1
|
Khoshfetrat SM, Nabavi M, Mamivand S, Wang Z, Wang Z, Hosseini M. Ionic liquid-delaminated Ti 3C 2 MXene nanosheets for enhanced electrocatalytic oxidation of tryptophane in normal and breast cancer serum. Mikrochim Acta 2025; 192:113. [PMID: 39885040 DOI: 10.1007/s00604-025-06968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM]+ HSO4-), to delaminate Ti3C2 MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-Ti3C2 composite not only maintained the inherent electronic conductivity of Ti3C2 but also significantly augmented its electrocatalytic prowess. The IL-Ti3C2/GCE sensor highlighted performances, featuring wide dynamic range (0.005 to 1 µM and 1 to 300 µM), low detection limit (0.1 nM), high reproducibility, excellent anti-interference performance, and long-term stability. The exceptional abilities of the IL-Ti3C2 nanocatalyst make it as a very promising electrode material for achieving precise Trp detection in serum samples from both healthy individuals and breast cancer patients, yielding satisfactory result that underscore its potential for clinical applications.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
| | - Mohana Nabavi
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
| | - Saba Mamivand
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
| | - Zhenyu Wang
- Characteristic Laboratory of Advanced Metal Functional Materials and Processing in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, People's Republic of China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mehdi Hosseini
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
| |
Collapse
|
2
|
Biswas A, Gharami S, Maji A, Guha S, Das G, Naskar R, Mondal TK. A distinctive and proficient fluorescent switch for ratiometric recognition of the menacing cyanide ion: biological studies on MDA-MB-231 cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8010-8018. [PMID: 39469889 DOI: 10.1039/d4ay01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A new fluorescent ratiometric switch (BOHB) was developed for swift and selective detection of cyanide ions in aqueous media without any interference from other competitive anions. Upon gradual addition of cyanide ions into the probe solution, a prominent fluorescence color change from yellow to cyan was observed under a UV chamber. The fluorescence changes thus observed were ratiometric, and the detection limit of this new probe was found to be (22.1 ± 0.89) μM, suggesting that the efficiency of BOHB for the detection of cyanide ions is brilliant even at a minute level. The blue shift in fluorescence intensity upon the addition of cyanide ions was attributed to the deprotonation mechanism of acidic protons present in BOHB. This phenomenon was further explored using 1H-NMR study, which supported the mechanism. Further, stability study was performed over a period of 5 days to prominently establish the stability of BOHB. The probe is also highly capable of recognizing CN- within a very short time-span (almost 15 seconds), thereby making it a brilliant fluorescent switch for the swift recognition of CN-. Furthermore, BOHB was employed for real water sample analysis to display its practical application. Besides, the easy-to-prepare dipstick experiment provides a simple, reusable and recyclable protocol for the suitable qualitative identification of CN-. Lastly, triple negative breast adenocarcinoma (MDA-MB-231) cells were made susceptible to CN- sensing in a biological system, thereby making BOHB a biomarker tool.
Collapse
Affiliation(s)
- Amitav Biswas
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata-700026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata-700026, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | | |
Collapse
|
3
|
El-Sewify IM, Shenashen MA, El-Agamy RF, Emran MY, Selim MS, Khairy M, Shahat A, Selim MM, Elmarakbi A, Ebara M, El-Safty SA. Fluorescent sensor/tracker for biocompatible and real-time monitoring of ultra-trace arsenic toxicants in living cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135429. [PMID: 39128154 DOI: 10.1016/j.jhazmat.2024.135429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Real-time monitoring and tracking of extreme toxins that penetrate into living cells by using biocompatible, low-cost visual detection via fluorescent monitors are vitally essential to reduce health hazards. Herein, we report a simple engineering design of biocompatible and fluorescent sensors/trackers for real-time monitoring and ultra-trace tracking (up to ppb) of extremely toxic substances (such as arsenic species) in living cells. The biocompatible As(V) sensor (BAS) design is fabricated via successful dressing/decoration process of 2-hydroxy 5-methyl isophthalaldehyde fluorescent receptor into hierarchical organic-inorganic carriers that have micro-hollow geodes, swirled caves and nest-shaped cages, and uniform cubic structures. The BAS monitors show evidence for the selective trapping/detecting/tracking of As(V) species in biological cells (i.e., HeLa cells) despite the coexistence of highly competitive and interfered species. Our simple batch-contact sensing assays shows real-space evidence of the continuous monitoring of As(V) species in HeLa cells with ultra-sensitive detection (i.e., with a low detection limit of 0.149 ppb) and rapid recognition (i.e., in the order of seconds). Significantly, the BAS monitors did not affect the cell population and achieved low cytotoxicity and high cell viability during the monitoring/tracking process inside HeLa cells. The high biocompatibility of BAS remarkably allows precise quantification and real-time monitoring/tracking of toxicant targets in living cells.
Collapse
Affiliation(s)
- Islam M El-Sewify
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Mohamed A Shenashen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI)The institution will open in a new tab, Nasr City, Cairo 11727, Egypt
| | - Rasha F El-Agamy
- College of Computer Science and Engineering, Taibah University, Yanbu 966144 Saudi Arabia
| | - Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI)The institution will open in a new tab, Nasr City, Cairo 11727, Egypt
| | - Mohamed Khairy
- Chemistry Department, Faculty of Science, Sohag University, 82524, Egypt
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, B.O.Box: 43221 Suez, Egypt
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710, 11912, Saudi Arabia
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan.
| |
Collapse
|
4
|
Liu W, Ren Y, Song X, Li X, Wang J. High-sensitively fluorescent switch-type sensing for Ag + and halide anions of 2D Cd-based network constructed with logic gates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124260. [PMID: 38603963 DOI: 10.1016/j.saa.2024.124260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Effective detection of the concentration of Ag+ ions in bactericidal fluid is one of the necessary conditions for their effective utilization for sterilization. A novel 2D Cd(II) coordination polymer (CP1), named as [Cd(HDPN)(4,4'-bbpy)]·2H2O, was hydrothermally synthesized using 5-(2',4'-dicarboxylphenyl) nicotic acid (H3DPN) and 4,4'-bis(imidazolyl)biphenyl (4,4'-bbpy). The structure analysis discovered that CP1 possessed a 2D network structure of dinuclear inorganic building blocks. Fluorescence sensing discovered that CP1 could high-sensitively detect Ag+, tetracycline, nitrobenzene and pyrimethanil and the lowest limit of detection (LOD) were 1.44 × 10-8M, 2.15 × 10-8M, 8.09 × 10-8M, and 2.54 × 10-7M, respectively. It is worth noting that the quenching occurs after the addition of Ag+ to the aqueous solution of CP1, and then it gradually recovers when one of the halide anions (X- = Cl-, Br- and I-) is added, forming a unique "on-off-on" fluorescence sensor for Ag+ and constructing a simple logic gate. The fluorescence sensing mechanism of CP1 was investigated using ultraviolet-visible spectroscopy, PXRD, XPS, and DFT methods. The research indicates that CP1 is anticipated to serve as an excellent multifunctional fluorescence sensor, especially as a switch-type sensor for Ag+ and the halide anions.
Collapse
Affiliation(s)
- Wanting Liu
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yixia Ren
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Xiaoming Song
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoxia Li
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Jijiang Wang
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
5
|
Yang L, Hu W, Pei F, Liu Z, Wang J, Tong Z, Mu X, Du B, Xia M, Wang F, Liu B. A ratiometric fluorescence imprinted sensor based on N-CDs and metal-organic frameworks for visual smart detection of malathion. Food Chem 2024; 438:138068. [PMID: 38011790 DOI: 10.1016/j.foodchem.2023.138068] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Sensitive and rapid detection of pesticide residues in food is essential for human safety. A ratiometric imprinted fluorescence sensor N-CDs@Eu-MOF@MIP (BR@MIP) was constructed to sensitively detect malathion (Mal). Europium-based metal organic frameworks (Eu-MOF) were used as supporters to improve the sensitivity of the BR@MIP. N-doped carbon dots (N-CDs) were used as fluorescent source to produce fluorescent signal. A linear relationship between the concentration of Mal and the fluorescence response of the sensor was found in the Mal concentration range of 1-10 μM with a limit of detection (LOD) of 0.05 μM. Furthermore, the sensor was successfully applied for the detection of Mal in lettuce, tap water, and soil samples, with recoveries in the range of 93.0 % - 99.3 %. Additionally, smartphone-based sensors were used to detect Mal in simulated real samples. Thus, the construction of ratiometric imprinted fluorescence sensor has provided a good strategy for the detection of Mal.
Collapse
Affiliation(s)
- Lidong Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
6
|
Hassan J, Rajib MMR, Khan MNEA, Khandaker S, Zubayer M, Ashab KR, Kuba T, Marwani HM, Asiri AM, Hasan MM, Islam A, Rahman MM, Awual MR. Assessment of heavy metals accumulation by vegetables irrigated with different stages of textile wastewater for evaluation of food and health risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120206. [PMID: 38325287 DOI: 10.1016/j.jenvman.2024.120206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Wastewater irrigation for vegetable cultivation is greatly concerned about the presence of toxic metals in irrigated soil and vegetables which causes possible threats to human health. This study aimed to ascertain the accumulation of heavy metals (HMs) in edible parts of vegetables irrigated with different stages of textile dyeing wastewater (TDW). Bio-concentration factor (BCF), Estimated daily intake (EDI), and target hazard quotient (THQ) were computed to estimate human health risks and speculate the hazard index (HI) of adults and children with the consumption of HMs contaminated vegetables at recommended doses. Five vegetables (red amaranth, Indian spinach, cauliflower, tomato, and radish) in a pot experiment were irrigated with groundwater (T1) and seven stages of TDW (T2∼T8) following a randomized complete block design (RCBD) with three replications. Among the TDW stages, T8, T7, T4, and T5 exhibited elevated BCF, EDI, THQ, and HI due to a rising trend in the accumulation of Pb, Cd, Cr, and Ni heavy metals in the edible portion of the red amaranth, followed by radish, Indian spinach, cauliflower, and tomato. The general patterns of heavy metal (HM) accumulation, regarded as vital nutrients for plants, were detected in the following sequence: Zn > Mn/Cu > Fe. Conversely, toxic metals were found to be Cd/Cr > Ni > Pb, regardless of the type of vegetables. Principal Component Analysis (PCA) identified T8, T7, and T4 of TDW as the primary contributors to the accumulation of heavy metals in the vegetables examined. Furthermore, the analysis of the heavy metals revealed that the BCF, THQ, and HI values for all studied metals were below 1, except for Pb. This suggests that the present consumption rates of different leafy and non-leafy vegetables, whether consumed individually or together, provide a low risk in terms of heavy metal exposure. Nevertheless, the consumption of T8, T7, and T4 irrigated vegetables, specifically Indian spinach alone or in combination with red amaranth and radish, by both adults and children, at the recommended rate, was found to pose potential health risks. On the other hand, T2, T3, and T6 irrigated vegetables were deemed safe for consumption. These findings indicated that the practice of irrigating the vegetables with T8, T7, and T4 stages of TDW has resulted in a significant buildup of heavy metals in the soils and edible parts of vegetables which are posing health risks to adults and children. Hence, it is imperative to discharge the T8, T7, and T4 stages of TDW after ETP to prevent the contamination of vegetables and mitigate potential health risks.
Collapse
Affiliation(s)
- Jahidul Hassan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Mijanur Rahman Rajib
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Noor-E-Azam Khan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shahjalal Khandaker
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur-1706, Bangladesh.
| | - Md Zubayer
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Kazi Raghib Ashab
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Takahiro Kuba
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Munjur Hasan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Aminul Islam
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Rabiul Awual
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U 1987, Perth, WA, 6845, Australia.
| |
Collapse
|
7
|
Yang L, Hu W, Pei F, Du B, Tong Z, Mu X, Xia M, Wang F, Liu B. Novel dual-emission fluorescence imprinted sensor based on Mg, N-CDs and metal-organic frameworks for rapid and smart detection of 2, 4, 6-trinitrophenol. Talanta 2024; 266:125115. [PMID: 37657376 DOI: 10.1016/j.talanta.2023.125115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Rapid and real-time detection of 2, 4, 6-trinitrophenol (TNP) is of great importance for the living environment and human health. Herein, we constructed an innovative ratiometric fluorescence imprinted sensor with fast response and high selectivity based on magnesium and nitrogen co-doped carbon dots (Mg, N-CDs) and chromium telluride quantum dots (r-CdTe) self-assembled in zirconium-based metal organic frameworks (UiO-66) combined with imprinted polymers for the detection of TNP. In the protocol, the introduction of UiO-66 with large specific surface area and porosity using as carrier material significantly enhanced the mass transfer rate, which improved the sensitivity of the Mg, N-CDs/r-CdTe@UiO-66@MIP (LHU@MIP). And the Mg, N-CDs with high quantum yields and r-CdTe were selected as fluorescence emitting elements to yield fluorescence signal, achieving signal amplification. The dual-channel strategy enabled the sensor to not only display a fast fluorescence response, but also generate a dual-response signal under the action of internal filtering effect (IFE). Combining these advantages, the LHU@MIP had a wide linear range (1-100 μM), good detection sensitivity (0.56 μM), and a distinct color change (from blue to pink). Meanwhile, for accurate on-site analysis, we designed a portable smart sensing platform with a color recognizer application. The smartphone enabled visual sensing of TNP by capturing fluorescent images and converting them into digital values. More importantly, the platform was successfully utilized for the analysis of TNP in the simulated actual samples with considerable results. Therefore, the developed platform was characterized by low cost, portability, ideal specificity, and provided a strategy for on-site monitoring of TNP.
Collapse
Affiliation(s)
- Lidong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
8
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
9
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
10
|
Nitrogen-doped Carbon dots for sequential ‘ON-OFF-ON’ fluorescence probe for the sensitive detection of Fe3+ and L-alanine/L-histidine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Shao J, Ni J, Chen W, Liu P, Liang Y, Li G, Wen L, Wang F. A Novel Co‐based MOF as an Efficient Multifunctional Fluorescent Chemosensor for the Determination of Fe
3+
and Cr
2
O
7
2−
in Aqueous Phase. ChemistrySelect 2022. [DOI: 10.1002/slct.202202094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Shao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jianling Ni
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Weimin Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Penglai Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yu Liang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guangjun Li
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Lili Wen
- College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Fangming Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
12
|
Radwan A, El-Sewify IM, Azzazy HMES. Monitoring of Cobalt and Cadmium in Daily Cosmetics Using Powder and Paper Optical Chemosensors. ACS OMEGA 2022; 7:15739-15750. [PMID: 35571766 PMCID: PMC9096815 DOI: 10.1021/acsomega.2c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 05/15/2023]
Abstract
Daily used cosmetics may contain high levels of heavy metals which are added to improve the quality and shine of cosmetics but represent a threat to human health. In this report, powder- and paper-based optical nanosensors using mesoporous silica nanospheres as carriers were designed for determination of Co2+ and Cd2+ in commonly used cosmetics. Powder optical chemosensors (POCs) were prepared via direct decoration of optical probes into a porous carrier. Paper-based chemosensors (PBCs) were designed via adsorbing the organic chromophore onto filter papers treated with mesoporous silica. POCs and PBCs were constructed with thick decoration of optical probes, leading to the formation of active surface centers for monitoring of Co2+ and Cd2+ in cosmetic products. The uniform structures of POCs and PBCs have resulted in selective sensing and low detection limits up to parts per billion, wide detection range determination, and fast response (on the order of seconds). Digital image colorimetric analysis (DICA) was used to quantify the color of PBCs and deduce the corresponding concentrations of Co2+ and Cd2+ using calibration curves. DICA data correlated well with that obtained from UV-vis spectrophotometry. The developed POCs and PBCs showed wide detection ranges of metal ions and a considerably low detection limit under optimal analysis conditions. The low limit of detection of Co2+ and Cd2+ ions using POCs was 6.7 × 10-9 and 3.5 × 10-9 M, respectively. To the best of our knowledge, this is the first time simple PBCs have been designed for monitoring Co2+ and Cd2+ with detection limits of 2.2 × 10-7 and 1.3 × 10-7 M. A limited amount of manufactured POCs (about 20 mg) were used for all measurements, and commercial filter paper treated with mesoporous nanosphere silica was used for sensing Co2+ and Cd2+ ions. The developed optical chemosensors had short regeneration times and exhibited high stability and surface functionality and are capable of monitoring Co2+ and Cd2+ in various cosmetic products.
Collapse
Affiliation(s)
- Ahmed Radwan
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Abbassia, Cairo 11566, Egypt
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE,
Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Islam M. El-Sewify
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Abbassia, Cairo 11566, Egypt
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE,
Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE,
Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
13
|
Fluorescent chemosensors containing ruthenium(II) bipyridine as fluorogenic unit and modified calixarene as ionophore: Synthesis, characterization, electrochemistry and ion-binding property. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Jothi D, Munusamy S, Manoj Kumar S, Enbanathan S, Kulathu Iyer S. A benzothiazole-based new fluorogenic chemosensor for the detection of CN - and its real-time application in environmental water samples and living cells. RSC Adv 2022; 12:8570-8577. [PMID: 35424806 PMCID: PMC8984840 DOI: 10.1039/d1ra08846g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the cyanide ion is used in a wide range of industries and is harmful to both human health and the environment, a number of research efforts are dedicated to creating fluorescence sensors for the detection of cyanide (CN-). Herein, for the fluorescence detection of CN-, a new highly selective and sensitive sensor 2-(3-(benzo[d]thiazol-2-yl)-4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (BID) was created by conjugating a benzothiazole moiety with 1H-indene-1,3(2H)-dione. The donor and acceptor components of this hybrid receptor were covalently connected through a double bond. The nucleophilic addition of a cyanide anion to the BID inhibits the intramolecular charge transfer (ICT) transition, resulting in spectral and colour alterations in the receptor. When the solvent polarity was increased from n-hexane to methanol, this molecule exhibited a bathochromic shift in the emission wavelength (610 to 632 nm), suggesting the presence of a solvatochromic action. The sensor BID has shown strong specificity towards CN- by interrupting its internal charge transfer (ICT), resulting in a significant change in the UV-vis spectrum and a notable blue shift in the fluorescence emission spectrum. The cyanide anion (CN-) is responsible for the optical alterations observed by BID, as opposed to the other anions examined. The detection limit was 5.97 nM, significantly less than the WHO's permitted amount of CN- in drinking water. The experimental findings indicate that BID's fluorescence response to CN- is pH insensitive throughout a wide pH range of 6.0 to 12.0. The interaction mechanism between the BID and CN- ions has been studied by HRMS, 1H-NMR titration experiments, FT-IR, and DFT, which confirmed the nucleophilic addition of CN- on vinylidene and subsequent disturbance of ICT. Additionally, we demonstrated the real-time detection application of CN- in environmental water samples and live-cell imaging.
Collapse
Affiliation(s)
- Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Sathishkumar Munusamy
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | |
Collapse
|
15
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
El-Sewify IM, Radwan A, Elghazawy NH, Fritzsche W, Azzazy HME. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer's disease. RSC Adv 2022; 12:32744-32755. [PMID: 36425686 PMCID: PMC9664454 DOI: 10.1039/d2ra05384e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and progresses from mild memory loss to severe decline in thinking, behavioral and social skills, which dramatically impairs a person's ability to function independently. Genetics, some health disorders and lifestyle have all been connected to AD. Also, environmental factors are reported as contributors to this illness. The presence of heavy metals in air, water, food, soil and commercial products has increased tremendously. Accumulation of heavy metals in the body leads to serious malfunctioning of bodily organs, specifically the brain. For AD, a wide range of heavy metals have been reported to contribute to its onset and progression and the manifestation of its hallmarks. In this review, we focus on detection of highly toxic heavy metals such as mercury, cadmium, lead and arsenic in water. The presence of heavy metals in water is very troubling and regular monitoring is warranted. Optical chemosensors were designed and fabricated for determination of ultra-trace quantities of heavy metals in water. They have shown advantages when compared to other sensors, such as selectivity, low-detection limit, fast response time, and wide-range determination under optimal sensing conditions. Therefore, implementing optical chemosensors for monitoring levels of toxic metals in water represents an important contribution in fighting AD. This review briefly summarizes evidence that links toxic metals to onset and progression of Alzheimer's disease. It discusses the structure and fabrication of optical chemosensors, and their use for monitoring toxic metals in water.![]()
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Ahmed Radwan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Nehal H. Elghazawy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| | - Hassan M. E. Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| |
Collapse
|
17
|
Eco-friendly green synthesis of functionalized mesoporous silica nanospheres for the determination of Al(III) ions in multiple samples of different kinds of water. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Tarasi S, Ramazani A, Morsali A, Hu ML. Highly Sensitive Colorimetric Naked-Eye Detection of Hg II Using a Sacrificial Metal-Organic Framework. Inorg Chem 2021; 60:13588-13595. [PMID: 34435495 DOI: 10.1021/acs.inorgchem.1c01894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study has developed a specific, easy, and novel approach to designing a sacrificial metal-organic framework (MOF) that can detect and measure the amount of Hg2+ in aqueous and nonaqueous solutions using the naked eye. The functionalized [Zn(oba)(RL3)0.5]n·1.5DMF (TMU-59) provides the ability of simple visual assessment or colorimetric readout without sophisticated analytical equipment. Because of the special interaction with Hg2+, degradation of the structure of this unique MOF causes the solution to change color from colorless to a pink that is easily recognizable to the naked eye. The presence of a methyl group plays a major role in naked-eye detection by a qualitative sensor. Furthermore, this qualitative sensor data for the production of a simple, instant, and portable red, green, and blue (RGB)-based quantitative sensor were used to determine the concentration of Hg2+ in different specimens. As a turn-off fluorescence sensor, this unique structure is also capable of detecting Hg2+ at very low concentrations (the limit of detection is 0.16 ppb). To the best of our knowledge, TMU-59 is the first MOF-based naked-eye sensor that can successfully and specifically display the presence of Hg2+ through a major color change.
Collapse
Affiliation(s)
- Somayeh Tarasi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Agronomy, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Animal Science, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
19
|
Jia J, Yang C, Xu F, Xu S, Zhang X. Metal organic frameworks as solid catalyst for flow acetalization of benzaldehyde. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Gomaa H, Shenashen MA, Elbaz A, Yamaguchi H, Abdelmottaleb M, El-Safty SA. Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124314. [PMID: 33168312 DOI: 10.1016/j.jhazmat.2020.124314] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The monitoring and removal of abundant heavy metals such as Cu ions are considerable global concerns because of their severe impact on the health of humans and other living organisms. To meet this global challenge, we engineered a novel mesoscopic capture protocol for the highly selective removal and visual monitoring of copper (Cu2+) ions from wide-ranging water sources. The capture hierarchy carriers featured three-dimensional, microsized MgO mesoarchitecture rectangular sheet-like mosaics that were randomly built in horizontal and vertical directions, uniformly arranged sheet faces, corners, and edges, smoothly quadrilateral surface coverage for strong Cu2+-to-ligand binding exposure, and multidiffusible pathways. The Cu2+ ion-selectively active captor surface design was engineered through the simple incorporation/encapsulation of a synthetic molecular chelation agent into hierarchical mesoporous MgO rectangular sheet platforms to produce a selective, visual mesoscopic captor (VMC). The nanoscale VMC dressing of MgO rectangular mosaic hierarchy by molecularly electron-enriched chelates with actively double core bindings of azo- and sulfonamide- groups and hydrophobic dodecyl tail showed potential to selectively trap and efficiently remove ultratrace Cu2+-ions with an extreme removal capability of ~233 mg/g from watery solutions, such as drinking water, hospital effluent, and food-processing wastewater at specific pH values. In addition to the Cu2+ ion-selective removal, the VMC design enabled the continuous visual monitoring of ultratrace Cu2+ ions (~3.35 × 10-8 M) as a consequence of strong chelate-to-Cu2+ binding events among all accumulated matrices in water sources. Our experimental recycle protocol provided evidence of reusability and recyclability of VMC (≥10 cycles). With our mesoscopic capture protocol, the VMC can be a promising candidate for the selective decontamination/removal and sensitive detection of hazardous inorganic pollutants from different water sources with indoor or outdoor applications.
Collapse
Affiliation(s)
- H Gomaa
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - M A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - A Elbaz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Egypt
| | - H Yamaguchi
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - M Abdelmottaleb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - S A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
21
|
|
22
|
El-Sewify IM, Khalil MMH. Mesoporous nanosensors for sensitive monitoring and removal of copper ions in wastewater samples. NEW J CHEM 2021. [DOI: 10.1039/d0nj05338d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FHNS nanosensors allow for the ultra-sensitive monitoring and capture of Cu2+ ions with a low detection limit and high adsorption capacity.
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Abbassia
- Egypt
| | | |
Collapse
|
23
|
Kamel RM, Shahat A, Anwar ZM, El-Kady HA, Kilany EM. A novel sensitive and selective chemosensor for fluorescent detection of Zn 2+ in cosmetics creams based on a covalent post functionalized Al-MOF. NEW J CHEM 2021. [DOI: 10.1039/d1nj00871d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A material was fabricated based on the Schiff base reaction to achieve covalent attachment of NH2-MIL-53(Al) and 3-formylsalicylic acid for fluorimetric detection of Zn2+ ions based on inhibition and destruction of CN isomerization and ESIPT.
Collapse
Affiliation(s)
- Rasha M. Kamel
- Chemistry Department
- Faculty of Science
- Suez University
- 43518 Suez
- Egypt
| | - Ahmed Shahat
- Chemistry Department
- Faculty of Science
- Suez University
- 43518 Suez
- Egypt
| | - Zeinab M. Anwar
- Chemistry Department
- Faculty of Science
- Suez Canal University
- 41522 Ismailia
- Egypt
| | - Hamdy A. El-Kady
- Science and Mathematics Department
- Faculty of Petroleum and Mining Engineering
- Suez University
- Suez
- Egypt
| | - Esraa M. Kilany
- Science and Mathematics Department
- Faculty of Petroleum and Mining Engineering
- Suez University
- Suez
- Egypt
| |
Collapse
|
24
|
Yu J, Han J, Li P, Huang Z, Chen S. Simultaneous Determination of Cd
2+
, Cu
2+
, Pb
2+
and Hg
2+
Based on 1,4‐Benzenedithiol‐2,5‐diamino‐hydrochloride‐1,3,5‐triformylbenzene Covalent‐Organic Frameworks. ChemistrySelect 2020. [DOI: 10.1002/slct.202003417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingguo Yu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Jiajia Han
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Pinghua Li
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Shouhui Chen
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| |
Collapse
|
25
|
Radwan A, El-Sewify IM, Shahat A, El-Shahat M, Khalil MM. Decorated nanosphere mesoporous silica chemosensors for rapid screening and removal of toxic cadmium ions in well water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Sharafizadeh M, Mokhtari J, Saeidian H, Mirjafary Z. Anion recognition by urea metal-organic frameworks: remarkable sensitivity for arsenate and fluoride ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25132-25139. [PMID: 32342427 DOI: 10.1007/s11356-020-08934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Functionalized metal-organic frameworks (F-MOFs) are known as a promising chemical sensors since they have specific merits like fixed functionalized ligands projecting into the pores which can be utilized to enhance sensitivity and selectivity. Due to the important role of anions in biological process and environmental systems, there is an increasing interest in synthesis and design of new receptors for anions. Urea groups can operate as a hydrogen bond donating site with hydrogen bond acceptor molecules. Strong and directional hydrogen-bonding between the positive urea groups and anions could reduce vibrational quenching and enhance the fluorescence intensity. In this study, two luminescent porous urea decorated MOFs have been successfully assembled and structurally characterized. Luminescence studies of these MOFs toward anions revealed that these F-MOFs exhibit high sensitivity and selectivity toward H2AsO4- and F- anions as two major ground water pollutants. Moreover, the proposed materials have been applied for the removal of arsenate and nitrate in contaminant well water samples. Graphical abstract.
Collapse
Affiliation(s)
- Masoomeh Sharafizadeh
- Department of Chemistry, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Mokhtari
- Department of Chemistry, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), P.O. Box: 19395-4697, Tehran, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Hassan HM, Shahat A, Azzazy HM, El-aal RMA, El-Sayed WN, Elwahed AA, Awual MR. A novel and potential chemical sensor for effective monitoring of Fe(II) ion in corrosion systems of water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar-modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal Bioanal Chem 2020; 412:4113-4125. [PMID: 32296905 DOI: 10.1007/s00216-020-02642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
The present work reports a newly developed square wave anodic stripping voltammetry (SWASV) methodology using novel gold nanostar-modified screen-printed carbon electrodes (AuNS/SPCE) and modified Britton-Robinson buffer (mBRB) for simultaneous detection of trace cadmium(II), arsenic(III), and selenium(IV). During individual and simultaneous detection, Cd2+, As3+, and Se4+ exhibited well-separated SWASV peaks at approximately - 0.48, - 0.09, and 0.65 V, respectively (versus Ag/AgCl reference electrode), which enabled a highly selective detection of the three analytes. Electrochemical impedance spectrum tests showed a significant decrease in charge transfer resistance with the AuNS/SPCE (0.8 kΩ) compared with bare SPCE (2.4 kΩ). Cyclic voltammetry experiments showed a significant increase in electroactive surface area with electrode modification. The low charge transfer resistance and high electroactive surface area contributed to the high sensitivity for Cd2+ (0.0767 μA (0.225 μg L-1)-1), As3+ (0.2213 μA (μg L-1)-1), and Se4+ (μA (μg L-1)-1). The three analytes had linear stripping responses over the concentration range of 0 to 100 μg L-1, with the obtained LoD for Cd2+, As3+, and Se4+ of 1.6, 0.8, and 1.6 μg L-1, respectively. In comparison with individual detection, the simultaneous detection of As3+ and Se4+ showed peak height reductions of 40.8% and 42.7%, respectively. This result was associated with the possible formation of electrochemically inactive arsenic triselenide (As2Se3) during the preconcentration step. Surface water analysis resulted in average percent recoveries of 109% for Cd2+, 93% for As3+, and 92% for Se4+, indicating the proposed method is accurate and reliable for the simultaneous detection of Cd2+, As3+, and Se4+ in real water samples. Graphical abstract.
Collapse
|
29
|
Novel advanced nanomaterial based on ferrous metal–organic framework and its application as chemosensors for mercury in environmental and biological samples. Anal Bioanal Chem 2020; 412:3153-3165. [DOI: 10.1007/s00216-020-02566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
30
|
Yadav S, Asthana A, Chakraborty R, Jain B, Singh AK, Carabineiro SAC, Susan MABH. Cationic Dye Removal Using Novel Magnetic/Activated Charcoal/β-Cyclodextrin/Alginate Polymer Nanocomposite. NANOMATERIALS 2020; 10:nano10010170. [PMID: 31963657 PMCID: PMC7023446 DOI: 10.3390/nano10010170] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 01/13/2020] [Indexed: 12/07/2022]
Abstract
New magnetic iron oxide (Fe3O4)/activated charcoal (AC)/β-cyclodextrin (CD)/sodium alginate (Alg) polymer nanocomposite materials were prepared by direct mixing of the polymer matrix with the nanofillers. The obtained materials were utilized as nano-adsorbents for the elimination of methylene blue (MB), a hazardous water-soluble cationic dye, from aqueous solutions, and showed excellent regeneration capacity. The formation of the nanocomposites was followed by high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and adsorption of N2 at −196 °C. The rate of adsorption was investigated varying several factors, namely contact time, pH, amount of adsorbent and MB concentration on the adsorption process. Studies dealing with equilibrium and kinetics were carried out in batch conditions. The obtained results indicated that the removal rate of MB was 99.53% in 90 min. Langmuir’s isotherm fitted better to the equilibrium data of MB. Fe3O4/AC/CD/Alg polymer beads shows amazing adsorption capacities in the elimination of cationic dyes (2.079 mg/g for polymer gel beads and 10.63 mg g−1 for dry powder beads), in comparison to other adsorbent materials. The obtained adsorbent is spherical with hydrophobic cross-linked surface properties that enable an easy recovery without any significant weight loss of in the adsorbent used.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.); (B.J.)
| | - Anupama Asthana
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.); (B.J.)
| | - Rupa Chakraborty
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.); (B.J.)
| | - Bhawana Jain
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.); (B.J.)
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.); (B.J.)
- Correspondence: ; Tel.: +91-9406207572; Fax: +91-788-2211688
| | - Sónia A. C. Carabineiro
- Centro de QuímicaEstrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais 1, 1049-001 Lisboa, Portugal;
| | | |
Collapse
|
31
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
32
|
Performance investigation of Zeolitic Imidazolate Framework – 8 (ZIF-8) in the removal of trichloroethylene from aqueous solutions. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104185] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Luminescent transition metal–organic frameworks: An emerging sensor for detecting biologically essential metal ions. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100364] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Selim MS, Yang H, El-Safty SA, Fatthallah NA, Shenashen MA, Wang FQ, Huang Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Majee P, Singha DK, Mondal SK, Mahata P. Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations. Photochem Photobiol Sci 2019; 18:1110-1121. [PMID: 30747203 DOI: 10.1039/c9pp00024k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have thoroughly studied the luminescence behaviour of a cadmium based MOF, [Cd(C12N2H8)(C7N1O4H3)] {C12N2H8 = 1,10-phenanthroline, C7N1O4H3 = 2,5-pyridine dicarboxylate}, 1. Both steady-state and time-resolved luminescence spectroscopic experiments were performed to understand the dissimilar responses of compound 1 towards different metal ions in aqueous medium. Upon excitation at 280 nm, compound 1 showed a luminescence spectrum centered at 365 nm, which exhibited a three-fold turn-on in the presence of a trace amount of Zn2+ in aqueous solution, whereas in the presence of Co2+, Hg2+, Ni2+, Fe2+ and Cu2+ the luminescence of compound 1 got largely quenched. Compound 1 did not show any response in the presence of other common metal ions such as K+, Mg2+, Na+, Mn2+, and Cr3+. By analysing all the experimental results, we successfully explained the versatile luminescence behaviour of compound 1. The turn-on of luminescence in the presence of Zn2+ ions was due to coordination bond formation and enhancement of the rigidity of compound 1 which resulted in the reduction of non-radiative decay processes to a large extent. The quenching of luminescence in the presence of transition metal ions was found to be static in nature, and was due to the possibility of ligand to metal charge transfer using the vacant d-orbital of the metal ions. In the case of Hg2+ which is a closed cell heavy metal ion, the quenching of luminescence was also static in nature and was due to a two-way charge transfer mechanism. We have also performed density functional theory calculations and obtained supportive results for the proposed mechanisms of luminescence turn-on and quenching. Moreover, compound 1 could be established as a selective and efficient sensor of Zn2+ in aqueous solution even in the presence of Cd2+ and other metal ions.
Collapse
Affiliation(s)
- Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | | | | | | |
Collapse
|
36
|
Petrović S, Guzsvány V, Ranković N, Beljin J, Rončević S, Dalmacija B, Ashrafi AM, Kónya Z, Švancara I, Vytřas K. Trace level voltammetric determination of Zn(II) in selected nutrition related samples by bismuth-oxychloride-multiwalled carbon nanotube composite based electrode. Microchem J 2019; 146:178-186. [DOI: 10.1016/j.microc.2018.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Emran MY, El-Safty SA, Shenashen MA, Minowa T. A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. SENSORS AND ACTUATORS B: CHEMICAL 2019; 284:456-467. [DOI: 10.1016/j.snb.2018.12.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
38
|
Lahtinen E, Precker RLM, Lahtinen M, Hey-Hawkins E, Haukka M. Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix. Chempluschem 2019; 84:222-225. [PMID: 31950695 DOI: 10.1002/cplu.201900081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well-defined pore structures. One of the main challenges in the utilization of MOFs is their crystalline and powdery nature, which makes their use inconvenient in practice. Three-dimensional printing has been suggested as a potential solution to overcome this problem. We used selective laser sintering (SLS) to print highly porous flow-through filters containing the MOF copper(II) benzene-1,3,5-tricarboxylate (HKUST-1). These filters were printed simply by mixing HKUST-1 with an easily printable nylon-12 polymer matrix. By using the SLS, powdery particles were fused together in such a way that the structure of the printed solid material resembles the structure of a powder bed. The MOF additive is firmly attached only on the surface of partially fused polymer particles and therefore remains accessible to fluids passing through the filter. Powder X-ray analysis of the printed object confirmed that printing did not have any negative impact on the structure of the MOF. CO2 -adsorption studies also showed that the activity of the MOF was not affected by the printing process. SLS offers a straightforward and easy way to fabricate tailor-made MOF-containing filters for practical applications.
Collapse
Affiliation(s)
- Elmeri Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland
| | - Rafaella L M Precker
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry, Leipzig University, Johannisallee, 29, 04103, Leipzig, Germany
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry, Leipzig University, Johannisallee, 29, 04103, Leipzig, Germany
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland
| |
Collapse
|
39
|
Yang W, Li X, Li Y, Zhu R, Pang H. Applications of Metal-Organic-Framework-Derived Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804740. [PMID: 30548705 DOI: 10.1002/adma.201804740] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Indexed: 05/18/2023]
Abstract
Carbon materials derived from metal-organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal-organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF-derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.
Collapse
Affiliation(s)
- Wenping Yang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaxia Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
40
|
Jonaghani MZ, Zali-Boeini H, Moradi H. A coumarin based highly sensitive fluorescent chemosensor for selective detection of zinc ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:16-22. [PMID: 30195181 DOI: 10.1016/j.saa.2018.08.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A very effective and highly sensitive fluorescent chemosensor, based on 4-hydroxycoumarin skeleton substituted by benzothiazole moiety was synthesized and investigated for the detection of zinc ion. This chemosensor displays highly selective and sensitive fluorescence enhancement to Zn2+ over other metal ions examined in solution and in biological systems. The detection limit for the fluorescent chemosensor 1 toward Zn2+ was 3.58 × 10-8 M. A simple and efficient approach was improved for the synthesis of chemosensor 1 starting from 4-hydroxycoumarin.
Collapse
Affiliation(s)
| | - Hassan Zali-Boeini
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.
| | - Hassan Moradi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
41
|
He Y, Bing Q, Wei Y, Zhang H, Wang G. A new benzimidazole-based selective and sensitive 'on-off' fluorescence chemosensor for Cu 2+ ions and application in cellular bioimaging. LUMINESCENCE 2019; 34:153-161. [PMID: 30628166 DOI: 10.1002/bio.3586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Two new twinborn benzimidazole derivates (L and A), which bonded pyridine via the ester space on the opposite and adjacent positions of the benzene ring of benzimidazole respectively, were designed and synthesized. Compound L displayed fluorescence quenching response only towards copper(II) ions (Cu2+ ) in acetonitrile solution with high selectivity and sensitivity. However, compound A presented 'on-off' fluorescence response towards a wide range of metal ions to different degrees and did not have selectivity. Furthermore, compound L formed a 1:1 complex with Cu2+ and the binding constant between sensor L and Cu2+ was high at 6.02 × 104 M-1 . Job's plot, mass spectra, IR spectra, 1 H-NMR titration and density functional theory (DFT) calculations demonstrated the formation of a 1:1 complex between L and Cu2+ . Chemosensor L displayed a low limit of detection (3.05 × 10-6 M) and fast response time (15 s) to Cu2+ . The Stern-Volmer analysis illustrated that the fluorescence quenching agreed with the static quenching mode. In addition, the obvious difference of L within HepG2 cells in the presence and absence of Cu2+ indicated L had the recognition capability for Cu2+ in living cells.
Collapse
Affiliation(s)
- Yi He
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Qijing Bing
- Faculty of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Yingjuan Wei
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Heyang Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Guang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, P. R. China
| |
Collapse
|
42
|
Patra S, Boricha VP, Paul P. Dual-Mode Calixarene-Based Chemosensor: Highly Selective Fluorogenic Detection of Hg2+
and Chromogenic Detection of Cu2+
with a Single Ionophore. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subrata Patra
- Analytical and Environmental Science Division & Centralized Instrument Facility; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg 364002 Bhavnagar India
- Department of Chemistry; Marwadi University; -360007 Rajkot Gujarat India
| | - Vinod P. Boricha
- Analytical and Environmental Science Division & Centralized Instrument Facility; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg 364002 Bhavnagar India
| | - Parimal Paul
- Analytical and Environmental Science Division & Centralized Instrument Facility; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg 364002 Bhavnagar India
| |
Collapse
|
43
|
Ghosh M, Ta S, Banerjee M, Das D. Metal-Ion Displacement Approach for Optical Recognition of Thorium: Application of a Molybdenum(VI) Complex for Nanomolar Determination and Enrichment of Th(IV). ACS OMEGA 2018; 3:16089-16098. [PMID: 31458246 PMCID: PMC6643418 DOI: 10.1021/acsomega.8b01901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/13/2018] [Indexed: 06/10/2023]
Abstract
An azine-based molybdenum (Mo(VI)) complex (M1) is exploited for selective detection of thorium (Th(IV)) ions through a metal-ion displacement protocol. Th(IV) displaces Mo(VI) from M1 instantly leading to the formation of the Th(IV) complex, having orange-red emission. Consequently, a red shift of the emission wavelength along with 41-fold fluorescence enhancement is observed. This unique method allows detection of Th(IV) as low as 1.5 × 10-9 M. The displacement of Mo(VI) from M1 by Th(IV) is established by spectroscopic studies and kinetically followed by the stopped-flow technique. The displacement binding constant for Th(IV) is notably strong, 4.59 × 106 M-1. Extraction of Th(IV) from aqueous solution to the ethyl acetate medium using M1 has been achieved. The silica-immobilized M1 efficiently enriches Th(IV) from its reservoir through solid-phase extraction. Computational studies (density functional theory) support experimental findings.
Collapse
Affiliation(s)
| | | | | | - Debasis Das
- E-mail: . Phone: +91-342-2533913. Fax: +91-342-2530452 (D.D.)
| |
Collapse
|
44
|
A new oxadiazole-based dual-mode chemosensor: Colorimetric detection of Co 2+ and fluorometric detection of Cu 2+ with high selectivity and sensitivity. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Li X, Zhou Z, Zhang CC, Zheng Y, Gao J, Wang Q. Ratiometric Fluorescence Platform Based on Modified Silicon Quantum Dots and Its Logic Gate Performance. Inorg Chem 2018; 57:8866-8873. [DOI: 10.1021/acs.inorgchem.8b00788] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390-9133, United States
| | | | | | | |
Collapse
|
46
|
Liu T, Liu K, Zhang J, Wang Z. Terpyridine Functionalized Oligothiophene: Cadmium(II) Ion Sensing via
Visualization and Fluorescence. ChemistrySelect 2018. [DOI: 10.1002/slct.201800841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, P. R. China
| | - Jinling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, P. R. China
| |
Collapse
|
47
|
He D, Liu S, Zhou F, Zhao X, Liu Y, Luo F, Liu S. Recognition of trace organic pollutant and toxic metal ions via a tailored fluorescent metal–organic coordination polymer in water environment. RSC Adv 2018; 8:34712-34717. [PMID: 35548597 PMCID: PMC9087362 DOI: 10.1039/c8ra05502e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
Abstract
A novel fluorescence material H2Sr2(bqdc)3(phen)2 (1) for trace recognition of organic pollutant and toxic metal ions is designed and prepared by two weak fluorescent ligands and Sr2+. The latter was selected although it played no role in the modulation process of luminescence and despite low-cost, alkaline earth, metal–organic coordination polymers lacking competitive functionality. The strong fluorescence of the fluorescence material was based on the propeller configuration of the metal–organic coordination polymer, which was characterized by X-ray single crystal diffraction showing that the N active sites inside the crystal channels can interact with external guests. Convenient fluorescence detection of 3-AT can be realized using an ultraviolet lamp and test strip and the determination of Cd2+ showed good reusability with a detection limit of 1 × 10−9 mol L−1, which is lower than the standard stipulated by the Environmental Protection Agency. Detailed experiments results revealed that the material was a promising candidate for specifically recognizing amitrole and Cd2+ because of its selective fluorescence quenching and sensitive detection in water. Complexes with strong fluorescence can conveniently detect the trace organic pollutant amitrole and repeatedly recognize toxic Cd2+with a low detection limit.![]()
Collapse
Affiliation(s)
- Danfeng He
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Shumei Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | | | | | - Yiwei Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Fang Luo
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|