enrichment analysis of the four clusters highlighted pathways, such as plant hormone signal transduction, which were speculated to play a crucial role in development stages. these pathways were speculated to play a crucial role in development stages. To explore the key differential expressed genes and transcription factors associated with bulbil occurrence, two periods were focused on: Ll_UN and Ll_DN, which represented the stages with and without bulbils, respectively. Through correlation analysis and qRT-PCR analysis, 11 candidate differentially expressed genes and 27 candidate transcription factors were selected. By spraying exogenous hormones to validate these candidates, LlbHLH128, LlTIFY10A, LlbHLH93, and LlMYB108, were identified as the key genes for L. lancifolium bulbils. CONCLUSION A regulatory network of L. lancifolium bulbil development was predicted. LlTIFY10A and LlbHLH93 might be involved in the JA and auxin signal transduction pathways, which jointly formed a regulatory network to affect the occurrence of L. lancifolium bulbil. This study not only provided more information about the differentially expressed genes and metabolites through transcriptome and metabolomics analyses, but also provided a clearer understanding of the effect of hormones on bulbil formation in lily.
Collapse
Affiliation(s)
- Ruiyi Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Wang J, Song Y, Wang G, Shi L, Shen Y, Liu W, Xu Y, Lou X, Jia W, Zhang M, Shang W, He S, Wang Z. PoARRO-1 regulates adventitious rooting through interaction with PoIAA27b in Paeonia ostii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112204. [PMID: 39059631 DOI: 10.1016/j.plantsci.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Adventitious root (AR) formation is a limiting factor in the vegetative propagation of tree peony (Paeonia suffruticosa Andr.). PoARRO-1, which encodes an auxin oxidase involved in AR formation, plays a role in the root development of P. ostii, but its associated molecular regulatory mechanisms are not yet understood. In this study, we examined the role of PoARRO-1 in AR formation in P. ostii. The overexpression of PoARRO-1 in P. ostii test-tube plantlets led to a notable enhancement in both the rooting rate and the average number of ARs in vitro, as well as increased activities of peroxidase (POD), superoxide dismutase (SOD), and indoleacetic acid oxidase (IAAO). PoARRO-1 was involved in the conversion of IAA-Asp and IAA-Glu to OxIAA and promoted IAA oxidation. RNA sequencing analysis revealed that PoARRO-1 overexpression led to upregulation of enzyme activity, auxin metabolism related genes. Further analyses showed that PoARRO-1 interacted with the 1-175 aa position of PoIAA27b to regulate the formation of ARs. We therefore propose that PoARRO-1 interacts with PoIAA27b to promote AR formation, and it may be useful targets for enhancing the in vitro propagation of P. ostii.
Collapse
Affiliation(s)
- Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Weichao Liu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqing Jia
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Ning R, Li C, Fan T, Ji T, Xu W. Metabolite and Transcriptomic Changes Reveal the Cold Stratification Process in Sinopodophyllum hexandrum Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2693. [PMID: 39409563 PMCID: PMC11479046 DOI: 10.3390/plants13192693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Sinopodophyllum hexandrum (Royle) Ying, an endangered perennial medicinal herb, exhibits morpho-physiological dormancy in its seeds, requiring cold stratification for germination. However, the precise molecular mechanisms underlying this transition from dormancy to germination remain unclear. This study integrates transcriptome and plant hormone-targeted metabolomics techniques to unravel these intricate molecular regulatory mechanisms during cold stratification in S. hexandrum seeds. Significant alterations in the physicochemical properties (starch, soluble sugars, soluble proteins) and enzyme activities (PK, SDH, G-6-PDH) within the seeds occur during stratification. To characterize and monitor the formation and transformation of plant hormones throughout this process, extracts from S. hexandrum seeds at five stratification stages of 0 days (S0), 30 days (S1), 60 days (S2), 90 days (S3), and 120 days (S4) were analyzed using UPLC-MS/MS, revealing a total of 37 differential metabolites belonging to seven major classes of plant hormones. To investigate the biosynthetic and conversion processes of plant hormones related to seed dormancy and germination, the transcriptome of S. hexandrum seeds was monitored via RNA-seq, revealing 65,372 differentially expressed genes associated with plant hormone synthesis and signaling. Notably, cytokinins (CKs) and gibberellins (GAs) exhibited synergistic effects, while abscisic acid (ABA) displayed antagonistic effects. Furthermore, key hub genes were identified through integrated network analysis. In this rigorous scientific study, we systematically elucidate the intricate dynamic molecular regulatory mechanisms that govern the transition from dormancy to germination in S. hexandrum seeds during stratification. By meticulously examining these mechanisms, we establish a solid foundation of knowledge that serves as a scientific basis for facilitating large-scale breeding programs and advancing the artificial cultivation of this highly valued medicinal plant.
Collapse
Affiliation(s)
- Rongchun Ning
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
| | - Tingting Fan
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ji
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
| | - Wenhua Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
| |
Collapse
|
8
|
Sun S, Yang Y, Hao S, Liu Y, Zhang X, Yang P, Zhang X, Luo Y. Comparison of transcriptome and metabolome analysis revealed cold-resistant metabolic pathways in cucumber roots under low-temperature stress in root zone. FRONTIERS IN PLANT SCIENCE 2024; 15:1413716. [PMID: 39315370 PMCID: PMC11416975 DOI: 10.3389/fpls.2024.1413716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 09/25/2024]
Abstract
Introduction Low ground temperature is a major factor limiting overwintering in cucumber cultivation facilities in northern alpine regions. Lower temperatures in the root zone directly affect the physiological function of the root system, which in turn affects the normal physiological activity of plants. However, the importance of the ground temperature in facilities has not attracted sufficient attention. Methods Therefore, this study tested the cucumber variety Jinyou 35 under three root zone temperatures (room temperature, 20-22°C; suboptimal temperature, 13- 15°C; and low temperature, 8-10°C) to investigated possible cold resistance mechanisms in the root of cucumber seedlings through hormone, metabolomics, and transcriptomics analyses. Results and discussion The results showed that cucumber roots were subjected to chilling stress at different temperatures. Hormone analysis indicated that auxin content was highest in the roots. Jasmonic acid and strigolactone participated in the low-temperature stress response. Auxin and jasmonate are key hormones that regulate the response of cucumber roots to low temperatures. Phenolic acid was the most abundant metabolite in cucumber roots under chilling stress. Additionally, triterpenes may play an important role in chilling resistance. Differentially expressed genes and metabolites were significantly enriched in benzoxazinoid biosynthesis in the room temperature vs. suboptimal temperature groups and the room temperature vs. low temperature groups. Most differentially expressed transcription factor genes in AP2/ERF were strongly induced in cucumber roots by both suboptimal and low-temperature stress conditions. These results provide guidance for the cultivation of cucumber in facilities.
Collapse
Affiliation(s)
- Shijun Sun
- Hetao College, Department of Agronomy, Bayannur, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Yan Yang
- Urat Middle Banner Green Industry Development Center, Bayannur, China
| | - Shuiyuan Hao
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Ye Liu
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Xin Zhang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Pudi Yang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Xudong Zhang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Yusong Luo
- Department of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
9
|
Du T, Qu X, Wang Y, Li M, Qie X, Jin J, Gao Y, Wang Z, Lin K, Yang C, Sun J. Rhizosphere Mortierella strain of alfalfa exerted weed growth inhibition by inducing expression of plant hormone-related genes. Front Microbiol 2024; 15:1385992. [PMID: 38952443 PMCID: PMC11215053 DOI: 10.3389/fmicb.2024.1385992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Weeds are significant factors that detrimentally affect crop health and hinder optimal herbage yield. Rhizosphere microorganisms play crucial roles in plant growth, development, and nutrient uptake. Therefore, research focusing on weed control through the lens of microorganisms has emerged as a prominent area of study. The oil-producing fungus Mortierella, which is known for its numerous agricultural benefits, has garnered significant attention in recent years. Methods In this study, we conducted inoculation experiments in a controlled artificial culture climate chamber to investigate the effects of differential hormones and differentially expressed genes in the stems and leaves of Digitaria sanguinalis using Liquid Chromatography Tandem Mass Spectrometry and RNA-seq techniques, respectively. Additionally, Pearson's correlation analysis was used to establish correlations between differential hormones and growth indicators of Digitaria sanguinalis. Results and discussion The results demonstrated that inoculation with Mortierella sp. MXBP304 effectively suppressed aboveground biomass and plant height in Digitaria sanguinalis. Furthermore, there was significant upregulation and downregulation in the expression of genes involved in the synthesis and metabolism of phenylalanine and L-phenylalanine. Conversely, the expression of genes related to tryptophan, L-tryptophan, and indole was significantly downregulated. The addition of Mortierella sp. MXBP304 can influence the gene expression associated with phenylalanine and tryptophan synthesis and metabolism during Digitaria sanguinalis growth, subsequently reducing the relative contents of phenylalanine and tryptophan, thereby directly inhibiting Digitaria sanguinalis growth.
Collapse
Affiliation(s)
- Taotao Du
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xudong Qu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yibo Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Meixuan Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xihu Qie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jing Jin
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuxuan Gao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Kejian Lin
- Institute of Grassland Research of CAAS, Hohhot, Inner Mongolia, China
| | - Chao Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Zhang W, Sun Y, Wang H, Xu M, He C, Wang C, Yu Y, Zhang Z, Su L. Exogenous Melatonin Enhances Dihydrochalcone Accumulation in Lithocarpus litseifolius Leaves via Regulating Hormonal Crosstalk and Transcriptional Profiling. Int J Mol Sci 2024; 25:4592. [PMID: 38731810 PMCID: PMC11083347 DOI: 10.3390/ijms25094592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Dihydrochalcones (DHCs) constitute a specific class of flavonoids widely known for their various health-related advantages. Melatonin (MLT) has received attention worldwide as a master regulator in plants, but its roles in DHC accumulation remain unclear. Herein, the elicitation impacts of MLT on DHC biosynthesis were examined in Lithocarpus litseifolius, a valuable medicinal plant famous for its sweet flavor and anti-diabetes effect. Compared to the control, the foliar application of MLT significantly increased total flavonoid and DHC (phlorizin, trilobatin, and phloretin) levels in L. litseifolius leaves, especially when 100 μM MLT was utilized for 14 days. Moreover, antioxidant enzyme activities were boosted after MLT treatments, resulting in a decrease in the levels of intracellular reactive oxygen species. Remarkably, MLT triggered the biosynthesis of numerous phytohormones linked to secondary metabolism (salicylic acid, methyl jasmonic acid (MeJA), and ethylene), while reducing free JA contents in L. litseifolius. Additionally, the flavonoid biosynthetic enzyme activities were enhanced by the MLT in leaves. Multiple differentially expressed genes (DEGs) in RNA-seq might play a crucial role in MLT-elicited pathways, particularly those associated with the antioxidant system (SOD, CAT, and POD), transcription factor regulation (MYBs and bHLHs), and DHC metabolism (4CL, C4H, UGT71K1, and UGT88A1). As a result, MLT enhanced DHC accumulation in L. litseifolius leaves, primarily by modulating the antioxidant activity and co-regulating the physiological, hormonal, and transcriptional pathways of DHC metabolism.
Collapse
Affiliation(s)
- Wenlong Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Yuqi Sun
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Hongfeng Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Mingfeng Xu
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Chunmei He
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Congcong Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Yongli Yu
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Zongshen Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
| | - Lingye Su
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| |
Collapse
|
11
|
Dai HY, Zhang XK, Bi Y, Chen D, Long XN, Wu Y, Cao GH, He S. Improvement of Panax notoginseng saponin accumulation triggered by methyl jasmonate under arbuscular mycorrhizal fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1360919. [PMID: 38545393 PMCID: PMC10965624 DOI: 10.3389/fpls.2024.1360919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/29/2024] [Indexed: 11/11/2024]
Abstract
Panax notoginseng is a highly valued perennial medicinal herb plant in Yunnan Province, China, and the taproots are the main medicinal parts that are rich in active substances of P. notoginseng saponins. The main purpose of this study is to uncover the physiological and molecular mechanism of Panax notoginseng saponin accumulation triggered by methyl jasmonate (MeJA) under arbuscular mycorrhizal fungi (AMF) by determining physiological indices, high-throughput sequencing and correlation analysis. Physiological results showed that the biomass and saponin contents of P. notoginseng, the concentrations of jasmonic acids (JAs) and the key enzyme activities involved in notoginsenoside biosynthesis significantly increased under AMF or MeJA, but the interactive treatment of AMF and MeJA weakened the effect of AMF, suggesting that a high concentration of endogenous JA have inhibitory effect. Transcriptome sequencing results indicated that differential expressed genes (DEGs) involved in notoginsenoside and JA biosynthesis were significantly enriched in response to AMF induction, e.g., upregulated genes of diphosphocytidyl-2-C-methyl-d-erythritol kinases (ISPEs), cytochrome P450 monooxygenases (CYP450s)_and glycosyltransferases (GTs), while treatments AMF-MeJA and salicylhydroxamic acid (SHAM) decreased the abundance of these DEGs. Interestingly, a high correlation presented between any two of saponin contents, key enzyme activities and expression levels of DEGs. Taken together, the inoculation of AMF can improve the growth and saponin accumulation of P. notoginseng by strengthening the activities of key enzymes and the expression levels of encoding genes, in which the JA regulatory pathway is a key link. This study provides references for implementing ecological planting of P. notoginseng, improving saponin accumulation and illustrating the biosynthesis mechanism.
Collapse
Affiliation(s)
- Hong-Yang Dai
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- College of Pharmacy, Zhaotong Health Vocational College, Yunnan, Zhaotong, China
| | - Xing-Kai Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yue Bi
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Di Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xian-Nv Long
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yue Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Guan-Hua Cao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Sen He
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
12
|
Zhang W, Xu Y, Jing L, Jiang B, Wang Q, Wang Y. Preliminary Study on the Formation Mechanism of Malformed Sweet Cherry ( Prunus avium L.) Fruits in Southern China Using Transcriptome and Metabolome Data. Int J Mol Sci 2023; 25:153. [PMID: 38203324 PMCID: PMC10779264 DOI: 10.3390/ijms25010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Gibberellin (GA) is an important plant hormone that is involved in various physiological processes during plant development. Sweet cherries planted in southern China have always encountered difficulty in bearing fruit. In recent years, gibberellin has successfully solved this problem, but there has also been an increase in malformed fruits. This study mainly explores the mechanism of malformed fruit formation in sweet cherries. By analyzing the synthesis pathway of gibberellin using metabolomics and transcriptomics, the relationship between gibberellin and the formation mechanism of deformed fruit was preliminarily determined. The results showed that the content of GA3 in malformed fruits was significantly higher than in normal fruits. The differentially expressed genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were mainly enriched in pathways such as "plant hormone signal transduction", "diterpenoid biosynthesis", and "carotenoid biosynthesis". Using Quantitative Real-Time Reverse Transcription PCR (qRT-PCR) analysis, the gibberellin hydrolase gene GA2ox and gibberellin synthase genes GA20ox and GA3ox were found to be significantly up-regulated. Therefore, we speculate that the formation of malformed fruits in sweet cherries may be related to the accumulation of GA3. This lays the foundation for further research on the mechanism of malformed sweet cherry fruits.
Collapse
Affiliation(s)
- Wangshu Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
- National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yue Xu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Luyang Jing
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Baoxin Jiang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Qinghao Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Yuxi Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| |
Collapse
|
13
|
Huang C, Jin X, Lin H, He J, Chen Y. Comparative Transcriptome Sequencing and Endogenous Phytohormone Content of Annual Grafted Branches of Zelkova schneideriana and Its Dwarf Variety HenTianGao. Int J Mol Sci 2023; 24:16902. [PMID: 38069226 PMCID: PMC10706849 DOI: 10.3390/ijms242316902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Zelkova schneideriana is a fast-growing tree species endemic to China. Recent surveys and reports have highlighted a continued decline in its natural populations; therefore, it is included in the Red List of Threatened Species by The International Union for Conservation of Nature. A new variety "HenTianGao" (H) has been developed with smaller plant height, slow growth, and lower branching points. In this study, we attempted to understand the differences in plant height of Z. schneideriana (J) and its dwarf variety H. We determined the endogenous hormone content in the annual grafted branches of both J and H. J exhibited higher gibberellic acid (GA)-19 and trans-Zeatin (tZ) levels, whereas H had higher levels of indole-3-acetic acid (IAA) catabolite 2-oxindole-3-acetic acid (OxIAA), IAA-Glu conjugate, and jasmonic acid (JA) (and its conjugate JA-Ile). The transcriptome comparison showed differential regulation of 20,944 genes enriched in growth and development, signaling, and metabolism-related pathways. The results show that the differential phytohormone level (IAA, JA, tZ, and GA) was consistent with the expression of the genes associated with their biosynthesis. The differences in relative OxIAA, IAA-Glu, GA19, trans-Zeatin, JA, and JA-Ile levels were linked to changes in respective signaling-related genes. We also observed significant differences in the expression of cell size, number, proliferation, cell wall biosynthesis, and remodeling-related genes in J and H. The differences in relative endogenous hormone levels, expression of biosynthesis, and signaling genes provide a theoretical basis for understanding the plant height differences in Z. schneideriana.
Collapse
Affiliation(s)
- Chenfei Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Haiyan Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinsong He
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Yan Chen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| |
Collapse
|
14
|
Han F, Wang P, Chen X, Zhao H, Zhu Q, Song Y, Nie Y, Li Y, Guo M, Niu S. An ethylene-induced NAC transcription factor acts as a multiple abiotic stress responsor in conifer. HORTICULTURE RESEARCH 2023; 10:uhad130. [PMID: 37560016 PMCID: PMC10407601 DOI: 10.1093/hr/uhad130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/13/2023] [Indexed: 08/11/2023]
Abstract
The proper response to various abiotic stresses is essential for plants' survival to overcome their sessile nature, especially for perennial trees with very long-life cycles. However, in conifers, the molecular mechanisms that coordinate multiple abiotic stress responses remain elusive. Here, the transcriptome response to various abiotic stresses like salt, cold, drought, heat shock and osmotic were systematically detected in Pinus tabuliformis (P. tabuliformis) seedlings. We found that four transcription factors were commonly induced by all tested stress treatments, while PtNAC3 and PtZFP30 were highly up-regulated and co-expressed. Unexpectedly, the exogenous hormone treatment assays and the content of the endogenous hormone indicates that the upregulation of PtNAC3 and PtZFP30 are mediated by ethylene. Time-course assay showed that the treatment by ethylene immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), activated the expression of PtNAC3 and PtZFP30 within 8 hours. We further confirm that the PtNAC3 can directly bind to the PtZFP30 promoter region and form a cascade. Overexpression of PtNAC3 enhanced unified abiotic stress tolerance without growth penalty in transgenic Arabidopsis and promoted reproductive success under abiotic stress by shortening the lifespan, suggesting it has great potential as a biological tool applied to plant breeding for abiotic stress tolerance. This study provides novel insights into the hub nodes of the abiotic stresses response network as well as the environmental adaptation mechanism in conifers, and provides a potential biofortification tool to enhance plant unified abiotic stress tolerance.
Collapse
Affiliation(s)
- Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peiyi Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huanhuan Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianya Zhu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yumeng Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meina Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Wang C, Zhang P, He Y, Huang F, Wang X, Li H, Yuan L, Hou J, Chen G, Wang W, Wu J, Tang X. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 2023; 24:380. [PMID: 37415142 DOI: 10.1186/s12864-023-09483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. RESULTS In this study, we found exogenously spraying 100 mg·L- 1 IAA on the buds of Wucai significantly increased the rate of microspore embryogenesis, and moreover accelerated the process of embryogenesis. Physiological and biochemical tests showed that the contents of amino acids, soluble total sugar, soluble protein, and starch were significantly increased after IAA treatment. Furthermore, exogenously spraying 100 mg·L- 1 IAA significantly enhanced IAA, GA4, and GA9 content, increased catalase (CAT) and malondialdehyde (MDA) activity, and reduced abscisic acid (ABA), MDA and soluble protopectin content, H2O2 and O2·- production rate in the bud with the largest population of late-uninucleate-stage microspores. Transcriptome sequencing was performed on buds respectively treated with 100 mg·L- 1 IAA and fresh water. A total of 2004 DEGs were identified, of which 79 were involved in micropores development, embryonic development and cell wall formation and modification, most of which were upregulated. KEGG and GO analysis revealed that 9.52% of DEGs were enriched in plant hormone synthesis and signal transduction pathways, pentose and glucuronic acid exchange pathways, and oxidative phosphorylation pathways. CONCLUSIONS These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H2O2 and O2·-. Combined with transcriptome analysis, it was found that most genes related to gibberellin (GA) and Auxin (IAA) synthesis and signal transduction, pectin methylase (PME) and polygalacturonase (PGs) genes and genes related to ATP synthesis and electron transport chain were upregulated, and genes related to ABA synthesis and signal transduction were downregulated. These results indicated that exogenous IAA treatment could change the balance of endogenous hormones, accelerate cell wall degradation, promote ATP synthesis and nutrient accumulation, inhibit ROS accumulation, which ultimately promote microspore embryogenesis.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Peiyu Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Yun He
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Furong Huang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Xu Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Hong Li
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Wenjie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
16
|
Zhang DX, Wang MY, Lin WB, Qu S, Ji L, Xu C, Kan H, Dong K. Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. J Chromatogr A 2023; 1704:464130. [PMID: 37302252 DOI: 10.1016/j.chroma.2023.464130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Plant growth regulators (PGRs) are a class of small molecular compounds, which can remarkably affect the physiological process of plants. The complex plant matrix along with a wide polarity range and unstable chemical properties of PGRs hinder their trace analysis. In order to obtain a reliable and accurate result, a sample pretreatment process must be carried out, including eliminating the interference of the matrix effect and pre-concentrating the analytes. In recent years, the research of functional materials in sample pretreatment has experienced rapid growth. This review comprehensively overviews recent development in functional materials covering one-dimensional materials, two-dimensional materials, and three-dimensional materials applied in the pretreatment of PGRs before liquid chromatography-mass spectrometry (LC-MS) analysis. Besides, the advantages and limitations of the above functionalized enrichment materials are discussed, and their future trends have been prospected. The work could be helpful to bring new insights for researchers engaged in functional materials in sample pretreatment of PGRs based on LC-MS.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Ming-Yue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wen-Bo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Shuai Qu
- Biology Institute of Jilin province, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Li Ji
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
17
|
Yu C, Yao X, Wang K, Huang G, Dong S, Long W. Analysis of the dynamic changes of endogenous hormones for the pericarp and seed kernel of young fruit in Camellia chekiangoleosa Hu. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2148005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chunlian Yu
- Changshan Country Oil Tea Industry Development Center, Changshan, People’s Republic of China
| | - Xiaohua Yao
- Zhejiang Provincial Key Laboratory of Tree Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, People’s Republic of China
| | - Kailiang Wang
- Zhejiang Provincial Key Laboratory of Tree Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, People’s Republic of China
| | - Guangyuan Huang
- Changshan Country Oil Tea Industry Development Center, Changshan, People’s Republic of China
| | - Shuang Dong
- Changshan Country Oil Tea Industry Development Center, Changshan, People’s Republic of China
| | - Wei Long
- Zhejiang Provincial Key Laboratory of Tree Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, People’s Republic of China
| |
Collapse
|
18
|
Wang Y, Zhao H, Hu X, Zhang Y, Zhang Z, Zhang L, Li L, Hou L, Li M. Transcriptome and hormone Analyses reveal that melatonin promotes adventitious rooting in shaded cucumber hypocotyls. FRONTIERS IN PLANT SCIENCE 2022; 13:1059482. [PMID: 36518515 PMCID: PMC9742233 DOI: 10.3389/fpls.2022.1059482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Melatonin, a multi-regulatory molecule, stimulates root generation and regulates many aspects of plant growth and developmental processes. To gain insight into the effects of melatonin on adventitious root (AR) formation, we use cucumber seedings subjected to one of three treatments: EW (hypocotyl exposed and irrigated with water), SW (hypocotyl shaded and irrigated with water) and SM (hypocotyl shaded and irrigated with 100 µM melatonin). Under shaded conditions, melatonin induced significant AR formation in the hypocotyl. To explore the mechanism of this melatonin-induced AR formation, we used transcriptome analysis to identify 1296 significant differentially expressed genes (DEGs). Comparing SM with SW, a total of 774 genes were upregulated and 522 genes were downregulated. The DEGs were classified among different metabolic pathways, especially those connected with the synthesis of secondary metabolites, with hormone signal transduction and with plant-pathogen interactions. Analyses indicate exogenous melatonin increased contents of endogenous auxin, jasmonic acid, salicylic acid, cytokinin and abscisic acid levels during AR formation. This study indicates melatonin promotes AR formation in cucumber seedings by regulating the expressions of genes related to hormone synthesis, signaling and cell wall formation, as well as by increasing the contents of auxin, cytokinin, jasmonic acid, salicylic acid and abscisic acid. This research elucidates the molecular mechanisms of melatonin's role in promoting AR formation in the hypocotyl of cucumber seedings under shaded conditions.
Collapse
Affiliation(s)
- Yuping Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hailiang Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zicun Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lu Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
19
|
Li L, An Q, Wang QM, Liu W, Qi X, Cui J, Wang Y, Ke H. The mechanism of bud dehyperhydricity by the method of 'starvation drying combined with AgNO3' in Lycium ruthenicum. TREE PHYSIOLOGY 2022; 42:1841-1857. [PMID: 35451030 DOI: 10.1093/treephys/tpac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Micropropagation is very important for rapid clonal propagation and scientific research of woody plants. However, the micropropagated materials usually show hyperhydricity, which seriously hinders application of the micropropagation. Lycium ruthenicum is an important species of eco-economic forests. Herein, treatment of 'starvation and drying combined with 30 μM AgNO3' (SDCAg+) removed serious hyperhydricity of L. ruthenicum buds regenerated from its green-inflorescence-explants, and then gene expression, metabolites of various phytohormones, chloroplasts, chlorophyll (Chl) and total soluble proteins of the hyperhydric and dehyperhydric leaves were compared and analyzed. The results suggested that the SDCAg+ treatment might remove hyperhydricity of L. ruthenicum through: reducing water uptake; increasing water loss; up-regulating the expression of chloroplast-ribosomal-protein genes from nuclear genome; down-regulating the expression of cytoplasmic-ribosomal-protein genes; up-regulating the synthesis of the total soluble proteins; restoring the lamellar structure of chloroplast grana and matrix; improving Chl synthesis and reducing Chl metabolism; increasing expression of light-harvesting Chl protein complex genes and content of Chla and b; up-regulating both photosynthesis and starch and sucrose metabolism KEGG pathways; up-regulating abscisic acid, salicylic acid and their signaling; down-regulating cytokinin, jasmonic acid, jasmonoyl-l-isoleucine and their signaling. Also, the above events interact to form a regulatory network of dehyperhydricity by SDCAg+ treatment. Overall, the study indicated key genes/pathways and physiological/subcellular changes involved in dehyperhydricity and then established a dehyperhydric mechanism model of L. ruthenicum. This not only proposed clues for preventing or removing hyperhydricity but also laid foundations for molecular breeding of L. ruthenicum and other species.
Collapse
Affiliation(s)
- Lujia Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Qinxia An
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin-Mei Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Wen Liu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Qi
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianguo Cui
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yucheng Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Haifeng Ke
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
20
|
Transcriptome Profiling Provides New Insights into the Molecular Mechanism Underlying the Sensitivity of Cotton Varieties to Mepiquat Chloride. Int J Mol Sci 2022; 23:ijms23095043. [PMID: 35563437 PMCID: PMC9105546 DOI: 10.3390/ijms23095043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mepiquat chloride (MC) is a plant growth regulator widely used in cotton production to control vegetative overgrowth of cotton plants to achieve ideal plant architecture required for high yielding. Cotton varieties respond differently to MC application, but there is little information about the molecular mechanisms underlying the varietal difference. In this study, comparative transcriptome analysis was conducted by using two Upland cotton varieties with different sensitivity (XLZ74, insensitive; SD1068, sensitive) to MC treatment, aiming to understand the molecular mechanisms responsible for varietal difference of MC sensitivity. RNA-seq data were generated from the two varieties treated with MC or water at three time points, 1, 3 and 6 days post-spray (dps). Genes differentially expressed between the MC and mock treatments of XLZ74 (6252) and SD1068 (6163) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two varieties. Signal transduction of phytohormones, biosynthesis of gibberellins (GAs) and brassinosteroids (BRs) and profiles of transcription factors (TFs) seemed to be differentially affected by MC in the two varieties. The transcriptomic results were further consolidated with the content changes of phytohormones in young stem. Several GA catabolic genes, GA2ox, were highly induced by MC in both varieties especially in SD1068, consistent with a more significant decrease in GA4 in SD1068. Several AUX/IAA and SAUR genes and CKX genes were induced by MC in both varieties, but with a more profound effect observed in SD1068 that showed a significant reduction in indole-3-acetic acid (IAA) and a significant increase in cytokinin (CTK) at 6 days post-spray (dps). BR biosynthesis-related genes were downregulated in SD1068, but not in XLZ74. Additionally, more downregulated TFs were observed in MC-treated SD1068 than in MC-treated XLZ74, and the two varieties had very different profiles of genes involved in starch and sucrose metabolism, with those of SD1068 and XLZ74 being downregulated and upregulated by MC treatment, respectively. Together, these results indicate that although the same or similar biological pathways are affected by MC treatment in cotton varieties showing different MC sensitivity, the extent of effect is variable, leading to their different phenotypic outcomes. How the quantitative effect of MC on the biological processes associated with growth retardation is regulated is still an open question.
Collapse
|
21
|
Analysis of multiple-phytohormones during fruit development in strawberry by using miniaturized dispersive solid-phase extraction based on ionic liquid-functionalized carbon fibers. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
23
|
Qin X, Yin Y, Zhao J, An W, Fan Y, Liang X, Cao Y. Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress. BMC PLANT BIOLOGY 2022; 22:8. [PMID: 34979910 PMCID: PMC8722043 DOI: 10.1186/s12870-021-03375-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/30/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. RESULTS Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. CONCLUSIONS Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.
Collapse
Affiliation(s)
- Xiaoya Qin
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China.
| | - Yue Yin
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China
| | - Jianhua Zhao
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China
| | - Wei An
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China
| | - Yunfang Fan
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China
| | - Xiaojie Liang
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China
| | - Youlong Cao
- Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences / National Wolfberry Engineering Research Center, Yinchuan, 750002, China
| |
Collapse
|
24
|
Wang Z, Wong DCJ, Wang Y, Xu G, Ren C, Liu Y, Kuang Y, Fan P, Li S, Xin H, Liang Z. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. PLANT PHYSIOLOGY 2021; 186:1660-1678. [PMID: 33752238 PMCID: PMC8260143 DOI: 10.1093/plphys/kiab142] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 05/19/2023]
Abstract
Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.
Collapse
Affiliation(s)
- Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Darren Chern Jan Wong
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chong Ren
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
| | - Yanfei Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- China Wine Industry Technology Institute, Yinchuan 750021, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese academy of Sciences, Wuhan 430074, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
| |
Collapse
|
25
|
Men X, Sun L, Li Y, Li W, Xing S. Multi-omics analysis reveals the ontogenesis of basal chichi in Ginkgo biloba L. Genomics 2021; 113:2317-2326. [PMID: 34048909 DOI: 10.1016/j.ygeno.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Chichi is a unique biological phenomenon observed in Ginkgo biloba L.. In this study, multi-omics analysis was used to compare basal chichi (C) with roots (R) and stems (S) to explore the regulatory mechanisms of basal chichi ontogenesis. The results showed that compared with roots and stems, the tZ, SA and ABA contents in basal chichi were the highest, and the ratio of IAA/tZ was the lowest. Nucleotides and their derivatives in basal chichi were upregulated, and phenylpropane metabolites were downregulated. Some differentially expressed genes (DEGs) strongly correlated to plant hormones were screened. We speculate that auxin and cytokinin are involved in the morphogenesis of basal chichi and that cytokinin plays a major role. The ontogenesis of basal chichi is closely related to environmental stress, and it may be a coping strategy of G. biloba in the face of environmental stress.
Collapse
Affiliation(s)
- Xiaoyan Men
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Limin Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Ying Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weinan Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shiyan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
26
|
Zhang S, Zhu L, Shen C, Ji Z, Zhang H, Zhang T, Li Y, Yu J, Yang N, He Y, Tian Y, Wu K, Wu J, Harberd NP, Zhao Y, Fu X, Wang S, Li S. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. THE PLANT CELL 2021; 33:566-580. [PMID: 33955496 PMCID: PMC8136903 DOI: 10.1093/plcell/koaa037] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 05/03/2023]
Abstract
The external application of nitrogen (N) fertilizers is an important practice for increasing crop production. However, the excessive use of fertilizers significantly increases production costs and causes environmental problems, making the improvement of crop N-use efficiency (NUE) crucial for sustainable agriculture in the future. Here we show that the rice (Oryza sativa) NUE quantitative trait locus DULL NITROGEN RESPONSE1 (qDNR1), which is involved in auxin homeostasis, reflects the differences in nitrate (NO3-) uptake, N assimilation, and yield enhancement between indica and japonica rice varieties. Rice plants carrying the DNR1indica allele exhibit reduced N-responsive transcription and protein abundance of DNR1. This, in turn, promotes auxin biosynthesis, thereby inducing AUXIN RESPONSE FACTOR-mediated activation of NO3- transporter and N-metabolism genes, resulting in improved NUE and grain yield. We also show that a loss-of-function mutation at the DNR1 locus is associated with increased N uptake and assimilation, resulting in improved rice yield under moderate levels of N fertilizer input. Therefore, modulating the DNR1-mediated auxin response represents a promising strategy for achieving environmentally sustainable improvements in rice yield.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Limei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengbo Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Ji
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Haipeng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Zhang
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Yu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510640, China
- Author for correspondence: ,
| | - Shan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Author for correspondence: ,
| |
Collapse
|
27
|
Regulation of Flowering Timing by ABA-NnSnRK1 Signaling Pathway in Lotus. Int J Mol Sci 2021; 22:ijms22083932. [PMID: 33920313 PMCID: PMC8069233 DOI: 10.3390/ijms22083932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.
Collapse
|
28
|
Luo Z, Xu M, Wang R, Liu X, Huang Y, Xiao L. Magnetic Ti 3C 2 MXene functionalized with β-cyclodextrin as magnetic solid-phase extraction and in situ derivatization for determining 12 phytohormones in oilseeds by ultra-performance liquid chromatography-tandem mass spectrometry. PHYTOCHEMISTRY 2021; 183:112611. [PMID: 33341665 DOI: 10.1016/j.phytochem.2020.112611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Magnetic solid phase extraction integrated with in situ derivations for the profiling of 12 phytohormones in a single rapeseed seed was developed by using ultra-high performance liquid chromatography-tandem mass spectrometry. The Fe3O4@Ti3C2@β-cyclodextrin nanoparticles were firstly synthesized and used as an adsorbent for the solid-phase extraction of phytohormones. The magnetic dispersive solid-phase extraction and in situ derivation by the addition of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide were ingeniously combined. This efficient pre-treatment method integrated the extraction, purification, and derivatization processes into one single step. Satisfactory methodological performance was achieved by optimization of the parameters. Linearities (R2 > 0.9928) and recoveries (80.4 %-115.1%) at three spiked levels, as well as the low matrix effect (from -16.63% to 17.06%) and limits of detection (0.89-13.62 pg/mL) were obtained. The spatio-temporal profiling of target phytohormones in different tissues of rapeseed germination was investigated. This method was successfully employed for analyzing target phytohormones in different oilseeds samples.
Collapse
Affiliation(s)
- Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Mengwei Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Ruozhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiubing Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yongkang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Langtao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
29
|
Pan X, Chen J, Yang A, Yuan Q, Zhao W, Xu T, Chen B, Ren M, Geng R, Zong Z, Ma Z, Huang Z, Zhang Z. Comparative Transcriptome Profiling Reveals Defense-Related Genes Against Ralstonia solanacearum Infection in Tobacco. FRONTIERS IN PLANT SCIENCE 2021; 12:767882. [PMID: 34970284 PMCID: PMC8712766 DOI: 10.3389/fpls.2021.767882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 05/14/2023]
Abstract
Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.
Collapse
Affiliation(s)
- Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Junbiao Chen
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Aiguo Yang
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Weicai Zhao
- Nanxiong Tobacco Science Institute of Guangdong, Nanxiong, China
| | - Tingyu Xu
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Bowen Chen
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Min Ren
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruimei Geng
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhaohui Zong
- Nanxiong Tobacco Science Institute of Guangdong, Nanxiong, China
| | - Zhuwen Ma
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Zhenchen Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| |
Collapse
|
30
|
Jon CS, Zou Y, Zhao J, Ri HC, Wang L, Kaw HY, Meng LY, Shang H, Li D. Simultaneous determination of multiple phytohormones in tomato by ionic liquid-functionalized carbon fibers-based solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Anal Chim Acta 2020; 1137:143-155. [PMID: 33153598 DOI: 10.1016/j.aca.2020.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
Phytohormones are interrelated by synergistic or antagonistic crosstalk and play important roles in the regulation of plant growth and development. In order to understand the interaction between phytohormones in the plant physiological network, it is necessary to determine trace levels of multiple phytohormones simultaneously in a complex matrix. Here, we synthesized ionic liquids containing different functional groups and modified the surface of carbon fibers with them. Based on these carbon fibers-ionic liquid (CFs-IL) materials, a solid phase microextraction method was developed to enable the simultaneous extraction of phytohormones. The adsorption specificity of multiple phytohormones was studied by identifying the hydrophobic, electrostatic, and π-π interactions, as well as hydrogen bonds, which favor simultaneous extraction of the relevant acidic, alkaline and neutral phytohormones by improving compatibility. The proposed method, coupled with liquid chromatography-tandem mass spectrometry, was applied to the simultaneous determination of 13 acidic, alkaline and neutral phytohormones in tomato. The limits of quantification were found to be in the range of 0.32-54.05 ng mL-1 and 4.6-185.8 pg mL-1, respectively, when measured by QQQ and Q-TOF. All of the relative recoveries were in the range of 94.40-113.37% with RSDs ≤15.36% (n = 3) for spiked tomato samples. This method is expected to be widely applied to multiple phytohormones analysis for in-depth researches concerning the physiological networks of plants.
Collapse
Affiliation(s)
- Chol-San Jon
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Jinhua Zhao
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Hyok-Chol Ri
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Liyuan Wang
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Han Yeong Kaw
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Long-Yue Meng
- Department of Environmental Science, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Haibo Shang
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| | - Donghao Li
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|
31
|
Yonny ME, Ballesteros-Gómez A, Toscano Adamo ML, Torresi AR, Nazareno MA, Rubio S. Supramolecular solvent-based high-throughput sample treatment for monitoring phytohormones in plant tissues. Talanta 2020; 219:121249. [PMID: 32887140 DOI: 10.1016/j.talanta.2020.121249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Quantification of endogenous hormones in plants is essential to understand their growth, development and response to biotic and abiotic stresses. However, it is challenging to develop high-throughput sample treatments from complex plant tissues containing low amounts of structurally unrelated and labile phytohormones while delivering clean and analyte-enriched extracts. In this paper we propose the use of supramolecular solvents (SUPRASs) made up or inverted hexagonal nanostructures of alkanols to address this challenge. The strategy was applied, as a proof of concept, to the quantification of stress-related phytohormones belonging to different categories (abscisic acid, salicylic acid, jasmonic acid, methyl jasmonate and 3-indoleacetic acid) in melon and pepper leaves. Sample treatment consisted in a single extraction-cleanup step involving the use of a low volume of SUPRAS (244 μL), the stirring (5 min) and centrifugation (15 min) of the sample at room temperature, and the direct analysis of the extract by liquid chromatography tandem mass spectrometry (LC-MS/MS). This high-throughput sample treatment method delivered excellent results for the target phytohormones regarding absolute recoveries (80-92%), method quantification limits (0.05-2 ng g-1), reproducibility (1-7%) and matrix effects (+13 to -31%), in both melon and pepper leaves, compared to reported methods based on repetitive solvent extraction, purification and solvent evaporation steps. The method was successfully applied to determine target hormones in melon and pepper plants for the evaluation of the effect of thermal stress. It was found that their concentration increased in the ranges 1.2-1.9 and 1.3-3.8 times in melon and pepper leaves, respectively, compared with control samples.
Collapse
Affiliation(s)
- Melisa E Yonny
- LAPOx-ICQ-FAyA-Universidad Nacional de Santiago Del Estero, Santiago Del Estero, CP. 4200, Argentina
| | - Ana Ballesteros-Gómez
- Departamento de Química Analítica, Instituto de Química Fina y Nanoquímica, Edificio Anexo Marie Curie, Campus de Rabanales, Universidad de Córdoba, Córdoba, 14071, Spain.
| | - Maria L Toscano Adamo
- LAPOx-ICQ-FAyA-Universidad Nacional de Santiago Del Estero, Santiago Del Estero, CP. 4200, Argentina
| | | | - Mónica A Nazareno
- LAPOx-ICQ-FAyA-Universidad Nacional de Santiago Del Estero, Santiago Del Estero, CP. 4200, Argentina.
| | - Soledad Rubio
- Departamento de Química Analítica, Instituto de Química Fina y Nanoquímica, Edificio Anexo Marie Curie, Campus de Rabanales, Universidad de Córdoba, Córdoba, 14071, Spain
| |
Collapse
|
32
|
Determination of thirteen acidic phytohormones and their analogues in tea (Camellia sinensis) leaves using ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1149:122144. [PMID: 32447251 DOI: 10.1016/j.jchromb.2020.122144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 01/21/2023]
Abstract
Trace plant hormones play an important role in tea growth, development and quick response to biotic and abiotic stresses. However, lack of a sensitive method limits the research on plant hormone regulation for tea quality and yields. Herein, a highly sensitive method was developed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for profiling and quantification of 13 acidic phytohormones and their analogues, including auxins, abscisic acid and gibberellins in fresh tea leaves. After optimizing the different C18 columns and mobile phase systematically, an Agilent Eclipse Plus C18 column combined with the mobile phase A (acetonitrile) and B (water) was employed. Target acidic phytohormones were extracted using acidified methanol, and tea matrices were cleaned up by dispersive solid phase adsorbents of polyvinylpolypyrrolidone (PVPP) and graphitized carbon black (GCB) followed by polymer-based mixed-mode cation-exchange solid phase extraction. The method showed good linearity for all 13 analytes with regression coefficients (R2) > 0.998. Satisfactory recoveries of 12 analytes spiked with three levels ranged from 71.8% to 109.9%, while intra-day and inter-day precisions were below 20%. Limits of detection (LODs) and limits of quantitation (LODs) for 12 acidic phytohormones were 0.1-4.2 μg kg-1 and 0.3-13.9 μg kg-1, respectively. Finally, this method was firstly employed to analyze 13 analytes in fresh tea leaves (with the treatment of dormancy, light qualities, exogenous hormones and infestation of pests), highlighting its sufficient capability for rapid analysis of multiclass phytohormones in agriculture field.
Collapse
|
33
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
34
|
Xu J, Li Q, Li Y, Yang L, Zhang Y, Cai Y. Effect of Exogenous Gibberellin, Paclobutrazol, Abscisic Acid, and Ethrel Application on Bulblet Development in Lycoris radiata. FRONTIERS IN PLANT SCIENCE 2020; 11:615547. [PMID: 33552107 PMCID: PMC7855306 DOI: 10.3389/fpls.2020.615547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 05/16/2023]
Abstract
Lycoris species have great ornamental and medicinal values; however, their low regeneration efficiency significantly restricts their commercial production. Exogenous hormone application is an effective way to promote bulblet development, but their effect on Lycoris radiata has not been verified to date. In the present study, we examined the effect of different exogenous hormones on bulblet development in L. radiata, and found that gibberellic acid (GA) significantly inhibited, whereas paclobutrazol (PBZ), abscisic acid (ABA), and ethrel promoted bulblet development, especially PBZ, a GA biosynthesis inhibitor. Furthermore, GA reduced endogenous cytokinin (CK) content, as well as the activities of carbohydrate metabolism enzymes, including sucrose synthase (SUS) and glucose-1-phosphate adenylyltransferase (AGPase), by downregulating the expression levels of LrSUS1, LrSUS2, and genes encoding AGPase large and small subunits. This resulted in the decrease in carbohydrate accumulation in the bulblets, thus hindering their development. PBZ had the opposite effect to GA on carbohydrate metabolism; it decreased endogenous GA15 and GA24, thereby promoting bulblet development. ABA promoted endogenous auxin content and the activities of starch synthesis enzymes, especially soluble starch synthase (SSS) and granule-bound SS (GBSS), through the up-regulation of the expression levels of LrSS1, LrSS2, and LrGBSS1 genes, which could also result in the accumulation of carbohydrates in the bulblets and promote their development. In addition, ethrel application partly promoted bulblet development by promoting endogenous CK content. Although the accumulation of carbohydrates and the activity of starch enzymes were increased by ethrel treatment, we hypothesized that the effect of ethrel on regulating carbohydrate metabolism may be indirect. Our results could provide a basis for improving the propagation efficiency of L. radiata for production, as well as propose some directions for future research.
Collapse
Affiliation(s)
- Junxu Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingzhu Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Li
- Agricultural Technology Extension Service Station of Langxia Town, Shanghai, China
| | - Liuyan Yang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongchun Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yongchun Zhang,
| | - Youming Cai
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Youming Cai,
| |
Collapse
|
35
|
Development of a nitrogen-rich hyperbranched polymer as adsorbent for enrichment and determination of auxins in plants. Anal Bioanal Chem 2019; 411:1409-1419. [PMID: 30635663 DOI: 10.1007/s00216-018-01571-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
In this study, a novel nitrogen-rich hyperbranched polymer was designed and synthesized via one-step precipitation copolymerization strategy. As possessing the lone-pair-electron-containing nitrogen atoms and positive-charged amine groups, as well as π electron-conjugated system, the prepared polymer displayed a strong tendency to adsorb protons acid, and negative-charged and conjugated compounds according to acid-base interaction, electrostatic interaction, and π-π stacking interaction. Based on these properties, a novel approach for assembling the proposed polymer coupled with high-performance liquid chromatography was successfully employed for selective enrichment and determination of auxins in plants. The extraction and desorption conditions were evaluated and the limits of detection and the limits of quantification of the proposed method were in the range of 0.15-0.29 μg L-1 and 0.49-0.98 μg L-1 for the four auxins based on the signal-to-noise ratio of 3:1 and 10:1, respectively. The recoveries of the target auxins from spiked plant samples were in the range from 85.0 to 116.3% with relative standard deviations lower than 9.6%. This study presented an inspiring thought for the construction of the versatile polymer adsorbent with highly efficient capturing of analytes from complex samples. Graphical abstract.
Collapse
|
36
|
López-Cristoffanini C, Serrat X, Jáuregui O, Nogués S, López-Carbonell M. Phytohormone Profiling Method for Rice: Effects of GA20ox Mutation on the Gibberellin Content of Japonica Rice Varieties. FRONTIERS IN PLANT SCIENCE 2019; 10:733. [PMID: 31231411 PMCID: PMC6565999 DOI: 10.3389/fpls.2019.00733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/16/2019] [Indexed: 05/13/2023]
Abstract
Gibberellins (GAs) are a very important group of phytohormones involved in seed germination, vegetative growth, flowering, and fruit development, being only 4 of the 136 known bioactives: GA1, GA3, GA4, and GA7. It has been evidenced that mutations in the OsGA20ox-2 gene produce rice (Oryza sativa) dwarf varieties, which were one of the main pillars of the green revolution. In this work two main objectives were proposed: (i) develop a rapid and broad phytohormone profiling method and (ii) to study the effects on the GA content of the GA20ox-2 mutation in several rice developmental stages using three varieties (tall variety, elite variety, mutated variety). A phytohormone extraction using an SPE step and HPLC-MS/MS detection using a QqQ instrument was determined which resulted in limits of detection (LOD) and limits of quantification (LOQ) for GAs that varied between 0.1-0.7 and 0.3-2.3 pg ⋅ g-1 (f.w.) of rice sample, respectively, allowing highly sensitive phytohormones detection in samples. Moreover, a good reproducibility was obtained for the GAs as relative standard deviations (RSD) for a 40 ng ⋅ mL-1 pattern varied between 0.3 and 0.9%. Notoriously, GA1 was absent in the coleoptile and GA4 was the GA with higher content in the majority of developmental stages. We also observed a large content increase of the four bioactive GAs in the internode of the flag leaf of the mutated variety allowing to reach same height as the elite variety. Therefore, we provide a rapid and broad phytohormonal profiling method and evidence that the GA20ox-2 mutation is not the only factor generating dwarf varieties. To our knowledge, this is the first study that it has been reported such a high number of simultaneously analyzed gibberellins in rice samples (Oryza sativa ssp. japonica) in different tissues of different growth stages.
Collapse
Affiliation(s)
- Camilo López-Cristoffanini
- Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Camilo López-Cristoffanini,
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Centers, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Marta López-Carbonell
- Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
A porous polyaniline nanotube sorbent for solid-phase extraction of the fluorescent reaction product of reactive oxygen species in cells, and its determination by HPLC. Mikrochim Acta 2018; 185:468. [PMID: 30232631 DOI: 10.1007/s00604-018-3000-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/09/2018] [Indexed: 01/06/2023]
Abstract
A method is described for extracting and detecting the fluorescent reaction product (2',7'-dichlorofluorescein, DCF) that is formed by reaction of reactive oxygen species (ROS) with dichlorodihydrofluorescein diacetate (DCFH-DA). DCF is extracted by using porous polyaniline nanotubes (PPN) which have a large specific surface and pore volume which favor the adsorption capacity. Additional attractive features include an appropriate pore size distribution, hydrophobic surface, and electron-attracting groups which contribute to DCF adsorption. A variety of methods was applied to characterize the morphology of PPN. Under optimal conditions and by performing DCF in 0.08-1.0 μM concentrations, the correlation coefficient of the calibration plot is 0.999. The limits of detection for standard DCF solutions is 20 nM. Compared with commercial sorbents for solid-phase extraction (SPE) such as commercially available carbon or Welchrom® C18, the use of the new sorbent results in better retraction recovery (92%) and longer reuse times (30 times). Doxorubicin and X-ray radiation were used to externally stimulate the ROS production in HepG2 and Hela cells. ROS was stabled by DCFH-DA and quantified by DCF. Following SPE, DCF was detected by HPLC and the concentration ROS was calculated. Graphical abstract ᅟ.
Collapse
|
38
|
Haeck A, Van Langenhove H, Harinck L, Kyndt T, Gheysen G, Höfte M, Demeestere K. Trace analysis of multi-class phytohormones in Oryza sativa using different scan modes in high-resolution Orbitrap mass spectrometry: method validation, concentration levels, and screening in multiple accessions. Anal Bioanal Chem 2018; 410:4527-4539. [PMID: 29796899 DOI: 10.1007/s00216-018-1112-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/27/2022]
Abstract
Phytohormones are signaling and regulating metabolites involved in numerous plant processes, including growth, development, and responses to stress. Currently, the focus is on the analysis of multiple phytohormones in order to characterize crosstalk and hormone signaling networks. In this paper, representative phytohormones of the major classes are simultaneously determined in rice tissues by a generic solid-liquid extraction, followed by liquid chromatography and electrospray ionization high-resolution tandem mass spectrometry using a Q-Exactive™ instrument. After a thorough optimization of the sample preparation, the analytical method was fully validated toward the ultra-trace quantification of six a priori selected plant hormones using three scan modes of the quadrupole-Orbitrap instrument: full-scan high-resolution mass spectrometry, targeted single ion monitoring (t-SIM), and t-SIM followed by data-dependent tandem mass spectrometry. Overall, a similar quantitative performance was noticed for the different scan modes. The analytical method was successfully applied to measure basal phytohormone levels in six different rice accessions, comprising Oryza sativa ssp. japonica, indica, and Oryza glaberrima. Hormone concentrations were higher in shoots than in roots or at least similar. Except for a lower level of salicylic acid in shoots of O. glaberrima versus O. sativa, no other differences in hormone levels could be noticed that were dependent of the (sub)species assignment of the analyzed accessions. Making use of the benefits of full-scan high-resolution mass spectrometry, a first post-run suspect screening was performed, suggesting - based on accurate mass measurements and isotopic patterns - the possible presence of about 50 additional plant hormones in the rice tissues. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ashley Haeck
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Lies Harinck
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Tina Kyndt
- Research Group Epigenetics and Defence, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Godelieve Gheysen
- Research Group Molecular Genetics, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| |
Collapse
|
39
|
Chen Y, Wu X, Li Y, Yang Y, Yang D, Yin S, Liu L, Sun C. Simultaneous Determination of Seven Plant Growth Regulators in Melons and Fruits by Modified QuEChERS Coupled with Capillary Electrophoresis. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1266-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Sun G, Yang Q, Zhang A, Guo J, Liu X, Wang Y, Ma Q. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Int J Food Microbiol 2018; 276:46-53. [PMID: 29656220 DOI: 10.1016/j.ijfoodmicro.2018.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023]
Abstract
The antifungal properties and the induction of resistance by ε-poly-l-lysine (ε-PL) and chitooligosaccharide (COS) were examined to find an alternative to synthetic fungicides currently used in the control of the devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomatoes. As presented herein, this combined treatment (200 mg/L ε-PL + 400 mg/L COS) was found to have optimal in vitro antifungal activities, achieving an inhibition rate of 90.22%. In vivo assays with these combined bio-fungicides, under greenhouse conditions using susceptible tomato plants, demonstrated good protection against severe grey mould. In field tests, the combined bio-fungicides had a control effect of up to 66.67% against tomato grey mould. To elucidate the mechanisms of the combined bio-fungicide-induced resistance in the tomato, plants were subjected to three treatments: 1) inoculation with B. cinerea after spraying with 200 mg/L ε-PL alone, 2) inoculation with the combined bio-fungicides, and 3) inoculation with 400 mg/L COS alone. Compared to the control (sterile water), increases in salicylic acid (SA) and jasmonic acid (JA) levels and increased phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) activities were observed. Catalase (CAT) activity and abscisic acid (ABA) and gibberellin (GA) levels decreased, particularly in the combined bio-fungicide-treated plants. Altogether, these findings reveal that the combined bio-fungicides (200 mg/L ε-PL + 400 mg/L COS) should be an excellent biocontrol agent candidate that combines direct antifungal activity against B. cinerea with plant resistance.
Collapse
Affiliation(s)
- Guangzheng Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qichao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ancheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
41
|
Field-Amplified Sample Injection and Solid-Phase Extraction for Sensitivity Improvement of Electrophoretic Determination of Indole-3-Acetic Acid and Indole-3-Butyric Acid in Food Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1091-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Improved methodology for analysis of multiple phytohormones using sequential magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2017; 983:112-120. [DOI: 10.1016/j.aca.2017.06.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/03/2017] [Accepted: 06/11/2017] [Indexed: 11/18/2022]
|
43
|
Guérard F, de Bont L, Gakière B, Tcherkez G. Evaluation and application of a targeted SPE-LC-MS method for quantifying plant hormones and phenolics in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:624-634. [PMID: 32480593 DOI: 10.1071/fp16300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/03/2017] [Indexed: 06/11/2023]
Abstract
Application of metabolomics techniques to plant physiology is now considerable, and LC-MS is often being used for non-targeted, semi-quantitative analysis of effects caused by mutations or environmental conditions. However, examination of signalling metabolites like hormones require absolute rather than semi-quantitative quantitation, since their effect in planta is strongly dependent upon concentration. Further, plant hormones belong to different chemical classes and thus simultaneous quantitation remains highly challenging. Here we present an LC-MS method that allows the simultaneous absolute quantitation of six hormone families as well as selected phenolics. The technique requires solid phase extraction with a sulfonated cation exchange phase before analysis, and use calibration curves instead of isotopically labelled standards, which are indeed not commercially available for many hormonal molecules. The use of the total signal (including adducts) rather than a single quantifying mass appears to be crucial to avoid quantification errors because the ion distribution between adducts is found to be concentration-dependent. The different hormones considered appear to have contrasted ionisation efficiency due to their physical properties. However, the relatively low variability and the satisfactory response to standard additions show that the technique is accurate and reproducible. It is applied to Arabidopsis plants subjected to water stress, using either the wild-type or lines with altered NAD biosynthesis causing changes in salicylate signalling and phenylpropanoid levels. As expected, analyses show an increase in abscisic acid upon water stress and a consistent modification of phenolic compounds (including salicylate) in mutants.
Collapse
Affiliation(s)
- Florence Guérard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Linda de Bont
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Guillaume Tcherkez
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Chýlková J, Tomášková M, Jehlička V, Šelešovská R, Hlavatá P. Voltammetric determination of plant growth stimulants based on organic acids. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-016-1863-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Su Y, Luo W, Chen X, Liu H, Hu Y, Lin W, Xiao L. Auxin Extraction and Purification Based on Recombinant Aux/IAA Proteins. Biol Proced Online 2017; 19:1. [PMID: 28100961 PMCID: PMC5237334 DOI: 10.1186/s12575-016-0050-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones. RESULTS Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli. CONCLUSION This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
Collapse
Affiliation(s)
- Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiaofei Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Huizhen Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yueqing Hu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
46
|
Li W, Shen H, Hong Y, Zhang Y, Yuan F, Zhang F. Simultaneous determination of 22 cephalosporins drug residues in pork muscle using liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:298-307. [DOI: 10.1016/j.jchromb.2016.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/17/2022]
|
47
|
Li Y, Zhou C, Yan X, Zhang J, Xu J. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Sep Sci 2016; 39:1804-13. [PMID: 26990813 DOI: 10.1002/jssc.201501239] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 12/30/2022]
Abstract
Phytohormones have attracted wide attention due to their important biological functions. However, their detection is still a challenge because of their complex composition, low abundance and diverse sources. In this study, a novel method of high-performance liquid chromatography with electrospray ionization tandem mass spectrometry was developed and validated for the simultaneous determination of ten phytohormones including indole-3-acetic acid, isopentenyladenine, isopentenyl adenosine, trans-zeatin riboside, zeatin, strigolactones, abscisic acid, salicylic acid, gibberellin A3, and jasmonic acid in Sargassum horneri (S. horneri). The phytohormones were extracted from freeze-dried S. horneri with methanol/water/methanoic acid (15:4:1, v/v/v) analyzed on a Hypersil Gold C18 column and detected by electrospray ionization tandem triple quadrupole mass spectrometry in the multiple reaction monitoring mode. The experimental conditions for the extraction and analysis of phytohormones were optimized and validated in terms of reproducibility, linearity, sensitivity, recovery, accuracy, and stability. Distributions of the phytohormones in the stems, blades, and gas bladder of the S. horneri in drift, fixed, and semi-fixed growing states were investigated for the first time. The observed contents of the phytohormones in S. horneri range from not detected to 5066.67 ng/g (fresh weight). Most phytohormones are distributed mainly in the stems of S. horneri in drift and semi-fixed states.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Applied Marine Biotechnology, Chinese Ministry of Education, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- Key Laboratory of Applied Marine Biotechnology, Chinese Ministry of Education, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Chinese Ministry of Education, Ningbo University, Ningbo, China
| | - Jinrong Zhang
- Key Laboratory of Applied Marine Biotechnology, Chinese Ministry of Education, Ningbo University, Ningbo, China
| | - Jilin Xu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
48
|
Sonmezdag AS, Kelebek H, Selli S. Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:1957-65. [PMID: 27413222 PMCID: PMC4926906 DOI: 10.1007/s13197-015-2144-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
Abstract
The present study was designed to characterize the volatile, aroma-active and phenolic compounds of wild thyme. Volatile components of T. serpyllum were extracted by use of the purge and trap technique with dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). The extraction method gave highly representative aromatic extract of the studied sample based on the sensory analysis. A total of 24 compounds were identified and quantified in Thymus serpyllum. Terpenes were qualitatively and quantitatively the most dominant volatiles in the sample. Aroma extract dilution analysis (AEDA) was used for the first time for the determination of aroma-active compounds of Thymus serpyllum. In total, 12 aroma-active compounds were detected in the aromatic extract by GC-MS-Olfactometry and terpenes were the most abundant compounds. High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was used for the phenolic compounds analysis. 18 phenolic compounds were identified and quantified in the T. serpyllum. Luteolin 7-O-glucoside, luteolin and rosmarinic acid were the most abundant phenolics in this herb.
Collapse
Affiliation(s)
- Ahmet Salih Sonmezdag
- />Araban Vocational High School, Department of Organic Agriculture, University of Gaziantep, 27600 Gaziantep, Turkey
| | - Hasim Kelebek
- />Faculty of Engineering and Natural Sciences, Department of Food Engineering, Adana Science and Technology University, 01100 Adana, Turkey
| | - Serkan Selli
- />Faculty of Agriculture, Department of Food Engineering, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
49
|
Porfírio S, Gomes da Silva MD, Peixe A, Cabrita MJ, Azadi P. Current analytical methods for plant auxin quantification – A review. Anal Chim Acta 2016; 902:8-21. [DOI: 10.1016/j.aca.2015.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
|
50
|
Cai BD, Ye EC, Yuan BF, Feng YQ. Sequential solvent induced phase transition extraction for profiling of endogenous phytohormones in plants by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1004:23-9. [DOI: 10.1016/j.jchromb.2015.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/10/2015] [Accepted: 09/20/2015] [Indexed: 01/24/2023]
|