1
|
Huang J, Lin A, Gu Y, Pan X, Ma X, Qing Y, Li J. Fluorescence-activated cell sorting-based efficient screening of monensin monoclonal antibodies and applications in lateral flow immunoassay. Talanta 2025; 293:128128. [PMID: 40222095 DOI: 10.1016/j.talanta.2025.128128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Monensin is widely used in livestock and poultry for disease prevention and growth promotion. Still, its improper use can lead to residues in animal-derived foods, posing risks to human health. In immunoassays, monoclonal antibodies (mAbs) remain a preferred choice due to their high sensitivity and specificity. However, traditional hybridoma technology often suffers from a lengthy screening cycle and the risk of losing effective clones. To address these limitations, this study employed fluorescently labeled monensin antigens combined with fluorescence-activated cell sorting (FACS) for rapid screening of hybridoma cells secreting anti-monensin mAbs. Compared to the conventional limiting dilution method, this approach increased the yield of specific hybridoma cells by tenfold and reduced the screening cycle from four weeks to one week. Based on the selected mAb (4E6), a rapid visual lateral flow immunoassay (LFIA) was developed for on-site detection of monensin, with a total detection time of 10 min. The assay exhibited a half-maximal inhibitory concentration (IC50) of 2.32 μg/kg and a linear detection range of 0.32-10.3 μg/kg. This study provides a promising strategy for efficient hybridoma cell screening and practical monitoring of monensin residues in environmental and food samples.
Collapse
Affiliation(s)
- Jingjie Huang
- College of Veterinary Medicine, National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan, 572000, PR China
| | - Ao Lin
- College of Veterinary Medicine, National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, PR China
| | - Yani Gu
- College of Veterinary Medicine, National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, PR China
| | - Xiaole Pan
- Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan, 572000, PR China
| | - XinXin Ma
- Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan, 572000, PR China
| | - Yanzhe Qing
- College of Veterinary Medicine, National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, PR China
| | - Jiancheng Li
- College of Veterinary Medicine, National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan, 572000, PR China.
| |
Collapse
|
2
|
Huang J, Sun Z, Gu Y, Lin A, Pan X, Li J. Rapid and convenient screening method based on single-chain variable fragments for the detection of restricted monensin in chicken muscle. Int J Biol Macromol 2024; 278:134639. [PMID: 39128758 DOI: 10.1016/j.ijbiomac.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
A colloidal gold immunochromatographic assay (CGIA) based on single-chain variable fragments (scFvs) has been successfully developed for the detection of monensin (MON). Colloidal gold probes were conjugated to anti-MON scFvs through electrostatic interaction, with the conjugated objects serving as the visual signals. The detection lines were formed by capturing the antibody with MON-OVA. This assay offers a rapid detection time of 15 min, a wide linear range from 2.19 to 10.76 ng mL-1, and boasts high accuracy, precision, and an absence of cross-reactivity. By homology modeling and molecular docking, we predicted the interaction patterns between the scFv and monensin, and the amino acid residues involved in the recognition of MON by the antibody were analyzed. These key amino acid sites are presumed integral to ligand recognition per current interaction models. This hypothesis was confirmed by computer-aided alanine scanning mutation, MM/P(G)BSA molecular dynamics simulation, and in vitro binding experiments. In this study, we successfully developed the scFvs-based CGIA system for rapid and easy quantification of monensin, providing a simple, efficient routine detection of chicken muscle samples.
Collapse
Affiliation(s)
- Jingjie Huang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China
| | - Zhixuan Sun
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yani Gu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ao Lin
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoyle Pan
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China
| | - Jiancheng Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China.
| |
Collapse
|
3
|
Rudnicki K, Budzyńska S, Skrzypek S, Poltorak L. Comparative electrochemical study of veterinary drug danofloxacin at glassy carbon electrode and electrified liquid-liquid interface. Sci Rep 2024; 14:14489. [PMID: 38914687 PMCID: PMC11196252 DOI: 10.1038/s41598-024-65246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
This work compares the electroanalytical performance of two electroanalytical systems based on (1) the glassy carbon electrode (GCE), and (2) the electrified liquid-liquid interface (eLLI), for the detection of fluoroquinolone antibiotic-danofloxacin (DANO). Our aim was to define the optimal conditions to detect the chosen analyte with two employed systems, extract a number of electroanalytical parameters, study the mechanism of the charge transfer reactions (oxidation at GCE and ion transfer across the eLLI), and to provide physicochemical constants for DANO. Detection of the chosen analyte was also performed in the spiked milk samples. To the best of our knowledge, this is the first work that directly compares the electroanalytical parameters obtained with solid electrode (in this case GCE) and eLLI. We have found that for DANO the latter provides better electroanalytical parameters (lower LOD and LOQ) as well as good selectivity when the milk was analyzed.
Collapse
Affiliation(s)
- Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Łódź, Poland.
| | - Sylwia Budzyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Łódź, Poland
| | - Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Łódź, Poland.
| |
Collapse
|
4
|
Megale JD, De Souza D. New approaches in antibiotics detection: The use of square wave voltammetry. J Pharm Biomed Anal 2023; 234:115526. [PMID: 37385092 DOI: 10.1016/j.jpba.2023.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Antibiotics belongs to a class of pharmaceutical compounds widely used due to their effectiveness against bacterial infections. However, if consumed or inappropriately disposed of in the environment can results in environmental and public health problems, because they are considered emerging contaminants and their residues represent damage, whether in the long or short term, to different terrestrial ecosystems, in addition to bringing potential risks to agricultural sectors, such as livestock and fish farming. For this, the development of analytical methods for low-concentration detection and identification of antibiotics in natural waters, wastewaters, soil, foods, and biological fluids is necessary. This review shows the applicability of square wave voltammetry for the analytical determination of antibiotics from different chemical classes and covers a variety of samples and working electrodes that are used as voltammetric sensors. The review involved the analysis of scientific publications from the Science Direct® and Scopus® databases, with scientific manuscripts covering the period between January 2012 and May 2023. Various manuscripts were discussed indicating the applicability of square wave voltammetry in antibiotics detection in urine, blood, natural waters, milk, among other complex samples.
Collapse
Affiliation(s)
- Júlia Duarte Megale
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
5
|
Wei XW, Zhang Y, Zhou Y, Li M, Liu ZF, Feng XS, Tan Y. A Review on Pretreatment and Analysis Methods of Polyether Antibiotics in Complex Samples. Crit Rev Anal Chem 2023; 54:3453-3477. [PMID: 37647335 DOI: 10.1080/10408347.2023.2251156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyether antibiotics (PAs) are the anti-coccidiosis drugs used for treating and preventing coccidiosis. Studies show the residues of these antibiotics in food cause adversities and threaten human health. PAs thus need robust, rugged, and accurate methods for their analysis. This review encompasses pretreatment and detection methods of PAs in diverse matrices since 2010. Both conventional and developed methods are part of the pretreatments, such as dispersive liquid-liquid microextraction, solid-phase extraction, solid-phase microextraction, solvent front position extraction, QuEChERS (Quick Easy Cheap Effective Rugged and Safe), supercritical fluid extraction, and others. The analysis methods involve liquid chromatography coupled with detectors, sensors, etc. The pros and cons of various techniques for PAs have been discussed and future tendencies are proposed.
Collapse
Affiliation(s)
- Xin-Wei Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, Shafqat SS, Rasheed T, Bilal M. Metal-Organic Framework-Based Composites for the Detection and Monitoring of Pharmaceutical Compounds in Biological and Environmental Matrices. WATER, AIR, AND SOIL POLLUTION 2022; 233:493. [PMID: 36466935 PMCID: PMC9685123 DOI: 10.1007/s11270-022-05904-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/13/2022] [Indexed: 05/10/2023]
Abstract
The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Dure Najaf Iqbal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000 Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261 Saudi Arabia
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695 Poznan, PL Poland
| |
Collapse
|
7
|
Study of organic impurities affecting ultraviolet transmittance in monoethylene glycol and their formation mechanism. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Kokotou MG. Study of the Fragmentation Pathways of Sulfonamides by High-resolution Mass Spectrometry: Application to their Detection in Plasma by Direct Infusion. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666181205115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The high resolving and accuracy power of the HRMS instrument enabled us to
identify the product ions and to propose detailed fragmentation pathways and diagnostic fragment ions.
Methods:
In the present work, the fragmentation pathways of five sulfonamides antibiotics, namely
sulfamerazine, sulfathiazole, sulfadiazine, sulfadimethoxine and sulfamethoxazole, by High-Resolution
Mass Spectrometry (HRMS) are presented. The HRMS spectra were recorded with a Q-TOF (Time of
Flight) spectrometer with Electrospray Ionization (ESI) in both negative and positive mode.
Results:
Specific characteristic ions for each one of the sulfonamide antibiotics under positive ESI
mode are proposed for the first time. Fragment ions of this particular class of analytes may be used to
rapidly identify compounds with common structural features.
Conclusion:
The direct infusion of plasma samples, avoiding any prior chromatographic steps, to identify
the existence of sulfonamide antibiotics is demonstrated herein.
Collapse
Affiliation(s)
- Maroula G. Kokotou
- Department of Food Science and Human Nutrition, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
9
|
Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJ. Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water – 1.2-dichloroethane interface. Anal Chim Acta 2019; 1085:75-84. [DOI: 10.1016/j.aca.2019.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
|
10
|
Rudnicki K, Brycht M, Leniart A, Domagała S, Kaczmarek K, Kalcher K, Skrzypek S. A Sensitive Sensor Based on Single‐walled Carbon Nanotubes: Its Preparation, Characterization and Application in the Electrochemical Determination of Drug Clorsulon in Milk Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Mariola Brycht
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
- Charles University, Faculty of ScienceDepartment of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry Albertov 6 CZ-12843 Prague 2 Czech Republic
| | - Andrzej Leniart
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Sławomir Domagała
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Katarzyna Kaczmarek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Kurt Kalcher
- Karl-Franzens University GrazInstitute of Chemistry-Analytical Chemistry Universitaetsplatz 1 Graz 8010 Austria
| | - Sławomira Skrzypek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| |
Collapse
|
11
|
Sipa K, Brycht M, Leniart A, Skrzypek S. The application of carbon nanomaterials as electrode surface modifiers for the voltammetric sensing of nitroxinil – A comparative study. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Ozcelikay G, Karadurmus L, Kaya SI, Bakirhan NK, Ozkan SA. A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Crit Rev Anal Chem 2019; 50:212-225. [PMID: 31107105 DOI: 10.1080/10408347.2019.1615406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug and biomolecule analysis with high precision, fast response, not expensive, and user-friendly methods have been very important for developing technology and clinical applications. Electrochemical methods are highly capable for assaying the concentration of electroactive drug or biomolecule and supply excellent knowledge concerning its physical and chemical properties such as electron transfer rates, diffusion coefficients, electron transfer number, and oxidation potential. Electrochemical methods have been widely applied because of their accuracy, sensitivity, cheapness, and can applied on-site determinations of various substances. The progress on electronics has allowed developing reliable, more sensitive and less expensive instrumentations, which have significant contribution in the area of drug development, drug and biomolecule analysis. The developing new sensors for electrochemical analysis of these compounds have growing interest in recent years. Screen-printed based electrodes have a great interest in electrochemical analysis of various drugs and biomolecules due to their easy manufacturing procedure of the electrode allow the transfer of electrochemical laboratory experiments for disposable on-site analysis of some compounds. Paper based electrodes are also fabricated by new technology. They can be preferred due to their easy, cheap, portable, disposable, and offering high sensitivity properties for many application field such as environmental monitoring, food quality control, clinical diagnosis, drug, and biomolecules analysis. In this review, the recent electrochemical drug and biomolecule (DNA, RNA, µRNA, Biomarkers, etc.) studies will be presented that involve new trend disposable electrodes.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Chemistry, Arts & Sciences Faculty, Hitit University, Corum, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Tong C, Guo K, Xu J, Tong X, Shi S. Online extraction and cleanup–quadrupole time-of-flight tandem mass spectrometry for rapid analysis of bioactive components in natural products. Anal Bioanal Chem 2018; 411:679-687. [DOI: 10.1007/s00216-018-1491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|