1
|
Rastegarzadeh S, Kalantaripour M, Pourreza N. Development of a fluorescent probe for cefazolin detection based on solvent-based de-emulsification dispersive liquid-liquid microextraction of silver nanoparticles. ANAL SCI 2023; 39:257-266. [PMID: 36527602 DOI: 10.1007/s44211-022-00230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
A novel, simple, and rapid method has been developed for the fluorimetric determination of trace levels of cefazolin. The method is based on the synthesis of silver nanoparticles (AgNPs) as fluorescent probes using resorcinol as a reducing and capping agent and then their extraction into the 1-octanol by a highly efficient solvent-based de-emulsification dispersive liquid-liquid microextraction technique. The interaction of cefazolin with silver affected the fluorescence intensity of AgNPs in the organic phase that creates a micro-probe fluorimetric detection of this antibiotic at excitation/emission wavelengths of 410/527 nm. Under the established optimum conditions, the linear analytical range was from 0.80 to 12.00 ng mL-1 of cefazolin with a detection limit of 0.55 ng mL-1. The relative standard deviation for ten replicate measurements of 2 and 10 ng mL-1 of cefazolin was 4.18 and 1.88%, respectively. The suggested method was successfully applied to the determination of cefazolin in pharmaceutical formulation, human urine and plasma.
Collapse
Affiliation(s)
- Saadat Rastegarzadeh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mehdi Kalantaripour
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Zedan HE, Mortada WI, Khalifa ME. Microextraction procedures for preconcentration of Fe (III) in water and food samples prior to colorimetric detection: a comparative study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractTwo extraction procedures, namely dispersive liquid-liquid microextraction (DLLME) and dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFOD), have been compared for the spectrophotometric determination of Fe (III). In both procedures, Fe (III) was extracted after complexation with gallic acid in the presence of cetyltrimethylammonium bromide (CTAB). Tetrachloroethylene and 1-undecanol were used as extraction solvents in DLLME and DLLME-SFOD, respectively, while acetone was used as dispersing solvents. The effects of various experimental parameters (solution pH, the concentration of ligand and CTAB, as well as nature and amount of extraction and disperser solvents) on the extraction efficiency were investigated. Under optimum conditions, the calibration graphs were linear in the range of 50.0–650.0 and 8.0–800.0 μg L−1 and the detection limits were 15.0 and 5.0 μg L−1 for DLLME and DLLME-SFOD, respectively. The presence of NaCl, up to 1.0% (w/v) did not impact the extraction procedures. The analyte was good tolerated in the presence of most concomitant ions. The procedures were applied for the determination of Fe (III) in standard reference materials and real samples with good recoveries (95.5–99.0%) for DLLME-SFOD while poor recoveries (68.0–82.5%) were obtained when DLLME was applied. The analytical figures of the procedures were comparable with those listed in the literature and it could be concluded that DLLME-SFOD may be considered one of the best tools used for preconcentration of Fe (III), owing to its simplicity, time-saving and the possibility of using in conventional analytical laboratories.
Graphical abstract
Collapse
|
3
|
Han M, Kong J, Wang Y, Huang W, Zuo G, Zhu F, He H, Sun C, Xian Q. ZIF-8/h-BN coated solid-phase microextraction fiber via physical coating technology and sol-gel technology for the determination of nitro polycyclic aromatic hydrocarbons from water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Kamal AH, Hammad MA, Kannouma RE, Mansour FR. Response surface optimization of a vortex-assisted dispersive liquid-liquid microextraction method for highly sensitive determination of repaglinide in environmental water by HPLC/UV. BMC Chem 2022; 16:33. [PMID: 35568922 PMCID: PMC9107645 DOI: 10.1186/s13065-022-00826-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 01/01/2023] Open
Abstract
A vortex-assisted dispersive liquid–liquid microextraction (DLLME) method, mated to chemometrics and combined with HPLC/UV detection was optimized and validated for enrichment and determination of repaglinide in environmental samples using nateglinide as an internal standard (IS). A phosphate buffer (10 mM, pH 2.5): acetonitrile (45:55, v/v) was used as a mobile phase with a flow rate of 1 mL/min in an isocratic elution mode. Chemometrics-assisted optimization was performed using a quadratic integrated d-optimal design. The developed model assessed the statistical significance of the independent variables and their interactions to attain the optimum conditions revealing that extractant type, extractant volume and pH are the most influential factors. Optimization of the extraction procedures was performed with the aid of Design Expert 8® software, which suggested 58 different experiments. The optimal conditions were 30 µL of 1-octanol as extractant, 100 µL of acetonitrile as a disperser at pH 8. Under the optimized conditions, the method showed linearity over the range of 1–100 ng/mL with a limit of detection of 0.4 ng/mL. The accuracy, the intra- and inter-day precision were assessed, the %recoveries were found to be between 98.48 and 100.81% with %RSD lower than 1.3. Using chemometrics in method optimization helped achieve the maximum possible enrichment with the least effort, time, and reagents while considering all possible interactions between variables.
Collapse
Affiliation(s)
- Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Tanta, 32958, Egypt
| | - Reham E Kannouma
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Tanta, 32958, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt. .,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
5
|
Siouri F, Abujaber F, Mubarak A, Al‐Rimawi F. Dispersive liquid–liquid microextraction based on solidification of floating organic drop: Determination of nonsteroidal anti‐inflammatory drugs in water. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Faady Siouri
- Department of Industrial Chemistry, Faculty of Sciences Arab American University (AAUP) 13 Zababdeh Palestine
| | - Feras Abujaber
- Department of Industrial Chemistry, Faculty of Sciences Arab American University (AAUP) 13 Zababdeh Palestine
- University College of Educational Sciences – UNRWA Ramallah Palestine
| | - Asem Mubarak
- Department of Chemistry, Faculty of Science Birzeit University Ramallah Palestine
| | - Fuad Al‐Rimawi
- Faculty of Science and Technology Al‐Quds University East Jerusalem Palestine
| |
Collapse
|
6
|
A dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for determination of antiviral agents in environmental water using HPLC/UV. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Carbonell-Rozas L, Canales R, Lara FJ, García-Campaña AM, Silva MF. A natural deep eutectic solvent as a novel dispersive solvent in dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of pesticide residues. Anal Bioanal Chem 2021; 413:6413-6424. [PMID: 34410442 DOI: 10.1007/s00216-021-03605-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Current trends in analytical chemistry encourage the use of innocuous solvents to develop modern methods aligned with green chemistry. In this sense, natural deep eutectic solvents (NADESs) have emerged as a novel generation of green solvents which can be employed in sample treatments as an alternative to the toxic organic solvents commonly used so far. In this work, a new extraction method employs dispersive liquid-liquid microextraction based on a solid floating organic droplet (DLLME-SFO), by using a mixture composed of a less dense than water extraction solvent, 1-dodecanol, and a novel dispersive solvent, NADES. The methodology was proposed to extract and preconcentrate some pesticide residues (fipronil, fipronil-sulfide, fipronil-sulfone, and boscalid) from environmental water and white wine samples before analysis by liquid-chromatography coupled to ultraviolet detection (HPLC-UV). Limits of quantification (LOQs) lower than 4.5 μg L-1, recoveries above 80%, and precision, expressed as RSD, below 15% were achieved in both samples showing that the proposed method is a powerful, efficient, and green alternative for the determination of these compounds and, therefore, demonstrating a new application for NADES in sample preparation. In addition, the DLLME-SFOD-HPLC-UV method was evaluated and compared with other reported approaches using the Analytical GREEnness metric approach, which highlighted the greenness of the proposed method.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Romina Canales
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - María Fernanda Silva
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
8
|
Li J, Zhao B, Guo L, Wang Z, Wang C, Wang Z, Zhang S, Wu Q. Synthesis of hypercrosslinked polymers for efficient solid-phase microextraction of polycyclic aromatic hydrocarbons and their derivatives followed by gas chromatography-mass spectrometry determination. J Chromatogr A 2021; 1653:462428. [PMID: 34329956 DOI: 10.1016/j.chroma.2021.462428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Three novel hypercrosslinked polymers (HCPs) were synthesized via Friedel-Crafts reaction employing 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene as alkylating agent, and triphenylbenzene, tetraphenylethylene and p-quaterphenyl as the aromatic units, respectively. The prepared HCPs were applied as solid-phase microextraction coatings for direct immersion extraction of polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives in environmental water samples. The key factors affecting the extraction efficiency including extraction time, extraction temperature, stirring rate, ionic strength and desorption conditions, were carefully studied. Coupled with gas chromatography mass spectrometry analysis, a new method for determining PAHs and their derivatives was developed. Under the optimized conditions, the limits of detection (S/N=3) and limits of quantitation (the lowest concentration for quantification) of the method were in the range of 2.5-25.0 and 7.5-75.0 ng L-1, respectively. The recoveries of spiked samples were in the range of 73.1-118.3% with relative standard deviations less than 13.0%. The developed method was applied for the simultaneous determination of nine PAHs and their derivatives in environmental water samples, showing good accuracy and reliability.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Bin Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liying Guo
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhuo Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
9
|
Kazemi M, Niazi A, Yazdanipour A. Solid-Phase Microextraction of Phthalate Esters from Aqueous Media by Functionalized Carbon Nanotubes (Graphene Oxide Nanoribbons) and Determination by GC–FID. Chromatographia 2021. [DOI: 10.1007/s10337-021-04032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhang J, Meng H, Kong X, Cheng X, Ma T, He H, Du W, Yang S, Li S, Zhang L. Combined effects of polyethylene and organic contaminant on zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, biomarkers and intestinal microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116767. [PMID: 33640823 DOI: 10.1016/j.envpol.2021.116767] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Microplastics, as emerging pollutant, are predicted to act as carriers for organic pollutants, but the carrier role and bio-toxic effects with other pollutants in environments are poorly acknowledged. In this study, both the single and combined effects of polyethylene (PE, 10 and 40 mg/L) with the particle size of 100-150 μm and 9-Nitroanthracene (9-NAnt, 5 and 500 μg/L) on zebrafish (Danio rerio) had been investigated. The results illustrated that PE could be as 9-NAnt carrier to enter into zebrafish body, but significantly reduced the bioaccumulation of 9-NAnt, due to the occurrence of adsorption interactions between the simultaneous presence of both PE and 9-NAnt. After 4 days, the enzymes activity of cytochrome P4501A, acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH), and the abundance of malondialdehyde (MDA), lipid peroxide (LPO) responded strongly to low-dose PE exposure (10 mg/L). After 7 days exposure to PE-9-NAnt (40 mg/L), the P4501A activity increased significantly, but the activities of AChE and LDH were inhibited clearly, causing certain neurotoxicity and disorders of energy metabolism to zebrafish. The analysis of integrated biomarker response index (IBR) suggested that PE had greater bio-toxicity to zebrafish in all exposure groups after short-term exposure, but the PE-9-NAnt complex showed greater bio-toxicity after 7 days, which indicated that complex exposure of PE-9-NAnt had a delayed effect on the bio-toxicity of zebrafish. Furthermore, analysis of the intestinal microbiota exhibited that under the conditions of the exposure group with 9-NAnt, the relative abundance of the five dominant bacterial phyla (Proteobacteria, Firmicutes, Fusobacteriota, Bacteroidota and Verrucomicrobiota) changed greatly. Overall, this study confirmed that PE could carry 9-NAnt into fish causing bioaccumulation, but in the case of coexisting exposures, PE reduced 9-NAnt bioaccumulation, suggesting that microplastics with other emerging pollutants in chronic toxicity are probably next objects in future works.
Collapse
Affiliation(s)
- Jinghua Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Han Meng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Xiangcheng Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Tao Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
11
|
Bochetto A, Merino N, Kaplan M, Guiñez M, Cerutti S. Design of a combined microextraction and back-extraction technique for the analysis of mycotoxins in amaranth seeds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Cina M, Ponce MDV, Martinez LD, Cerutti S. Development of a novel UHPLC-MS/MS method for the determination of ochratoxin A in tea. Heliyon 2021; 7:e06663. [PMID: 33869867 PMCID: PMC8045007 DOI: 10.1016/j.heliyon.2021.e06663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
The mycotoxin Ochratoxin A (OTA) is responsible for producing many effects on human and animal health. In this work, the evaluation of the presence of OTA in tea beverage samples consisted of extraction and preconcentration through the solidification of a floating organic drop (DLLME-SFO) combined with an additional octadecyl silane clean-up step. The obtained extract was analyzed by UHPLC-MS/MS. Interferences from the matrix were effectively reduced and, consequently, recovery increased from 43.18% ± 4.1%-96.02% ± 2.54%. The validation assays were carried out by external calibration and spiked samples, with satisfactory recoveries. An adequate dynamic calibration range was obtained over a concentration interval between 0.5 and 70 μg mL-1 OTA. Capabilities of detection and quantification were 0.5 and 1.4 μg mL-1. The obtained Green Certificate was compared with other techniques to establish the greenness profile of the procedure. Quantification of ochratoxin A levels in tea samples was performed.
Collapse
Affiliation(s)
- Mariel Cina
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - María del Valle Ponce
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Luis Dante Martinez
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|
13
|
Silva LK, Rangel JHG, Brito NM, Sousa ER, Sousa ÉML, Lima DLD, Esteves VI, Freitas AS, Silva GS. Solidified floating organic drop microextraction (SFODME) for the simultaneous analysis of three non-steroidal anti-inflammatory drugs in aqueous samples by HPLC. Anal Bioanal Chem 2021; 413:1851-1859. [PMID: 33469709 DOI: 10.1007/s00216-021-03153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
In this work, a liquid-liquid microextraction methodology using solidified floating organic drop (SFODME) was combined with liquid chromatography and UV/Vis detection to determine non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (NPX), diclofenac (DCF), and mefenamic acid (MFN) in tap water, surface water, and seawater samples. Parameters that can influence the efficiency of the process were evaluated, such as the type and volume of the extractor and dispersive solvents, effect of pH, agitation type, and ionic strength. The optimized method showed low detection limits (0.09 to 0.25 μg L-1), satisfactory recovery rates (90 to 116%), and enrichment factors in the range between 149 and 199. SFODME showed simplicity, low cost, speed, and high concentration capacity of the analytes under study. Its use in real samples did not demonstrate a matrix effect that would compromise the effectiveness of the method, being possible to apply it successfully in water samples with different characteristics.
Collapse
Affiliation(s)
- Lanna K Silva
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil.
| | - José H G Rangel
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| | - Natilene M Brito
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| | - Eliane R Sousa
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhao, Maracanã Campus, Av. dos Curiós, Vila Esperança, São Luis, 65095-460, Brazil
| | - Érika M L Sousa
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Arlan S Freitas
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| | - Gilmar S Silva
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| |
Collapse
|
14
|
Shen Z, Wang H, Yu Q, Li Q, Lu X, Kong X. On-site separation and identification of polycyclic aromatic hydrocarbons from edible oil by TLC-SERS on diatomite photonic biosilica plate. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Ma R, Wang W, Wang Z, Zhang S, Li Z, Li J, Zang X, Wang C, Wang Z. Mesoporous covalent organic polymer nanospheres for the preconcentration of polycyclic aromatic hydrocarbons and their derivatives. J Chromatogr A 2020; 1624:461217. [DOI: 10.1016/j.chroma.2020.461217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
|
16
|
George MJ, Madala NE, Dubery IA. Application of an agitation-assisted dispersed solvent microextraction for analysis of naphthalene and its derivatives from aqueous matrices. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:494. [PMID: 32642872 DOI: 10.1007/s10661-020-08457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Agitation-assisted dispersive liquid-liquid extraction without a dispersing solvent is lately receiving considerable attention owing to the low to no solvent loss relative to its predecessor, which suffers severe extracting solvent loss. Herein, we report the application of a simple agitation-assisted dispersive liquid-liquid microextraction method, without a disperser solvent, for the extraction of naphthalene and its derivatives from aqueous solutions. Under the optimised conditions, namely, 25 μL 3:1 mixture of dichloroethane and ethylacetate with 20 s agitation, in 2-mL aqueous solutions containing 10% NaCl, the method demonstrated acceptable figures of merit: linearity-R2 ≥ 0.9914 in the concentration range 0.5-50 ng/mL, repeatability (%RSD ≤ 12.9 for n = 15) and limits of detection (0.034-0.081 ng/mL). The recoveries obtained from the spiked dam water sample were also satisfactory (94-103%). These parameters are comparable with those reported in literature, especially for dispersive liquid-liquid microextraction techniques albeit for different analytes. Despite only naphthol being detected in one of the three sampled sites, the method shows considerable promise for routine monitoring of river and dam water quality subject to accuracy validation using certified reference materials.
Collapse
Affiliation(s)
- Mosotho J George
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma, Roma, 180, Lesotho.
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa.
| | - Ntakadzeni E Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
- Department of Biochemistry, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
| |
Collapse
|
17
|
Sun C, Qu L, Wu L, Wu X, Sun R, Li Y. Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Huang X, Du Z, Wu B, Jia L, Wang X, Jing X. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for HPLC determination of three strobilurin fungicides in cereals. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1279-1288. [PMID: 32436780 DOI: 10.1080/19440049.2020.1758349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper, a dispersive liquid-liquid microextraction method based on the solidification of floating organic droplets, combined with high-performance liquid chromatography (DLLME-SFOD-HPLC), was developed for the detection of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) in cereals. Natural fatty acids were used as an extractant and have low toxicity, density, and freezing point. The extractant nonanoic acid was evenly dispersed as droplets in sample solution and was then solidified in the upper layer of sample solution after centrifugation and ice bath, which improved the extraction and collection efficiency. The dispersive liquid-liquid microextraction procedure was optimised by univariate analysis and the Box-Behnken response surface methodology. Optimum conditions were as follows: the volume of nonanoic acid was 82 μL, the volume of acetonitrile was 620 μL, and the amount of salt was 256 mg. Under optimised conditions, the method had good linearity with a correlation coefficient higher than 0.997, and the limit of detection was 2.57-4.87 μg kg-1. The recoveries of azoxystrobin, pyraclostrobin, and trifloxystrobin in rice, corn, and wheat were 82.0%-93.2%, and the relative standard deviations were 1.6%-7.4%. Therefore, the method was successfully applied to detect target fungicides in cereals.
Collapse
Affiliation(s)
- Xin Huang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu, Shanxi, P.R. China
| | - Zhiyi Du
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu, Shanxi, P.R. China
| | - Beiqi Wu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne , Parkville, Australia
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu, Shanxi, P.R. China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu, Shanxi, P.R. China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu, Shanxi, P.R. China
| |
Collapse
|
19
|
Manousi N, Zachariadis GA. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020; 25:E2182. [PMID: 32392764 PMCID: PMC7249015 DOI: 10.3390/molecules25092182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise a group of chemical compounds consisting of two or more fused benzene rings. PAHs exhibit hydrophobicity and low water solubility, while some of their members are toxic substances resistant to degradation. Due to their low levels in environmental matrices, a preconcentration step is usually required for their determination. Nowadays, there is a wide variety of sample preparation techniques, including micro-extraction techniques (e.g., solid-phase microextraction and liquid phase microextraction) and miniaturized extraction techniques (e.g., dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fabric phase sorptive extraction etc.). Compared to the conventional sample preparation techniques, these novel techniques show some benefits, including reduced organic solvent consumption, while they are time and cost efficient. A plethora of adsorbents, such as metal-organic frameworks, carbon-based materials and molecularly imprinted polymers, have been successfully coupled with a wide variety of extraction techniques. This review focuses on the recent advances in the extraction techniques of PAHs from environmental matrices, utilizing novel sample preparation approaches and adsorbents.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Guiñez M, Escudero L, Mandelli A, Martinez LD, Cerutti S. Volcanic ashes as a source for nitrated and oxygenated polycyclic aromatic hydrocarbon pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16972-16982. [PMID: 32146659 DOI: 10.1007/s11356-020-08130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, a novel, simple, and highly sensitive analytical procedure for the quantitative evaluation of oxygenated and nitrated polycyclic aromatic hydrocarbons in volcanic ash samples based on dispersive solid-liquid microextraction (DSLME) coupled to ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed. Diverse chemometric tools were applied to optimize DSLME working conditions. Thus, a linear calibration curve for all the target analytes in the concentration range from 0.01 to 100 μg g-1 (r2 > 0.994) was obtained. The limits of detection for all the compounds were between 14.6 and 56.0 pg g-1, with high reproducibility (relative standard deviation (RSD) was below 8.1% for all the analytes). Additionally, recoveries ranged from 94.2 to 100%. The applicability of the method was evaluated and the feasibility of the existence of nitrated and oxygenated-PAHs in volcanic ashes at ultra-trace levels was demonstrated, which reveals an unknown source of distribution of these pollutants to the environment. Graphical Abstract.
Collapse
Affiliation(s)
- María Guiñez
- Instituto de Química de San Luis (CCT-San Luis) - Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Laboratorio de Espectrometría de Masas, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, CP5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Luis Escudero
- Instituto de Química de San Luis (CCT-San Luis) - Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Laboratorio de Espectrometría de Masas, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, CP5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Alejandro Mandelli
- Instituto de Química de San Luis (CCT-San Luis) - Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Laboratorio de Espectrometría de Masas, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, CP5700, San Luis, Argentina
| | - Luis D Martinez
- Instituto de Química de San Luis (CCT-San Luis) - Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Laboratorio de Espectrometría de Masas, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, CP5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis) - Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Laboratorio de Espectrometría de Masas, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, CP5700, San Luis, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Martínez-Pérez-Cejuela H, Guiñez M, Simó-Alfonso EF, Amorós P, El Haskouri J, Herrero-Martínez JM. In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochim Acta 2020; 187:301. [DOI: 10.1007/s00604-020-04265-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
|
22
|
Jinadasa BKKK, Monteau F, Morais S. Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1004-1026. [PMID: 32186468 DOI: 10.1080/19440049.2020.1733103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Fabrice Monteau
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal
| |
Collapse
|
23
|
Bani SM, Saaid M, Saad B. An In Situ Dansylation Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Ionic Liquid for Determination of Biogenic Amines in Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01656-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of extractables from pharmaceutical packaging materials. Talanta 2019; 209:120540. [PMID: 31891992 DOI: 10.1016/j.talanta.2019.120540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 02/05/2023]
Abstract
A new method was established for the determination of the extractables from pharmaceutical packaging materials using dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) coupled with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Packaging samples were filled with three kinds of buffer solutions: acid buffer (pH = 3), alkaline buffer (pH = 9) and 0.9% NaCl solution to extract as many extractables as possible, and then the extractables in buffer solutions were enriched by DLLME-SFO technique. Parameters affecting the efficiency of the extraction procedure were evaluated and optimized, including the type and volume of dispersant, extractant volume, pH and vortex-mixing time. After optimization, the values obtained for limits of detection and quantification for three kinds of common antioxidants were 0.3 and 1.0 μg/L respectively, and good linearity (R2 > 0.99) was observed in their respective concentration ranges. The recoveries ranged from 80.61% to 117.87% at three spiked levels with the relative standard deviations (RSDs) between 0.92% and 9.29% (n = 6) in all three buffer solutions. The developed method was successfully applied to the analysis of extractables from pharmaceutical packaging materials. The results indicated that the proposed procedure is a novel, sensitive, fast and repeatable method and has a great significance for evaluation of safety of pharmaceutical packaging materials.
Collapse
|
25
|
Han M, Kong J, Yuan J, He H, Hu J, Yang S, Li S, Zhang L, Sun C. Method development for simultaneous analyses of polycyclic aromatic hydrocarbons and their nitro-, oxy-, hydroxy- derivatives in sediments. Talanta 2019; 205:120128. [PMID: 31450405 DOI: 10.1016/j.talanta.2019.120128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
It is important to establish an available analytical method for polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs (nitro-PAHs), oxygenated forms of PAHs (oxy-PAHs), and hydroxy-PAHs (OH-PAHs) in sediment samples due to the fact that they co-exist in various environmental mediates, particularly in sediment. In this study, an analytical method has been developed and validated for the quantification of PAHs, nitro-PAHs, oxy-PAHs, and OH-PAHs in sediment samples. The sediment samples were extracted by accelerated solvent extraction and cleaned up with SPE alumina-n combining with aminopropyl cartridges. The extracts were further fractionated by using different solvents. The fractionated extracts were analyzed via gas chromatography of single and triple quadrupole mass spectrometry in the electron ionization and negative ion chemical ionization with selective ion monitoring and selective reaction monitoring mode and liquid chromatography-triple quadrupole mass spectrometry. Each group of analytes was determined by different instrument modes such as GC-EI-SIM for PAHs, GC-NICI-SRM for nitro-PAHs, GC-EI-SRM for the oxy-PAHs and LC-ESI-MS/MS for OH-PAHs. A total of 44 analytes (16 PAHs, 14 nitro-PAHs, 9 oxy-PAHs, and 5 OH-PAHs) and 6 deuterated surrogates were performed. Most of recovery percentage varied from 52.8% up to 114.1% for the targeted analytes verified at three concentration levels (100 ng/g, 400 ng/g and 1000 ng/g for PAHs and 10 ng/g, 50 ng/g and 400 ng/g for their derivatives). The repeatability determined by the relative standard deviation percentage of triplicate trials was less than 10% for most analytes. The limit of detection ranged from 0.01 to 0.02 ng/g for PAHs, 0.002-0.067 ng/g for nitro-PAHs, 0.01-0.1 ng/g for oxy-PAHs, and 0.003-0.006 ng/g for OH-PAHs. Most of the compounds were detectable in the sediments collected from a local River, which illustrates the developed method could be a practical and suitable technique for detection of PAHs and their derivatives in real sediment samples.
Collapse
Affiliation(s)
- Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Julong Yuan
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, China.
| | - Jiapeng Hu
- College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Nagato EG, Hayakawa K. The presence of nitroarenes formed by secondary atmospheric processes in the Japanese freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:554-558. [PMID: 31026703 DOI: 10.1016/j.envpol.2019.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, the concentrations and distributions of nitrated polycyclic aromatic hydrocarbons (NPAHs) were characterized in the freshwater environment of a Japanese city. While the NPAHs were few in number, they were found in pg/L concentrations and the specific isomers suggested the deposition of NPAHs formed via the atmospheric transformation of PAHs. The absence of NPAHs formed via primary combustion processes such as automobile exhaust, suggests that improvements in emission standards are being reflected in the environment, though the NPAHs formed by secondary atmospheric processes are still a significant ecotoxicological threat. The stability of the NPAHs was also examined in spiked freshwater matrices. There was a significant decrease in spiked NPAHs over this period, suggesting that they were either being sorbed or transformed and are therefore not long lived in the freshwater environment. This indicates that the NPAHs found in freshwater samples are from recent deposition.
Collapse
Affiliation(s)
- Edward G Nagato
- Institute of Nature and Environmental Technology, Kanazawa University, 〒923-1224, Ishikawa, Nomi, Wakemachi O-24, Japan.
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, 〒923-1224, Ishikawa, Nomi, Wakemachi O-24, Japan
| |
Collapse
|
27
|
Solid-Phase Extraction Combined with Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for Simultaneous Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Fish. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Sun H, Nan Y, Feng R, Ma R. Novel method for in situ investigation into graphene quantum dots effects on the adsorption of nitrated polycyclic aromatic hydrocarbons by crop leaf surfaces. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:10-16. [PMID: 29957403 DOI: 10.1016/j.ecoenv.2018.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) are PAH derivatives with more toxic effects to ecosystem, and the partitioning of NPAHs in crop system constitutes the potential exposure to human health through the dietary pathway. In the present study, a novel method for in situ detection of 9-nitroanthracene (9-NAnt) and 3-nitrofluoranthene (3-NFla) adsorbed onto the leaf surfaces of living soybean and maize seedlings was established based on the fiber-optic fluorimetry combined with graphene quantum dots (GQDs) as a fluorescent probe. The detection limits for the in situ quantification of the two adsorbed NPAHs ranged from 0.8 to 1.6 ng/spot (spot represents determination unit, 0.28 cm2 per spot). Using the novel method, the effects of GQDs on the adsorption of individual 9-NAnt and 3-NFla by the living soybean and maize leaf surfaces were in situ investigated. The presence of GQDs altered the adsorption mechanism from the sole film diffusion to the combination of film diffusion and intra-particle diffusion, and shortened the time required to achieving adsorption equilibrium by 15.8-21.7%. Significant inter-species and inter-chemical variability existed in terms of the equilibrated adsorption capacity (qe) with the sequence of soybean > maize and 3-NFla > 9-NAnt. The occurrence of GQDs enlarged the qe values of 9-NAnt and 3-NFla by 22.8% versus 28.7% for soybean, and 16.2% versus 20.3% for maize, respectively, which was largely attributed to GQDs-induced expansion to the surface area for adsorbing NPHAs and the stronger electrostatic interaction between the -NO2 of NPAH molecules and the functional groups (e.g., -COOH, -OH) of GQDs outer surfaces. And, the varied enhancement degrees in the order of 3-NFla > 9-NAnt might be explained by the steric effects that resulted in the easier accessibility of -NO2 of 3-NFla to the outer surface of GQDs. Summarily, the GQDs increased the retention of NPAHs on crop leaf surfaces, potentially threatening the crop security.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Yanli Nan
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Ruijie Feng
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Ruiyao Ma
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
29
|
Wang X, Sheng WR, Jiao XY, Zhao RS, Wang ML, Lin JM. Zinc(II)-based metal–organic nanotubes coating for high sensitive solid phase microextraction of nitro-polycyclic aromatic hydrocarbons. Talanta 2018; 186:561-567. [DOI: 10.1016/j.talanta.2018.02.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|
30
|
Guiñez M, Bazan C, Martinez LD, Cerutti S. Determination of nitrated and oxygenated polycyclic aromatic hydrocarbons in water samples by a liquid–liquid phase microextraction procedure based on the solidification of a floating organic drop followed by solvent assisted back-extraction and liquid chromatography–tandem mass spectrometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Darvishnejad M, Ebrahimzadeh H. Magnetic halloysite nanotube/polyaniline/copper composite coupled with gas chromatography-mass spectrometry: A rapid approach for determination of nitro-phenanthrenes in water and soil samples. J Chromatogr A 2018; 1563:1-9. [PMID: 29880215 DOI: 10.1016/j.chroma.2018.05.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 01/12/2023]
Abstract
A fast, sensitive and reliable ultrasound-assisted magnetic dispersive solid-phase microextraction (UAMDSPME) setup was developed and evaluated for the enrichment of nitro- phenanthrenes compound in environmental samples prior to GC-MS determination. A new type of nanocomposite sorbent was made based on halloysite nanotubes (HNTs). HNTs is a type of natural material, have attracted great interest because of their large surface area and high chemical and thermal stability. The hybrid nanocomposite (magnetic HNT@PANI@Cu) was obtained by coating the magnetic HNTs by polyaniline (PANI) and afterwards decorating with metalic copper. Its morphology and surface properties were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, energy dispersive spectroscopy and vibrating sample magnetometry. In this work several factors that may affect the extraction efficiencies such as desorption solvent type and its volume, sonication times for extraction and desorption, sorbent amount, organic modifier content, salt concentration and matrix effect were investigated in detail. Under the optimal conditions, the limit of detection (S/N = 3) was 0.25 ng L-1 and the linearity was in the range of 0.01-100 μg L-1. The method precision expressed as relative standard deviations (RSDs%) were 4.6-6.1% (intra-day), and 7.2-9.6% (inter-day). Finally, the presented method was successfully applied to the rapid determination of trace levels of nitro-phenanthrenes in spiked water and soil samples.
Collapse
|
32
|
Nascimento MM, da Rocha GO, de Andrade JB. A rapid low-consuming solvent extraction procedure for simultaneous determination of 34 multiclass pesticides associated to respirable atmospheric particulate matter (PM2.5) by GC–MS. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Jia Y, Zhao Y, Zhao M, Wang Z, Chen X, Wang M. Core–shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons. J Chromatogr A 2018; 1551:21-28. [DOI: 10.1016/j.chroma.2018.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
|
34
|
Layered Double Hydroxides as a Coating for the Determination of Phthalate Esters in Aqueous Solution with Solid-Phase Microextraction Followed by Gas Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3507-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Sun Y, Li Y, Meng X, Qiao B, Hu P, Meng X, Lu S, Ren H, Liu Z, Zhou Y. Fluorescence-linked immunosorbent assay for detection of phenanthrene and its homolog. Anal Biochem 2018; 547:45-51. [PMID: 29458034 DOI: 10.1016/j.ab.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
A competitive fluorescence-linked immunosorbent assay (FLISA) was developed using rhodamine B isothiocyanate (RBITC) as the model fluorescent dye conjugate monoclonal antibody (McAb) for detection of Phe and its homolog (acenaphthene, fluorene, fluoranthene, pyrene and indeno [1,2,3-cd] pyrene) in water samples. The detection range of the assay for Phe was from 2.10 to 91.95 ng/mL. The limit of detection was 1.05 ng/mL, which was approximately 2-fold lower than that of traditional ic-ELISA. Compared with traditional ic-ELISA, more than 70 min was saved because of only one immunoreaction step was needed to accomplish the assay. The average recoveries of Phe and its homolog from domestic water, contaminated water and natural water were 100.7%, 100.8% and 101.2% respectively. The accuracy and precision of the developed FLISA were validated with GC-MS/MS. There were good correlation between the two methods from tap water, contaminated water and river water samples were 0.9994, 0.9935 and 0.9967, respectively. The results suggested that the proposed FLISA could be a potential alternative format for rapid, sensitive, and quantitative detection of Phe and its homolog in environmental water.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Grain and Oil Food Processing Key Laboratory of Jilin Province, Jilin Business and Technology College, Changchun 130507, PR China
| | - Yansong Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xingyu Meng
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Bin Qiao
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Pan Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xianmei Meng
- Grain and Oil Food Processing Key Laboratory of Jilin Province, Jilin Business and Technology College, Changchun 130507, PR China
| | - Shiying Lu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Honglin Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zengshan Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yu Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Beijing Hongwei Science & Technology Co., Ltd, Beijing 100000, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China.
| |
Collapse
|
36
|
Abstract
Solvent-terminated dispersive liquid-liquid microextraction (ST-DLLME) is a special mode of DLLME in which a demulsifying solvent is injected into the cloudy mixture of sample/extractant to break the emulsion and induce phase separation. The demulsification process starts by flocculation of the dispersed microdroplets by Ostwald ripening or coalescence to form larger droplets. Then, the extractant either floats or sinks depending on its density as compared with that for the aqueous sample. The demulsifier should have high surface activity and low surface tension in order to be capable of inducing phase separation. The extraction efficiency in ST-DLLME is controlled by the same experimental variables of normal DLLME (n-DLLME) such as the type and volume of the extractant as well as the disperser. Other parameters such as pH and the temperature of the sample, the stirring rate, the time of extraction and the addition of salt are also important to consider. Along with these factors, the demulsifier type and volume and the demulsification time have to be optimized. By using solvents to terminate the dispersion step in DLLME, the centrifugation process is not necessary. This in turn improves precision, increases throughput, decreases the risk of contamination through human intervention and minimizes the overall analysis time. ST-DLLME has been successfully applied for determination of both inorganic and organic analytes including pesticides and pharmaceuticals in water and biological fluids. Demulsification via solvent injection rather than centrifugation saves energy and makes ST-DLLME easier to automate. These characteristics in addition to the low solvent consumption, the reduced organic waste and the possibility of using water in demulsification bestow green features on ST-DLLME. This tutorial discusses the principle, the practical aspects and the different applications of ST-DLLME.
Collapse
Affiliation(s)
- Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, 31111, Egypt.
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
37
|
Pirsaheb M, Fattahi N. Development of a liquid-phase microextraction based on the freezing of a deep eutectic solvent followed by HPLC-UV for sensitive determination of common pesticides in environmental water samples. RSC Adv 2018; 8:11412-11418. [PMID: 35542816 PMCID: PMC9079125 DOI: 10.1039/c8ra00912k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/19/2018] [Indexed: 12/30/2022] Open
Abstract
In this research, a new extraction method based on liquid-phase microextraction and the freezing of deep eutectic solvent has been developed for the determination of pesticides in water prior to their analysis by HPLC-UV.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| |
Collapse
|
38
|
Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Khan M, Kazi TG, Afridi HI, Bilal M, Akhtar A, Ullah N, Khan S, Talpur S. Application of ultrasonically modified cloud point extraction method for simultaneous enrichment of cadmium and lead in sera of different types of gallstone patients. ULTRASONICS SONOCHEMISTRY 2017; 39:313-320. [PMID: 28732951 DOI: 10.1016/j.ultsonch.2017.04.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
A novel and greener ultrasonically assisted/modified cloud point extraction procedure for the simultaneous preconcentration of lead and cadmium in serum samples of different types of gallstone patients was developed. The chelates of the under study metals, formerly formed with 8-hydroxyquinoline, were extracted in the micelles of a nonionic surfactant prior to analysis by flame atomic absorption spectrometer (FAAS). After the arrival of the cloud point, the critical micellar mass produced was homogenously dispersed in the aqueous phase with the help of ultrasound energy. The reliability of the developed procedure was tested by relative standard deviation (% RSD), which was found to be <5%. The performance of the proposed procedure was checked by applying to certified reference material and spiking standard in real samples. All the experimental parameters were optimized. The developed procedure of Um-CPE was applied successfully for the analysis of the target heavy metals in serum samples of different types of gallstone patients and referents. The higher levels of the understudy metals were observed in the patients as compared to the referents but the levels of the both metal were found to be considerably higher in patients with pigmented gallstones.
Collapse
Affiliation(s)
- Mustafa Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Tasneem Gul Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Hasan Imran Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Muhammad Bilal
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Asma Akhtar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Naeem Ullah
- Department of Chemistry, University of Turbat, Balochistan 92600, Pakistan.
| | - Sabir Khan
- Universidade Estadual Paulista (UNESP), Department of Analytical Chemistry, Institute of Chemistry, Rua Professor Francisco Degni, 55, Quitandinha, 14.800-060 Araraquara, Brazil.
| | - Sehrish Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| |
Collapse
|
40
|
Mansour FR, Khairy MA. Pharmaceutical and biomedical applications of dispersive liquid–liquid microextraction. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:382-391. [DOI: 10.1016/j.jchromb.2017.07.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 01/18/2023]
|
41
|
Somsubsin S, Seebunrueng K, Boonchiangma S, Srijaranai S. A simple solvent based microextraction for high performance liquid chromatographic analysis of aflatoxins in rice samples. Talanta 2017; 176:172-177. [PMID: 28917738 DOI: 10.1016/j.talanta.2017.08.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
This paper describes the development of a simple solvent based microextraction, namely vortex assisted low density solvent-microextraction (VALDS-ME), followed by high performance liquid chromatography-fluorescence detection (HPLC-FD) for the simultaneous determination of four aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 in rice samples. In VALDS-ME, a mixture of low density solvents (1-octanol and toluene) was used as the extraction solvent. The extraction was rapidly achieved with the assistance of vortex agitation and phase separation was easily obtained after the addition of Na2SO4. The effects of various parameters on the extraction efficiency were optimized. Under the optimum conditions, high enrichment factors (42-132), low limits of detection (LODs) in the range of 0.0011-0.17μgkg-1 and good precisions (RSDs lower than 6.2%) were obtained. AFB1 and AFG1 were detected in berry rice sample at 0.26 and 2.1μgkg-1, respectively. The recoveries in AFs-spiked rice samples ranged from 70% to 104%. Moreover, the present method was comparable to the conventional immunoaffinity chromatography method.
Collapse
Affiliation(s)
- Somying Somsubsin
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ketsarin Seebunrueng
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthasinee Boonchiangma
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
42
|
Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta 2017; 170:22-35. [DOI: 10.1016/j.talanta.2017.03.084] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 01/09/2023]
|
43
|
In situ hydrothermal growth of a zirconium-based porphyrinic metal-organic framework on stainless steel fibers for solid-phase microextraction of nitrated polycyclic aromatic hydrocarbons. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2403-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Modified dispersive solid-liquid microextraction coupled to HPLC and application of experimental design methodology to determine the trace amount of levothyroxine in human real samples. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Canales R, Guiñez M, Bazán C, Reta M, Cerutti S. Determining heterocyclic aromatic amines in aqueous samples: A novel dispersive liquid-liquid micro-extraction method based on solidification of floating organic drop and ultrasound assisted back extraction followed by UPLC-MS/MS. Talanta 2017; 174:548-555. [PMID: 28738621 DOI: 10.1016/j.talanta.2017.06.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 11/25/2022]
Abstract
A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ultrasound assisted back extraction for the determination of four heterocyclic aromatic amines in natural water samples prior ultra high-performance liquid chromatography-tandem mass spectrometry was developed. The analytes were extracted from the water samples by a dispersive liquid-liquid microextraction procedure based on solidification of floating organic drop, which was performed by a mixture composed by a less dense than water extraction solvent, 1-undecanol, and a dispersive solvent, methanol. After that, a novel ultrasound assisted back extraction step was performed in order to make the clean-up/enrichment procedure compatible with the detection requirements. Under optimum conditions, linearity ranged from 2.2 to 50ngmL-1, with enrichment factors from 130 to 136-folds. Thus limits of detection between 0.7 and 2.9ngmL-1 were obtained. Precision of the method was evaluated in terms of repeatability, relative standard deviations varied from 4.3% to 6.7%. Relative recoveries ranged from 92% to 106% for all analytes. The satisfactory performance demonstrated that the proposed methodology has a strong potential for application in the multi-residue analysis of heterocyclic aromatic amines present in complex environmental matrices.
Collapse
Affiliation(s)
- Romina Canales
- Instituto de Química de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia Bloque III, Avda. Ejército de los Andes 950, San Luis CP: 5700, Argentina
| | - María Guiñez
- Instituto de Química de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia Bloque III, Avda. Ejército de los Andes 950, San Luis CP: 5700, Argentina
| | - Cristian Bazán
- Instituto de Química de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia Bloque III, Avda. Ejército de los Andes 950, San Luis CP: 5700, Argentina
| | - Mario Reta
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Facultad de Ciencias Exactas, UNLP, CONICET, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia Bloque III, Avda. Ejército de los Andes 950, San Luis CP: 5700, Argentina.
| |
Collapse
|