1
|
Prasad Kumara PAAS, Cooper PR, Cathro P, Gould M, Dias G, Ratnayake J. Bioceramics in Endodontics: Limitations and Future Innovations-A Review. Dent J (Basel) 2025; 13:157. [PMID: 40277487 PMCID: PMC12026347 DOI: 10.3390/dj13040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, perforations repair, and apexification repair procedures. However, they have far from ideal mechanical and handling properties, biocompatibility issues, aesthetic concerns due to tooth discolouration, limited antibacterial activity, and affordability, which are amongst several key limitations. Notably, bioceramic materials are popular due to their biocompatibility, sealing ability, and durability, consequently surpassing traditional materials such as gutta-percha and zinc oxide-eugenol sealers. A lack of recent advancements in the field, combined with nanomaterials, has improved the formulations of these materials to overcome these limitations. The existing literature emphasises the benefits of bioceramics while underreporting their poor mechanical properties, handling difficulties, cost, and various other drawbacks. The key gaps identified in the literature are the insufficient coverage of emerging materials, narrow scope, limited insights into future developments, and underreporting of failures and complications of the existing materials. Consequently, this review aims to highlight the key limitations of various endodontic materials, primarily focusing on calcium silicate, calcium phosphate, and bioactive glass-based materials, which are the most abundantly used materials in dentistry. Based on the literature, bioceramic materials in endodontics have significantly improved over recent years, with different combinations of materials and technology compared to earlier generations while preserving many of their original properties, with some having affordable costs. This review also identified key innovations that could shape the future of endodontic materials, highlighting the ongoing evolution and advancements in endodontic treatments.
Collapse
Affiliation(s)
| | - Paul Roy Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - Peter Cathro
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - Maree Gould
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| |
Collapse
|
2
|
Safari-Gezaz M, Parhizkar M, Asghari E. Effect of cobalt ions doping on morphology and electrochemical properties of hydroxyapatite coatings for biomedical applications. Sci Rep 2025; 15:149. [PMID: 39747275 PMCID: PMC11697187 DOI: 10.1038/s41598-024-84055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg2+), zinc (Zn2+), and strontium (Sr2+). Significantly, these ions are essential for the metabolic processes of hard tissues. This study involved the application of Co2+-doped HA coatings at different concentrations (5%, 10%, and 20% by weight) onto Ti-6Al-4V, utilizing the spin-coating method. The FTIR, XRD, FESEM, EDS, and AFM techniques were utilized to analyze the coated substrates. Tetraethyl orthosilicate (TEOS (T)) was employed as a binding agent to enhance adhesion and reduce surface cracks in the coating. The adhesion strength of coatings applied to Ti-6Al-4V was assessed for use in biomedical applications. Polarization and electrochemical impedance spectroscopy (EIS) studies in a simulated body fluid (SBF) solution were conducted to evaluate the corrosion behavior of the coatings. The corrosion behavior of the coated samples increased significantly compared to the substrate. The 10Co/HA/T coating demonstrated the highest charge transfer resistance (Rct) value of 13.40 MΩ × cm2, whereas the uncoated substrate exhibited the lowest Rct of 0.14 MΩ × cm2. A cell viability assay was conducted utilizing MG-63 cells for the Ti-6Al-4V and coatings, which prepared coatings demonstrated outstanding biocompatibility. Based on this study, the 10Co/HA/T coating was identified as the most promising sample. These findings suggest that surface modification of Ti-6Al-4V through Co2+-doped HA coatings offers a viable strategy for enhancing its performance in biomedical applications.
Collapse
Affiliation(s)
- Meysam Safari-Gezaz
- Department of Condensed Matter Physics, Faculty of Physics, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| | - Mojtaba Parhizkar
- Department of Condensed Matter Physics, Faculty of Physics, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
| | - Elnaz Asghari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| |
Collapse
|
3
|
Balas M, Badea MA, Ciobanu SC, Piciu F, Iconaru SL, Dinischiotu A, Predoi D. Biocompatibility and Osteogenic Activity of Samarium-Doped Hydroxyapatite-Biomimetic Nanoceramics for Bone Regeneration Applications. Biomimetics (Basel) 2024; 9:309. [PMID: 38921189 PMCID: PMC11201808 DOI: 10.3390/biomimetics9060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure. Valuable information regarding the molecular structure and morphological features of nanoparticles were obtained by using Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The elemental composition obtained by using energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of the HAp constituent elements, Ca, O, and P, as well as the presence and uniform distribution of Sm3+ ions. Both HAp and SmHAp nanoparticles demonstrated biocompatibility at concentrations below 25 μg/mL and 50 μg/mL, respectively, for up to 72 h of exposure. Cell membrane integrity was preserved following treatment with concentrations up to 100 μg/mL HAp and 400 μg/mL SmHAp, confirming the role of Sm3+ ions in enhancing the cytocompatibility of HAp. Furthermore, our findings reveal a positive, albeit limited, effect of SmHAp nanoparticles on the actin dynamics, osteogenesis, and cell migration compared to HAp nanoparticles. Importantly, the biological results highlight the potential role of Sm3+ ions in maintaining cellular balance by mitigating disruptions in Ca2+ homeostasis induced by HAp nanoparticles. Therefore, our study represents a significant contribution to the safety assessment of both HAp and SmHAp nanoparticles for biomedical applications focused on bone regeneration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Steluta Carmen Ciobanu
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Daniela Predoi
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| |
Collapse
|
4
|
Tang S, Shen Y, Jiang L, Zhang Y. Surface Modification of Nano-Hydroxyapatite/Polymer Composite for Bone Tissue Repair Applications: A Review. Polymers (Basel) 2024; 16:1263. [PMID: 38732732 PMCID: PMC11085102 DOI: 10.3390/polym16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.
Collapse
Affiliation(s)
- Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yifei Shen
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
5
|
Szyszka K, Wiglusz RJ. Characterization of Sm 3+-activated carbonated calcium chlorapatite phosphors for theranostic applications: a comparative study of co-precipitation and hydrothermal methods. Phys Chem Chem Phys 2024; 26:10951-10960. [PMID: 38526375 DOI: 10.1039/d3cp06049g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Continuous efforts are ongoing to discover new luminescent materials with appropriate properties for applications in medicine, serving as theranostic agents for healing and bioimaging. In this paper, novel single-phase carbonated calcium chlorapatite (Ca10(PO4)5(CO3)Cl2, abbreviated as CaClAp-CO3) phosphors activated with varying concentrations of Sm3+ ions were successfully fabricated using both co-precipitation and hydrothermal methods to investigate the influence of the synthesis techniques on the physicochemical properties of these materials. The effects of doping concentration of Sm3+ ions and synthesis techniques on the structure, photoluminescence (PL), energy transfer, substitute sites, fluorescence lifetime and luminescence colour of phosphors were investigated. The synthesized phosphors were characterized by X-ray diffraction (XRD) to confirm their crystal phase structure and purity. Vibrational features and the incorporation of carbonate ions were verified using Fourier-transform infrared (FTIR) spectroscopy. The obtained materials emit reddish-orange light, primarily from the most intense 4G5/2 → 6H7/2 transition. The electric dipole to magnetic dipole transition ratio (ED/MD), CIE colour coordinates and colour purity were determined to provide additional insights into the spectroscopic attributes of the obtained phosphors. In addition, the concentration quenching was also observed, and its mechanism was proposed based on theoretical calculations showing the multipolar interactions.
Collapse
Affiliation(s)
- Katarzyna Szyszka
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland
| |
Collapse
|
6
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
7
|
Hussain Z, Ullah I, Liu X, Mehmood S, Wang L, Ma F, Ullah S, Lu Z, Wang Z, Pei R. GelMA-catechol coated FeHAp nanorods functionalized nanofibrous reinforced bio-instructive and mechanically robust composite hydrogel scaffold for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 155:213696. [PMID: 37952462 DOI: 10.1016/j.bioadv.2023.213696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Critical bone defects complicate tissue graft-based surgeries, raising healthcare expenditures and underscoring scaffold-based tissue-engineering strategies to support bone reconstruction. Our study highlighted that the phase-compatible combination of inorganic nanorods, nanofibers, and hydrogels is promising for developing biomimetic and cell-instructive scaffolds since the bone matrix is a porous organic/inorganic composite. In brief, methacrylated gelatin (GelMA) was reacted with dopamine to form catechol-modified GeLMA (GelMA-C). The GelMA-C was nanocoated onto an iron-doped hydroxyapatite (FeHAp) nanorod via metal-catechol network coordination. The modified nanorod (FeHAp@GelMA-C) was loaded onto GelMA-based nanofibers. The nanorods loaded pre-fibers were electrospun onto GelMA solution and photochemically crosslinked to fabricate a fiber-reinforced hydrogel. The structural, mechanical, physicochemical, biocompatibility, swelling properties, osteogenic potential, and bone remodelling potential (using rat femoral defect model) of modified nanorods, simple hydrogel, and nanorod-loaded fiber-reinforced hydrogel were studied. The results supported that the interface interaction between GelMA-C/nanorods, nanorods/nanofibers, nanorods/hydrogels, and nanofiber/hydrogels significantly improved the microstructural and mechanical properties of the scaffold. Compared to pristine hydrogel, the nanorod-loaded fiber-reinforced scaffold better supported cellular responses, osteogenic differentiation, matrix mineralization, and accelerated bone regeneration. The nanorod-loaded fiber-reinforced hydrogel proved more biomimetic and cell-instructive for guided bone reconstruction.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
8
|
Yook H, Hwang J, Yeo W, Bang J, Kim J, Kim TY, Choi JS, Han JW. Design Strategies for Hydroxyapatite-Based Materials to Enhance Their Catalytic Performance and Applicability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204938. [PMID: 35917488 DOI: 10.1002/adma.202204938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions. However, systematic design strategies for HAP catalysts are not established yet due to an incomplete understanding of underlying structure-activity relationships. In this review, tuning methods of HAP for improving the catalytic performance are discussed: 1) ionic composition change, 2) morphology control, 3) incorporation of other metal species, and 4) catalytic support engineering. Detailed mechanisms and effects of structural modulations on the catalytic performances for attaining the design insights of HAP catalysts are investigated. In addition, computational studies to understand catalytic reactions on HAP materials are also introduced. Finally, important areas for future research are highlighted.
Collapse
Affiliation(s)
- Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonsuk Yeo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jungup Bang
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jaeyoung Kim
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jae-Soon Choi
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jeong Woo Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
9
|
Xie H, Ruan S, Zhao M, Long J, Ma X, Guo J, Lin X. Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2. RSC Adv 2023; 13:23010-23020. [PMID: 37529353 PMCID: PMC10388156 DOI: 10.1039/d3ra03034b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Desirable bone engineering materials should have a conducive three-dimensional (3D) structure and bioactive mediators for guided bone regeneration. In the present study, hydroxyapatite (HA)/collagen (Col) scaffolds were prepared by an optimized freeze-drying process. The porosity, moisture content, and mechanical properties of the composite have been investigated. The micro-morphology and structure were analyzed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirmed that self-cross-linked HA/Col was evenly distributed and formed a 3D porous scaffold. The physicochemical/mechanical characterization was carried out by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Morphological observation and CCK-8 assay of co-culture cells indicated that HA/Col scaffolds were biocompatible. Then HA/Col scaffolds coupled with recombinant human bone morphogenetic proteins 2 (rhBMP-2) were implanted in the mandibular critical size defect in rats, and histological staining was used to evaluate the bone reconstruction. The result showed that HA/Col coupled with rhBMP-2 could significantly improve the formation of new bone and angiogenesis within the scaffolds as well as the proliferation and differentiation of osteoblasts. Thanks to the encouraging osteogenesis effects, the well-defined 3D scaffolds (HA/Col) cooperating with bioactive agents (rhBMP-2) are expected to be a promising candidate for bone tissue engineering applied to regenerative medicine.
Collapse
Affiliation(s)
- Hongyu Xie
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University No. 10 Shuangyong Road Nanning Guangxi 530021 PR China +86-15777128619
| | - Sijie Ruan
- Department of Anesthesiology, Central Hospital of Shaoyang Shaoyang Hunan 422000 China
| | - Minlong Zhao
- Department of Implantology, Anyang Sixth People's Hospital Anyang Henan 455000 China
| | - Jindong Long
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University No. 10 Shuangyong Road Nanning Guangxi 530021 PR China +86-15777128619
| | - Xueling Ma
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University No. 10 Shuangyong Road Nanning Guangxi 530021 PR China +86-15777128619
| | - Jinhong Guo
- Guangxi Medical University Nanning Guangxi 530021 China
| | - Xuandong Lin
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University No. 10 Shuangyong Road Nanning Guangxi 530021 PR China +86-15777128619
| |
Collapse
|
10
|
Yildiz T, Durdu S, Ozcan K, Usta M. Characterization and investigation of biological properties of silver nanoparticle-doped hydroxyapatite-based surfaces on zirconium. Sci Rep 2023; 13:6773. [PMID: 37101002 PMCID: PMC10130180 DOI: 10.1038/s41598-023-33992-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
The infections leading to failed implants can be controlled mainly by metal and metal oxide-based nanoparticles. In this work, the randomly distributed AgNPs-doped onto hydroxyapatite-based surfaces were produced on zirconium by micro arc oxidation (MAO) and electrochemical deposition processes. The surfaces were characterized by XRD, SEM, EDX mapping and EDX area and contact angle goniometer. AgNPs-doped MAO surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. The bioactivity of the AgNPs-doped MAO surfaces is improved compared to bare Zr substrate under SBF conditions. Importantly, the AgNPs-doped MAO surfaces exhibited antimicrobial activity for E. coli and S. aureus compared to control samples.
Collapse
Affiliation(s)
- Tuba Yildiz
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Salih Durdu
- Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey.
- Faculty of Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Kadriye Ozcan
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
11
|
Agrawal R, Kumar A, Mohammed MKA, Singh S. Biomaterial types, properties, medical applications, and other factors: a recent review. JOURNAL OF ZHEJIANG UNIVERSITY. SCIENCE. A 2023. [PMCID: PMC9986044 DOI: 10.1631/jzus.a2200403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 10/15/2023]
Abstract
Biomaterial research has been going on for several years, and many companies are heavily investing in new product development. However, it is a contentious field of science. Biomaterial science is a field that combines materials science and medicine. The replacement or restoration of damaged tissues or organs enhances the patient’s quality of life. The deciding aspect is whether or not the body will accept a biomaterial. A biomaterial used for an implant must possess certain qualities to survive a long time. When a biomaterial is used for an implant, it must have specific properties to be long-lasting. A variety of materials are used in biomedical applications. They are widely used today and can be used individually or in combination. This review will aid researchers in the selection and assessment of biomaterials. Before using a biomaterial, its mechanical and physical properties should be considered. Recent biomaterials have a structure that closely resembles that of tissue. Anti-infective biomaterials and surfaces are being developed using advanced antifouling, bactericidal, and antibiofilm technologies. This review tries to cover critical features of biomaterials needed for tissue engineering, such as bioactivity, self-assembly, structural hierarchy, applications, heart valves, skin repair, bio-design, essential ideas in biomaterials, bioactive biomaterials, bioresorbable biomaterials, biomaterials in medical practice, biomedical function for design, biomaterial properties such as biocompatibility, heat response, non-toxicity, mechanical properties, physical properties, wear, and corrosion, as well as biomaterial properties such surfaces that are antibacterial, nanostructured materials, and biofilm disrupting compounds, are all being investigated. It is technically possible to stop the spread of implant infection.
Collapse
Affiliation(s)
- Reeya Agrawal
- VLSI Research Centre, GLA University, 281406 Mathura, India
- Microelectronics & VLSI Lab, National Institute of Technology, Patna, 800005 India
| | - Anjan Kumar
- VLSI Research Centre, GLA University, 281406 Mathura, India
| | - Mustafa K. A. Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College, 51001 Hillah Babylon, Iraq
| | - Sangeeta Singh
- Microelectronics & VLSI Lab, National Institute of Technology, Patna, 800005 India
| |
Collapse
|
12
|
Jia F, Bian A, Wu Z, Li M, Yang H, Huang X, Xie L, Qiao H, Lin H, Huang Y. One‐Step Electrodeposition of Multi‐element Doped Hydroxyapatite Nanocoating Leading to Enhanced Cytocompatible and Antibacterial Properties of Titanium Implants. ChemistrySelect 2023. [DOI: 10.1002/slct.202203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Fenghuan Jia
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Anqi Bian
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Zongze Wu
- Department of Interventional Radiology Shenzhen People's Hospital (The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Meiyu Li
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education Wuhan Institute of Technology Wu Han Shi Wuhan.430205 China
| | - Xiao Huang
- School of Physical Education Guangxi University of Science and Technology Liuzhou 545006 China
| | - Lei Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| | - Haixia Qiao
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - He Lin
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yong Huang
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| |
Collapse
|
13
|
The Study of Nanosized Silicate-Substituted Hydroxyapatites Co-Doped with Sr 2+ and Zn 2+ Ions Related to Their Influence on Biological Activities. Curr Issues Mol Biol 2022; 44:6229-6246. [PMID: 36547086 PMCID: PMC9776463 DOI: 10.3390/cimb44120425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Nanosized silicate-substituted hydroxyapatites, characterized by the general formula Ca9.8-x-nSrnZnx(PO4)6-y(SiO4)y(OH)2 (where: n = 0.2 [mol%]; x = 0.5-3.5 [mol%]; y = 4-5 [mol%]), co-doped with Zn2+ and Sr2+ ions, were synthesized with the help of a microwave-assisted hydrothermal technique. The structural properties were determined using XRD (X-ray powder diffraction) and Fourier-transformed infrared spectroscopy (FT-IR). The morphology, size and shape of biomaterials were detected using scanning electron microscopy techniques (SEM). The reference strains of Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa were used to assess bacterial survivability and the impact on biofilm formation in the presence of nanosilicate-substituted strontium-hydroxyapatites. Safety evaluation was also performed using the standard cytotoxicity test (MTT) and hemolysis assay. Moreover, the mutagenic potential of the materials was assessed (Ames test). The obtained results suggest the dose-dependent antibacterial activity of nanomaterials, especially observed for samples doped with 3.5 mol% Zn2+ ions. Moreover, the modification with five SiO4 groups enhanced the antibacterial effect; however, a rise in the toxicity was observed as well. No harmful activity was detected in the hemolysis assay as well as in the mutagenic assay (Ames test).
Collapse
|
14
|
Sekar S, Lee S. In Situ Facile Synthesis of Low-Cost Biogenic Eggshell-Derived Nanohydroxyapatite/Chitosan Biocomposites for Orthopedic Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4302. [PMID: 36500924 PMCID: PMC9739235 DOI: 10.3390/nano12234302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In situ facile synthesis and the characterization of nanohydroxyapatite/chitosan (nHAP/CS) biocomposites were investigated for examining their potential applications in orthopedic implant technology. Firstly, the bare nHAP, europium-doped hydroxyapatite (Eu-nHAP), yttrium-doped hydroxyapatite (Y-nHAP), and Eu- and Y-codoped hydroxyapatite (Eu,Y-nHAP) nanoparticles were synthesized by the wet precipitation technique using biowaste-eggshell-derived calcium oxide powders. Then, through ultrasonication using the nanohydroxyapatite/chitosan mixtures (molar ratio = 1:2), the nHAP/CS, Eu-nHAP/CS, Y-nHAP/CS, and Eu,Y-nHAP/CS biocomposites were fabricated. Among them, Eu,Y-nHAP/CS showed higher cell viability (94.9%), higher solubility (pH = 7.6 after 21 days), and greater antibacterial activity than those of the other composites. In addition, Eu,Y-nHAP/CS exhibited improved mechanical properties compared with the other composites. For example, the nanoindentation test displayed the Eu,Y-nHAP/CS-coated 316L stainless steel implant to possess a higher Young's modulus value (9.24 GPa) and greater hardness value (300.71 MPa) than those of the others. The results indicate that the biomass-eggshell-derived Eu,Y-doped nHAP is of good use for orthopedic implant applications.
Collapse
Affiliation(s)
- Sankar Sekar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sejoon Lee
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
15
|
Paré A, Charbonnier B, Veziers J, Vignes C, Dutilleul M, De Pinieux G, Laure B, Bossard A, Saucet-Zerbib A, Touzot-Jourde G, Weiss P, Corre P, Gauthier O, Marchat D. Standardized and axially vascularized calcium phosphate-based implants for segmental mandibular defects: A promising proof of concept. Acta Biomater 2022; 154:626-640. [PMID: 36210043 DOI: 10.1016/j.actbio.2022.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The reconstruction of massive segmental mandibular bone defects (SMDs) remains challenging even today; the current gold standard in human clinics being vascularized bone transplantation (VBT). As alternative to this onerous approach, bone tissue engineering strategies have been widely investigated. However, they displayed limited clinical success, particularly in failing to address the essential problem of quick vascularization of the implant. Although routinely used in clinics, the insertion of intrinsic vascularization in bioengineered constructs for the rapid formation of a feeding angiosome remains uncommon. In a clinically relevant model (sheep), a custom calcium phosphate-based bioceramic soaked with autologous bone marrow and perfused by an arteriovenous loop was tested to regenerate a massive SMD and was compared to VBT (clinical standard). Animals did not support well the VBT treatment, and the study was aborted 2 weeks after surgery due to ethical and animal welfare considerations. SMD regeneration was successful with the custom vascularized bone construct. Implants were well osseointegrated and vascularized after only 3 months of implantation and totally entrapped in lamellar bone after 12 months; a healthy yellow bone marrow filled the remaining space. STATEMENT OF SIGNIFICANCE: Regenerative medicine struggles with the generation of large functional bone volume. Among them segmental mandibular defects are particularly challenging to restore. The standard of care, based on bone free flaps, still displays ethical and technical drawbacks (e.g., donor site morbidity). Modern engineering technologies (e.g., 3D printing, digital chain) were combined to relevant surgical techniques to provide a pre-clinical proof of concept, investigating for the benefits of such a strategy in bone-related regenerative field. Results proved that a synthetic-biologics-free approach is able to regenerate a critical size segmental mandibular defect of 15 cm3 in a relevant preclinical model, mimicking real life scenarii of segmental mandibular defect, with a full physiological regeneration of the defect after 12 months.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Baptiste Charbonnier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Maeva Dutilleul
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Gonzague De Pinieux
- Department of Pathology, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Boris Laure
- Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Annaëlle Saucet-Zerbib
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Gwenola Touzot-Jourde
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Pierre Corre
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Clinique de Stomatologie et Chirurgie Maxillo-Faciale, Nantes University Hospital, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - David Marchat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| |
Collapse
|
16
|
Filip DG, Surdu VA, Paduraru AV, Andronescu E. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater 2022; 13:248. [PMID: 36412889 PMCID: PMC9680477 DOI: 10.3390/jfb13040248] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Inorganic biomaterials, including different types of metals and ceramics are widely used in various fields due to their biocompatibility, bioactivity, and bioresorbable capacity. In recent years, biomaterials have been used in biomedical and biological applications. Calcium phosphate (CaPs) compounds are gaining importance in the field of biomaterials used as a standalone material or in more complex structures, especially for bone substitutes and drug delivery systems. The use of multiple dopants into the structure of CaPs compounds can significantly improve their in vivo and in vitro activity. Among the general information included in the Introduction section, in the first section of this review paper, the authors provided a background on the development of hydroxyapatite, methods of synthesis, and its applications. The advantages of using different ions and co-ions for substitution into the hydroxyapatite lattice and their influence on physicochemical, antibacterial, and biological properties of hydroxyapatite are also presented in this section of the review paper. Larry Hench's 45S5 Bioglass®, commercially named 45S5, was the first bioactive glass that revealed a chemical bond with bone, highlighting the potential of this biomaterial to be widely used in biomedicine for bone regeneration. The second section of this article is focused on the development and current products based on 45S5 Bioglass®, covering the historical evolution, importance of the sintering method, hybrid bioglass composites, and applications. To overcome the limitations of the original biomaterials, studies were performed to combine hydroxyapatite and 45S5 Bioglass® into new composites used for their high bioactivity and improved properties. This particular type of combined hydroxyapatite/bioglass biomaterial is discussed in the last section of this review paper.
Collapse
Affiliation(s)
- Diana Georgiana Filip
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| |
Collapse
|
17
|
Taye MB. Biomedical applications of ion-doped bioactive glass: a review. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Erdem U, Dogan D, Bozer BM, Karaboga S, Turkoz MB, Metin AÜ, Yıldırım G. Evolution of dynamics of physico-chemical and mechanical properties of hydroxyapatite with fluorine addition and degradation stability of new matrices. J Mech Behav Biomed Mater 2022; 135:105454. [PMID: 36115175 DOI: 10.1016/j.jmbbm.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
This multidisciplinary study examined sensitively the change in the dynamics of main mechanical performance, stability of crystal structure, crystallinity quality, strength, corrosion resistance, biocompatibility, resistance to structural degradation/separations and mechanical durability features of hydroxyapatite (HAp) biomedical materials based on the fluorine addition and degradation process to guide future medical and dental treatment studies. In the study, the fluorine ions were used to be the dental coating, filling and supporting material for biologically or synthetically produced bone minerals. The general characteristic properties were investigated by means of standard spectroscopic, structural and mechanical analysis methods including RAMAN, SEM-EDS, TEM, Vickers micro-indentation hardness and density measurements. A time dependent release test was performed to evaluate possible fluorine ion release after the degradation process. It was found that the fundamental characteristic properties of HAp biomedical materials are noted to improve with the increase in the fluoride level up to 2% due much more stabilization of HAp crystal system. The combination of RAMAN spectra and powder XRD analyzes indicates that 2% addition level affects positively the formation velocity of characteristic HAP phase. Besides, fluorine doped HAp materials all exhibited the main characteristic peaks after degradation process. This is attributed to the fact that the fluorine ions enabled the hydroxyapatite to enhance the structural quality and stability towards the corrosion environment. However, in case of excess dopant level of 3% the degradation rates were obtained to increase due to higher contribution rate and especially electrostatic interactions. As for the surface morphology examinations, 2% fluorine added HAp with the highest density of 3.0879 g/cm3 was determined to present the superior crystallinity quality (smallest grain size, best smooth surface, honeycomb pattern, regular shaped particles and densest particle distributions through the specimen surface). Conversely, the excess fluorine triggered to increase seriously degree of micro/macro porosity in the surface morphology and microscopic structural problems in the crystal system. Thus, the HAp doped with 3% was the most affected material from the degradation process. Additionally, the fluorine ion values read after the release process were quite far from the value that could cause toxic effects. Lastly, the optimum fluorine addition provides the positive effects on the highest durability, stiffness and mechanical fracture strength properties as a consequence of differentiation in the surface residual compressive stress regions (lattice strain fields), amplification sites and active operable slip systems in the matrix. Hence, the crack propagations prefer to proceed in the transcrystalline regions rather than the intergranular parts. Similarly, it was found that Vickers micro-indentation hardness tests showed that the microhardness parameters increased after the degradation process. All in all, the fluorine addition level of 2% was noted to be good choice to improve the fundamental characteristic properties of hydroxyapatite biomedical materials for heavy-duty musculoskeletal, orthopedic implant, biological and therapeutic applications in medicine and dentistry application fields.
Collapse
Affiliation(s)
- Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, 71450, Kirikkale, Turkey.
| | - Deniz Dogan
- Kirikkkale University, Faculty of Science and Literature, Department of Chemistry, 71450, Kirikkale, Turkey
| | - Büsra Moran Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, 19030, Turkey
| | - Seda Karaboga
- Abant Izzet Baysal University, Faculty of Science, Department of Chemisrty, 14280, Bolu, Turkey
| | - Mustafa Burak Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, 78050, Karabuk, Turkey
| | - Ayşegül Ülkü Metin
- Kirikkkale University, Faculty of Science and Literature, Department of Chemistry, 71450, Kirikkale, Turkey
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, 14280, Bolu, Turkey
| |
Collapse
|
19
|
Valencia-Gómez LE, Muzquiz-Ramos EM, Fausto-Reyes AD, Rodríguez-Arrellano PI, Rodríguez-González CA, Hernández-Paz JF, Reyes-Blas H, Olivas-Armendáriz I. O-carboxymethyl chitosan/gelatin/silver-copper hydroxyapatite composite films with enhanced antibacterial and wound healing properties. J Biomater Appl 2022; 37:773-785. [DOI: 10.1177/08853282221121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wound dressing composite films of O-carboxymethyl chitosan (OCMC) and gelatin were prepared and mixed with hydroxyapatite (HA) composited with Silver (Ag) and Copper (Cu) at different concentrations. The chemical, thermal, morphological, and biological properties of the composite films were studied. The analysis by FTIR confirmed the presence of interactions between gelatin and OCMC, and at the same time, the polymer matrix interactions with Ag-Cu/HA complex. The inclusion of nanoparticle to the composite was associated with an improvement of the thermal stability, morphological roughness, a 9–12% more hydrophobic behavior (composite C1, C5, and C8), increase in antibacterial activity from 23.2 to 33.1% for gram negative bacteria and from 37.28 to 40.59% for gram positive bacteria, and with a cell viability greater than 100% for 24 and 72 h. The films obtained can serve as a wound healing dressing and regenerating biomaterial.
Collapse
Affiliation(s)
- Laura-E Valencia-Gómez
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | - Elia-M Muzquiz-Ramos
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Saltillo, México
| | - Abril-D Fausto-Reyes
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | | | | | - Juan-F Hernández-Paz
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | - Hortensia Reyes-Blas
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | | |
Collapse
|
20
|
Jamil M, Elouahli A, Abida F, Assaoui J, Gourri E, Hatim Z. Apatitic calcium phosphate /montmorillonite nano-biocomposite: in-situ synthesis, characterization and dissolution properties. Heliyon 2022; 8:e10042. [PMID: 35965974 PMCID: PMC9364031 DOI: 10.1016/j.heliyon.2022.e10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/19/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, calcium phosphate/montmorillonite composites have received attention as a synthetic bone substitutes. In this study, apatitic calcium phosphate/Montmorillonite nano-biocomposites were in-situ synthesized at 22 °C by reaction between calcium hydroxide and orthophosphoric acid in the presence of different contents of montmorillonite (MNa). Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Brunauer–Emmett–Teller (BET) surface areas were used to characterize the prepared powders. The XRD results show that the composites prepared with 2 and 5 wt% MNa and sintered at 900 °C, show the formation of hydroxyapatite (HAP) structure, whereas that prepared with 10 wt% MNa leads to the formation of β-tricalcium phosphate (β-TCP) structure. The HAP structure decomposes at 1000 °C and leads to the formation of biocomposite containing HAP, β and α-TCP. However, β-TCP composites show thermal stability. FTIR and structural refinement results show the incorporation of clay ions into the apatitic structure causing changes in the crystal structure of the formed calcium phosphate phases. The changes in the composition and structure lead to an increase in the dissolution rate of HAP and a decrease in that of β-TCP.
Collapse
Affiliation(s)
- M. Jamil
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
- Team of Mineral Solid Chemistry, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Corresponding author.
| | - A. Elouahli
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - F. Abida
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - J. Assaoui
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - E. Gourri
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - Z. Hatim
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| |
Collapse
|
21
|
Fluorescence conjugated nanostructured cobalt-doped hydroxyapatite platform for imaging-guided drug delivery application. Colloids Surf B Biointerfaces 2022; 214:112458. [PMID: 35306345 DOI: 10.1016/j.colsurfb.2022.112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
Multifunctional nanomaterials developed from hydroxyapatite (HAp) with enhanced biological characteristics have recently attracted attention in the biomedical field. The goal of this study is to investigate the potential applications of cobalt-doped HAp (Co-HAp) in the biomedical imaging and therapeutic applications. The co-precipitation approach was used to substitute different molar concentrations of Ca2+ ions with cobalt (Co2+) in HAp structure. The synthesized Co-HAp nanoparticles were studied using various sophisticated techniques to verify the success rate of the doping method. The specific crystal structure, functional groups, size, morphology, photoluminescence property, and thermal stability of the Co-HAp nanoparticles were analyzed based on the characterization results. The computational modelling of doped and undoped HAp reveals the difference in crystal structure parameters. The cytotoxicity study (MTT assay and AO/PI/Hoechst fluorescence staining) reveals the non-toxic characteristics of Co-HAp nanoparticles on MDA-MB-231 breast cancer cell lines. The DOX was loaded onto Co-HAp, showing the maximum drug loading capacity for 2.0 mol% Co-HAp. Drug release was estimated in five different pH environments with various time intervals over 72 h. Furthermore, 2.0 mol% Co-HAp shows excellent fluorescence sensitivity with FITC-conjugated MDA-MB-231 cell lines. These results suggest that cobalt improved the fluorescence intensity of FITC-labeled HAp nanoparticles. This work highlights the promising application of Co-HAp nanoparticles with significant enhanced fluorescence activity for imaging-guided drug delivery system.
Collapse
|
22
|
Arokiasamy P, Al Bakri Abdullah MM, Abd Rahim SZ, Luhar S, Sandu AV, Jamil NH, Nabiałek M. Synthesis methods of hydroxyapatite from natural sources: A review. CERAMICS INTERNATIONAL 2022; 48:14959-14979. [DOI: 10.1016/j.ceramint.2022.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Xu J, Zhang J, Shi Y, Tang J, Huang D, Yan M, Dargusch MS. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1749. [PMID: 35268983 PMCID: PMC8911755 DOI: 10.3390/ma15051749] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Ti is widely used as a material for orthopedic implants. As rapid and effective osseointegration is a key factor for the successful application of implants, biologically inert Ti materials start to show inherent limitations, such as poor surface cell adhesion, bioactivity, and bone-growth-inducing capabilities. Surface modification can be an efficient and effective approach to addressing the biocompatibility, mechanical, and functionality issues of the various Ti implant materials. In this study, we have overviewed more than 140 papers to summarize the recent progress in the surface modification of Ti implants by physical and/or chemical modification approaches, aiming at optimizing their wear resistance, biocompatibility, and antimicrobial properties. As an advanced manufacturing technology for Ti and Ti alloys, additive manufacturing was particularly addressed in this review. We also provide an outlook for future research directions in this field as a contribution to the development of advanced Ti implants for biomedical applications.
Collapse
Affiliation(s)
- Jingyuan Xu
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4072, Australia;
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| | - Jiawen Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| | - Yangfan Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| | - Jincheng Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| | - Danni Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| | - Ming Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| | - Matthew S. Dargusch
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (Y.S.); (J.T.); (D.H.)
| |
Collapse
|
24
|
Mosaad KE, Shoueir KR, Dewidar MM. Fabrication of Multifunctional Wound Dressing Composite Biomaterials Composed of Ag/Mg-Hydroxyapatite Doped Electrospun Poly (Vinyl Alcohol) Nanofibers for Skin Tissue Regeneration. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02195-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Sobierajska P, Nowak N, Rewak-Soroczynska J, Targonska S, Lewińska A, Grosman L, Wiglusz RJ. Investigation of topography effect on antibacterial properties and biocompatibility of nanohydroxyapatites activated with zinc and copper ions: In vitro study of colloids, hydrogel scaffolds and pellets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112547. [DOI: 10.1016/j.msec.2021.112547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
|
26
|
Influence of Terbium Ions and Their Concentration on the Photoluminescence Properties of Hydroxyapatite for Biomedical Applications. NANOMATERIALS 2021; 11:nano11092442. [PMID: 34578759 PMCID: PMC8466322 DOI: 10.3390/nano11092442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
A new generation of biomaterials with terbium-doped hydroxyapatite was obtained using a coprecipitation method. The synthesis of new materials with luminescent properties represents a challenging but important contribution due to their potential applications in biomedical science. The main objective of this study was to revel the influence of terbium ions on the design and structure of hydroxyapatite. Different concentrations of terbium, described by the chemical formula Ca10−xTbx(PO4)6(OH)2, where x is in the range of 0 to 1, were considered. The consequence of ion concentration on hydroxyapatite morphology was also investigated. The morphology and structure, as well as the optical properties, of the obtained nanomaterials were characterized using X-ray powder diffraction analysis (XRD), Fourier Transform Infrared spectrometry (FTIR), SEM and TEM microscopy, UV-Vis and photoluminescence spectroscopies. The measurements revealed that terbium ions were integrated into the structure of hydroxyapatite within certain compositional limits. The biocompatibility and cytotoxicity of the obtained powders evaluated using MTT assay, oxidative stress assessment and fluorescent microscopy revealed the ability of the synthesized nanomaterials to be used for biological system imaging.
Collapse
|
27
|
Nikitina YO, Petrakova NV, Demina AY, Kozyukhin SA, Lysenkov AS, Barinov SM, Komlev VS. Cerium-Containing Hydroxyapatites with Luminescent Properties. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621080179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Li J, Zhao C, Liu C, Wang Z, Ling Z, Lin B, Tan B, Zhou L, Chen Y, Liu D, Zou X, Liu W. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair. Biomed Eng Online 2021; 20:70. [PMID: 34303371 PMCID: PMC8306242 DOI: 10.1186/s12938-021-00907-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-021-00907-2.
Collapse
Affiliation(s)
- Jungang Li
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chaoqian Zhao
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Chun Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhenyu Wang
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zeming Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bin Lin
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Bizhi Tan
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Linquan Zhou
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Delong Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Wenge Liu
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
29
|
Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021; 184:170-180. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
Bone defect is usually difficult to recover quickly, and bone scaffold transplantation is considered to be an effective method. Biomaterials have a wide range of application prospects in bone tissue repair, and the two key problems are the selection of materials and cells. The object of this study was to discuss the structural characteristics of bone scaffold materials and their effects on bone repair in vivo. The chitin-hydroxyapatite (HAP)-collagen composite scaffolds (CHCS) was prepared with epichlorohydrin (ECH) as crosslinking agent. The structure was characterized and the compressive strength, porosity, water absorbency and stability were investigated. The biocompatibility and osteogenic differentiation of CHCS in vitro were detected, and the effect of defect repair in vivo was evaluated. The results suggested that HAP not only enhanced the compressive strength of CHCS, but also promoted the formation of calcium nodules due to its bone conductivity. Histological staining showed that collagen promoted collagen deposition and new bone formation. X-ray images also indicated that CHCS transplantation accelerated bone repair. Therefore, CHCs has immense potential in bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Rongxue Yang
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Derong Xu
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Jiufa Cui
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Yufen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hsinchu, Taiwan, Republic of China
| | - Chuanli Zhou
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
30
|
Effect of Cerium-Containing Hydroxyapatite in Bone Repair in Female Rats with Osteoporosis Induced by Ovariectomy. MINERALS 2021. [DOI: 10.3390/min11040377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a public health problem, with bone loss being the main consequence. Hydroxyapatite (HA) has been largely used as a bioceramic to stimulate bone growth. In our work, a cerium-containing HA (Ce-HA) has been proposed and its effects on the antimicrobial and bone-inducing properties were investigated. The synthesis of the materials occurred by the suspension–precipitation method (SPM). The XRD (X-ray Diffraction) confirmed the crystalline phase, and the Rietveld refinement confirmed the crystallization of HA and Ce-HA in a hexagonal crystal structure in agreement with ICSD n° 26205. Characterizations by FT-IR (Fourier Transform Infrared Spectroscopy), XPS (X-ray Photoemission Spectroscopy), and FESEM-EDS (Field Emission Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) confirmed the presence of cerium (Ce3+ and Ce4+). The antibacterial activity of Has was evaluated against Staphylococcus aureus 25,923 and Escherichia coli 25,922 strains, which revealed that the material has antimicrobial properties and the cytotoxicity assay indicated that Ce-containing HA was classified as non-toxic. The effects of Ce-HA on bone repair, after application in bone defects in the tibia of female rats with osteoporosis induced by ovariectomy (OVX), were evaluated. After 15 and 30 days of implantation, the samples were analyzed by Raman, histology and X-ray microtomography. The results showed that the animals that had the induced bone defects filled with the Ce-HA materials had more expressive bone neoformation than the control group.
Collapse
|
31
|
Oulguidoum A, Bouiahya K, Bouyarmane H, Talbaoui A, Nunzi JM, Laghzizil A. Mesoporous nanocrystalline sulfonated hydroxyapatites enhance heavy metal removal and antimicrobial activity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Jacobs A, Renaudin G, Forestier C, Nedelec JM, Descamps S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater 2020; 117:21-39. [PMID: 33007487 DOI: 10.1016/j.actbio.2020.09.044] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Copper is an essential trace element required for human life, and is involved in several physiological mechanisms. Today researchers have found and confirmed that Cu has biological properties which are particularly useful for orthopedic biomaterials applications such as implant coatings or biodegradable filler bone substitutes. Indeed, Cu exhibits antibacterial functions, provides angiogenic ability and favors osteogenesis; these represent major key points for ideal biomaterial integration and the healing process that follows. The antibacterial performances of copper-doped biomaterials present an interesting alternative to the massive use of prophylactic antibiotics and help to limit the development of antibiotic resistance. By stimulating blood vessel growth and new bone formation, copper contributes to the improved bio-integration of biomaterials. This review describes the bio-functional advantages offered by Cu and focuses on the antibacterial, angiogenic and osteogenic properties of Cu-doped biomaterials with potential for orthopedic applications.
Collapse
|
33
|
Nanohydroxyapatite-Mediated Imatinib Delivery for Specific Anticancer Applications. Molecules 2020; 25:molecules25204602. [PMID: 33050306 PMCID: PMC7587182 DOI: 10.3390/molecules25204602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, a nanoapatite-mediated delivery system for imatinib has been proposed. Nanohydroxyapatite (nHAp) was obtained by co-precipitation method, and its physicochemical properties in combination with imatinib (IM) were studied by means of XRPD (X-ray Powder Diffraction), SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy), FT-IR (Fourier-Transform Infrared Spectroscopy), absorption spectroscopy as well as DLS (Dynamic Light Scattering) techniques. The obtained hydroxyapatite was defined as nanosized rod-shaped particles with high crystallinity. The amorphous imatinib was obtained by conversion of its crystalline form. The beneficial effects of amorphous pharmaceutical agents have been manifested in the higher dissolution rate in body fluids improving their bioavailability. Imatinib-to-hydroxyapatite interactions on the surface were confirmed by SEM images as well as absorption and FT-IR spectroscopy. The cytotoxicity of the system was tested on NI-1, L929, and D17 cell lines. The effectiveness of imatinib was not affected by nHAp modification. The calculated IC50 values for drug-modified nHAp were similar to those for the drug itself. However, higher cytotoxicity was observed at higher concentrations of imatinib, in comparison with the drug alone.
Collapse
|
34
|
Szyszka K, Watras A, Wiglusz RJ. Strontium Phosphate Composite Designed to Red-Emission at Different Temperatures. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4468. [PMID: 33050186 PMCID: PMC7650610 DOI: 10.3390/ma13204468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Eu3+-doped Sr10(PO4)6(OH)2-Sr3(PO4)2 (SrHAp-TSP) composites were obtained via the microwave-stimulated hydrothermal method and post-heat-treated from 750 to 950 °C. Concentration of the Eu3+ ions was set to be 0.5, 1, 2, 3, 5 mol% in a ratio of the strontium ions molar content. The structural and morphological properties were investigated by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) techniques. The average particle size of the studied materials annealed at 750, 850 and 950 °C were counted about 100, 131 and 173 nm, respectively. The luminescence properties depending on the dopant ion concentration, heat-treatment temperature, excitation wavelength and temperature were investigated. In the emission spectra, a broad peak corresponding to the 4f65d1 → 4f7 (8S7/2) emission of Eu2+ ions as well as narrow 4f-4f transitions typical for Eu3+ ions can be observed. The luminescence intensity of the 1 mol% Eu3+:Sr10(PO4)6(OH)2-Sr3(PO4)2 was measured depending on the ambient temperature in the range of 80-550 K. The CIE 1931 (International Commission on Illumination) chromaticity diagram was determined from emission spectra measured in 80, 300 and 550 K. The reduction mechanism of the Eu3+ to the Eu2+ was explained by the charge compensation mechanism based on the Kröger-Vink-notation. The decay times were measured and the Judd-Ofelt (J-O) theory was applied to analyze the observed structural and spectroscopic features.
Collapse
Affiliation(s)
- Katarzyna Szyszka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland;
| | | | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland;
| |
Collapse
|
35
|
Zhang B, Li J, He L, Huang H, Weng J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomater 2020; 114:431-448. [PMID: 32682055 DOI: 10.1016/j.actbio.2020.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
In view of the fact that titanium (Ti)-based implants still face the problem of loosening and failure of the implants caused by the slow biological response, the low osseointegration rate and the implant bacterial infection in clinical application, we designed a cancellous bone-like biomimetic Ti scaffold using the template accumulated by sugar spheres as a pore-forming agent. And based on a modified surface mineralization process and mussel-like adhesion mechanism, a silicon-doped calcium phosphate composite coating (Van-pBNPs/pep@pSiCaP) with Vancomycin (Van)-loaded polydopamine (pDA)-modified albumin nanoparticles (Van-pBNPs) and cell adhesion peptides (GFOGER) was constructed on the surface of Ti scaffold for mimicking the extracellular matrix (ECM) microenvironment of natural bone matrix to induce greater tissue regeneration. The in vitro study demonstrated that this porous Ti scaffold with functional bio-surface could distinctly facilitate cell early adhesion and spreading, and activate the expression of α2β1 integrin receptor on the cell membrane through promoting the formation of focal adhesions (FAs) in bone marrow stromal cells (BMSCs), thus mediating greater osteogenic cell differentiation. And it could also effectively inhibit the adhesion and growth of Staphylococcus epidermidis, exhibiting good antibacterial properties. Moreover, the Van-pBNPs/pep@pSiCaP-Ti scaffolds showed enhanced in vivo bone-forming ability due to the contributions of bioactive chemical components and the natural cancellous bone-like macrostructure. This work offers a promising structural and functional bio-inspired strategy for designing metal implants with desirable ability of osteoinduction synergistically with antibacterial efficacy for promoting bone regeneration and infection prevention simultaneously. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making porous Ti scaffolds with a natural cancellous bone-like structure. Besides, a functional bio-surface was constructed on the bionic structure, mimicking some of the functions of the collagen-rich organic matrix and inorganic CaP nanocrystallites of native ECM of bone in chemical components and biological activities. This interconnected inter-pore opening structure encouraged the migration of cells among open macro-pores within the scaffold. In addition, the functionalized surface not only improved early cell adhesion, spreading, stimulated greater osteogenic differentiation of bone-forming cells, but also endowed the scaffold with excellent antibacterial effect. The biomimetic metal implant with multiple biomedical functions designed in this study has a great clinical application potential. This study represents a feasible method for the preparation of biomimetic structure of metal implants and the improvement of their surface biological activity.
Collapse
Affiliation(s)
- Bingjun Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jia Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lei He
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
| |
Collapse
|
36
|
Li W, Hu X, Chen J, Wei Z, Song C, Huang R. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:73. [PMID: 32729101 DOI: 10.1007/s10856-020-06410-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The intrinsic fragility of hydroxyapatite (HAP) restricts its wider applications for local delivery of antibiotics. The composites formed by integrating HAP with hydrogels can improve the properties of HAP. However, these reported composites not only require tedious preparation and employ organic solvent and toxic reagents, but also hardly have inherent antimicrobial property. In this study, N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite (Fmoc-L-Phe/nHAP) hybrid supramolecular hydrogels with antibacterial property and cytocompatibility was prepared by integrating nHAP as reinforcement with Fmoc-L-Phe supramolecular hydrogels. The results showed that nHAP bounds in the chamber of the gel network and adheres to the fiber of Fmoc-L-Phe due to intermolecular interaction, remarkably improving the mechanical strength of Fmoc-L-Phe supramolecular hydrogels. The results of inhibition zone experiment and MTT experiment showed that the Fmoc-L-Phe/nHAP hybrid supramolecular hydrogels possess antimicrobial property and cytocompatibility. In vitro release experiment of chlorogenic acid (CGA) from the hybrid supramolecular hydrogels was performed. The study of the release kinetics indicated that the release behavior of CGA from the hybrid supramolecular hydrogels is following Weibull model and release mechanism involved Fickian diffusion and erosion of the surface of hydrogel matrix. The release of CGA shows a good inhibition effect on S. aureus. The results show that the Fmoc-L-Phe/nHAP hybrid hydrogels with antibacterial property and cytocompatibility have promising applications as drug delivery carrier. Due to the intrinsic fragility of hydroxyapatite (HAP), the properties of HAP could be improved by incorporation into hydrogels. However, these reported composites not only require tedious preparation and employ organic solvent and toxic reagents, but also hardly have inherent antimicrobial property. We prepared N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite (Fmoc-L-Phe/nHAP) hybrid supramolecular hydrogels by integrating nHAP as reinforcement with Fmoc-L-Phe supramolecular hydrogels. The results showed that nHAP bounds in the chamber of the gel network and adheres to the fiber of Fmoc-L-Phe due to intermolecular interaction, remarkably improving the mechanical strength of Fmoc-L-Phe supramolecular hydrogels. The results of inhibition zone experiment and MTT experiment showed that the Fmoc-L-Phe/nHAP hybrid supramolecular hydrogels possess antibacterial property and cytocompatibility. In vitro release experiment of chlorogenic acid (CGA) from the hybrid supramolecular hydrogels was performed. The study of the release kinetics indicated that the release behavior of CGA from the hybrid supramolecular hydrogels is following Weibull model and release mechanism involved Fickian diffusion and erosion of the surface of hydrogel matrix. The release of CGA shows a good inhibition effect on S. aureus. The results show that the Fmoc-L-Phe/nHAP hybrid hydrogels with antibacterial property and cytocompatibility have promising applications as drug delivery carrier.
Collapse
Affiliation(s)
- Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China.
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, 430065, Wuhan, China.
| | - Xueying Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - Jiawei Chen
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - Zhengnan Wei
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| |
Collapse
|
37
|
Yilmaz B, Pazarceviren AE, Tezcaner A, Evis Z. Historical development of simulated body fluids used in biomedical applications: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104713] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Sinusaite L, Popov A, Antuzevics A, Mazeika K, Baltrunas D, Yang JC, Horng JL, Shi S, Sekino T, Ishikawa K, Kareiva A, Zarkov A. Fe and Zn co-substituted beta-tricalcium phosphate (β-TCP): Synthesis, structural, magnetic, mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110918. [PMID: 32409069 DOI: 10.1016/j.msec.2020.110918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023]
Abstract
In the present work, Fe3+ and Zn2+ co-substituted β-tricalcium phosphate (β-TCP) has been synthesized by wet co-precipitation method. Co-substitution level in the range from 1 to 5 mol% has been studied. Thermal decomposition of as-prepared precipitates was shown to be affected by introducing of foreign ions, decreasing the decomposition temperature of precursor. It was determined that partial substitution of Ca2+ by Fe3+ and Zn2+ ions leads to the change in lattice parameters, which gradually decrease as doping level increases. Lattice distortion was also confirmed by means of Raman spectroscopy, which showed gradual change of the peaks shape in the Raman spectra. Rietveld refinement and electron paramagnetic resonance study confirmed that Fe3+ ions occupy only one Ca crystallographic site until Fe3+ and Zn2+ substitution level reaches 5 mol%. All co-substituted samples revealed paramagnetic behavior, magnetization of powders was determined to be linearly dependent on concentration of Fe3+ ions. Cytotoxicity of the synthesized species was estimated by in vivo assay using zebrafish (Danio rerio) and revealed non-toxic nature of the samples. Preparation of ceramic bodies from the powders was performed, however the results obtained on Vickers hardness of the ceramics did not show improvement in mechanical properties induced by co-substitution.
Collapse
Affiliation(s)
- Lauryna Sinusaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Anton Popov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Andris Antuzevics
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Kestutis Mazeika
- State Research Institute Center for Physical Sciences and Technology, Vilnius LT-02300, Lithuania
| | - Dalis Baltrunas
- State Research Institute Center for Physical Sciences and Technology, Vilnius LT-02300, Lithuania
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Hsing St, Taipei 11052, Taiwan
| | - Jiun Lin Horng
- Department of Anatomy and Cell Biology, Taipei Medical University, 250 Wu-Hsing St, Taipei 11052, Taiwan
| | - Shengfang Shi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
39
|
Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Ali S, Sharma AS, Ahmad W, Zareef M, Hassan MM, Viswadevarayalu A, Jiao T, Li H, Chen Q. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Crit Rev Anal Chem 2020; 51:454-481. [PMID: 32233874 DOI: 10.1080/10408347.2020.1743964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noble bimetallic and trimetallic nanoparticles (NBT-NPs) have superior biomedical applications as compared to their monometallic counterparts. The performance of these nanomaterials depends on their composition, shape and size. Hence, the controlled-synthesis of these nanomaterials is a hot area of research. Till date, no review article in the literature accounts regarding the controlled-synthesis and biomedical applications related to morphology, optimum composition, biocompatibility and versatile chemistry of NBT-NPs. Taking this into contemplation, an effort was made to provide a clear insight into the morphology-controlled synthesis and size/shape-dependent anticancer and bactericidal applications of NBT-NPs. Chemical reduction method for the controlled-synthesis of NBT-NPs is reviewed critically. Furthermore, the potential role of various reaction parameters such as time, reducing agents, stabilizing/capping agents, nature/concentration of precursors, temperature and pH in the shape/size-controlled synthesis of these nanomaterials are discussed. In the second part of this article, anticancer and bactericidal applications of the NBT-NPs are reviewed and the influences of optimum composition, size, surface structure, versatile chemistry and synergism are studied. Finally, the current challenges in the controlled-synthesis and biomedical applications of these nanomaterials, and prospects to resolve related issues are discussed. HighlightsChemical reduction method for the synthesis of NBT-NPs is reviewed.The influences of parameters on the control synthesis of NBT-NPs are discussed.Antibacterial and anticancer applications and cytotoxicity of NBT-NPs are reviewed.Possible solutions for the key challenges are discussed.Outlooks about the synthesis and biomedical applications of NBT-NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehdi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
41
|
Piri F, Mollahosseini A, Khadir A, Milani Hosseini M. Synthesis of a novel magnetic zeolite–hydroxyapatite adsorbent via microwave-assisted method for protein adsorption via magnetic solid-phase extraction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01883-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Effect of Hydrothermal (Sr)-Hydroxyapatite Coatings on the Corrosion Resistance and Mg 2+ Ion Release to Enhance Osteoblastic Cell Responses of AZ91D Alloy. MATERIALS 2020; 13:ma13030591. [PMID: 32012748 PMCID: PMC7040582 DOI: 10.3390/ma13030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022]
Abstract
The biomedical applications of Mg-based alloys are limited by their rapid corrosion rate in the body fluid. In this study, the hydrothermal synthesis is employed to produce protective bioactive hydroxyapatite coating (HAC) and strontium-substituted hydroxyapatite coating (Sr-HAC) to further enhance the corrosion resistance and in vitro biocompatibility of biodegradable AZ91D Mg alloy in physiological environments. For comparison, the brucite Mg(OH)2 prepared by the alkaline pre-treatment is designated as a control group. Experimental evidences of XRD and XPS analysis confirm that Sr2+ ions can be incorporated into HA crystal structure. It is noted that the hydrothermally synthesized Sr-HAC conversion coating composed of a specific surface topography with the nanoscaled flake-like fine crystallites is constructed on the AZ91D Mg alloy. The hydrophilicity of Mg substrate is effectively enhanced with the decrease in static contact angles after performing alkaline and hydrothermal treatments. Potentiodynamic polarization measurements reveal that the nanostructured Sr-HAC-coated specimens exhibit superior corrosion resistance than HAC and alkaline pre-treated Mg(OH)2. Moreover, immersion tests demonstrate that Sr-HAC provides favorable long-term stability for the Mg alloy with decreasing concentration of released Mg2+ ions in the SBF and the reduced corrosion rate during the immersion length of 30 days. The cells cultured on Sr-HAC specimens exhibit higher viability than those on the alkaline-pre-treated Mg(OH)2 and HAC specimens. The Sr-substituted HA coating with a nanostructured surface topography can help to stimulate the cell viability of osteoblastic cells.
Collapse
|
43
|
Kandasamy S, Narayanan V, Sumathi S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int J Biol Macromol 2019; 145:1018-1030. [PMID: 31726129 DOI: 10.1016/j.ijbiomac.2019.09.193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Zn-Mn HAP (Zinc and Manganese substituted Hydroxyapatite), CMC (Carboxymethyl cellulose)/PVP (Polyvinyl pyrrolidone) and (Zn-Mn HAP)/CMC/PVP (Zn = Mn = 0.05, 0.1 M) were prepared by hydrothermal and electrospinning methods respectively. The prepared composites were characterized using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDAX) to examine the phase formation, functional groups and surface morphology. FTIR spectra of the composite confirmed the funcitonal groups present in the composite. SEM images showed the fiber formation and the incorporation of Zn-Mn HAP into the fiber structures. The physical properties like porosity, swelling and tensile strength was studied for the prepared composites. 0.1 M of (Zn-Mn HAP)/CMC/PVP (20, 40, 60 wt% of Zn-Mn HAP composite) showed good physical properties, in which the 60 wt% showed 98% of porosity with least swelling and the tensile strength was measured to be 67 MPa. Highest zone of inhibition was observed against the microbial organisms using this 60 wt% of 0.1 M of (Zn-Mn HAP)/CMC/PVP composite and it was also found to be hemocompatible with hemolysis value less than 3% when compared to other composites. The biocompatibility of the composite was evaluated using human osteoblast cells (HOS).
Collapse
|
44
|
Jinga SI, Zamfirescu AI, Voicu G, Enculescu M, Evanghelidis A, Busuioc C. PCL-ZnO/TiO 2/HAp Electrospun Composite Fibers with Applications in Tissue Engineering. Polymers (Basel) 2019; 11:polym11111793. [PMID: 31683940 PMCID: PMC6918332 DOI: 10.3390/polym11111793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023] Open
Abstract
The main objective of the tissue engineering field is to regenerate the damaged parts of the body by developing biological substitutes that maintain, restore, or improve original tissue function. In this context, by using the electrospinning technique, composite scaffolds based on polycaprolactone (PCL) and inorganic powders were successfully obtained, namely: zinc oxide (ZnO), titanium dioxide (TiO2) and hydroxyapatite (HAp). The novelty of this approach consists in the production of fibrous membranes based on a biodegradable polymer and loaded with different types of mineral powders, each of them having a particular function in the resulting composite. Subsequently, the precursor powders and the resulting composite materials were characterized by the structural and morphological point of view in order to determine their applicability in the field of bone regeneration. The biological assays demonstrated that the obtained scaffolds represent support that is accepted by the cell cultures. Through simulated body fluid immersion, the biodegradability of the composites was highlighted, with fiber fragmentation and surface degradation within the testing period.
Collapse
Affiliation(s)
- Sorin-Ion Jinga
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, RO-011061 Bucharest, Romania.
| | - Andreea-Ioana Zamfirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, RO-011061 Bucharest, Romania.
| | - Georgeta Voicu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, RO-011061 Bucharest, Romania.
| | - Monica Enculescu
- Laboratory of Multifunctional Materials and Structures, National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Alexandru Evanghelidis
- Laboratory of Multifunctional Materials and Structures, National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, RO-011061 Bucharest, Romania.
| |
Collapse
|
45
|
Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110054. [PMID: 31546401 DOI: 10.1016/j.msec.2019.110054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
The construction of ceramic components with UV curing is a developing trend by an additive manufacturing (AM) technology, due to the excellent advantages of high precision selective fixation and rapid prototyping, the application of this technology to bone defect repair had become one of the hotspots of research. Hydroxyapatite (HAP) is one of the most popular calcium phosphate biomaterials, which is very close to the main ingredient of human bones. Thus, hydroxyapatite biomaterials are popular as bone graft materials. In summary, the preparation of HAP bioceramics by a 3D printing of digital light processing (DLP) is a promising work. However, the preparation of HAP hybrid suspensions with high solid loading and good fluidity that can be printed by DLP encountered some challenges. Therefore, the purpose of this work is to improve and develop a novel UV-curing suspension with a high solids loading, which the suspension with the hydrodynamic properties and stability are suitable for DLP printer, in order to compensate for the brittleness of HAP ceramics itself to a certain extent, a low amount of zirconia was added in the suspension as an additive to fabricate a zirconia toughened HAP bioceramic composite by a DLP of 3D printing. In this work, the HAP powder was pre-modified by two organic modifiers to improve the compatibility in the acrylic resin system, and the addition of the castor oil phosphate further reduced the shear stress of the suspension to ensure strong liquidity. The UV suspension with 60 wt% powder particle loading had a minimum viscosity of 7495 mPa·s at 30 rpm, which was vacuum sintered at 1100 °C, 1200 °C, and 1250 °C, respectively. The composite ceramics (with 6 wt% ZrO2) at 1200 °C had a relative density of 90.7%, while the sintered samples at 1250 °C had stronger tensile strength and bending strength. The toughening effect of zirconia incorporation on HAP ceramics was also confirmed by the change of tensile modulus and bending modulus, whereas the corresponding mechanical properties were also significantly enhanced.
Collapse
|
46
|
Vinicius Beserra Dos Santos M, Bastos Nogueira Rocha L, Gomes Vieira E, Leite Oliveira A, Oliveira Lobo A, de Carvalho MAM, Anteveli Osajima J, Cavalcanti Silva-Filho E. Development of Composite Scaffolds Based on Cerium Doped-Hydroxyapatite and Natural Gums-Biological and Mechanical Properties. MATERIALS 2019; 12:ma12152389. [PMID: 31357470 PMCID: PMC6695794 DOI: 10.3390/ma12152389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Hydroxyapatite (HAp) is a ceramic material composing the inorganic portion of bones. Ionic substitutions enhance characteristics of HAp, for example, calcium ions (Ca2+) by cerium ions (Ce3+). The use of HAp is potentialized through biopolymers, cashew gum (CG), and gellan gum (GG), since CG/GG is structuring agents in the modeling of structured biocomposites, scaffolds. Ce-HApCG biocomposite was synthesized using a chemical precipitation method. The obtained material was frozen (–20 °C for 24 h), and then vacuum dried for 24 h. The Ce-HApCG was characterized by X-Ray diffractograms (XRD), X-ray photoemission spectra (XPS), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS). XRD and FTIR showed that Ce-HApCG was successfully synthesized. XRD showed characteristic peaks at 2θ = 25.87 and 32.05, corresponding to the crystalline planes (0 0 2) and (2 1 1), respectively, while phosphate bands were present at 1050 cm−1 and 1098 cm−1, indicating the success of composite synthesis. FESEM showed pores and incorporated nanostructured granules of Ce-HApCG. The mechanical test identified that Ce-HApCG has a compressive strength similar to the cancellous bone’s strength and some allografts used in surgical procedures. In vitro tests (MTT assay and hemolysis) showed that scaffold was non-toxic and exhibited low hemolytic activity. Thus, the Ce-HApCG has potential for application in bone tissue engineering.
Collapse
Affiliation(s)
- Marcus Vinicius Beserra Dos Santos
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Lorenna Bastos Nogueira Rocha
- NUPCELT, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64064-260 Piaui, Brazil
| | - Ewerton Gomes Vieira
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Ana Leite Oliveira
- Center of Biotechnology and Fine Chemical, Universidade Catolica Portuguesa, 4169-005 Porto, Portugal
| | - Anderson Oliveira Lobo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Maria Acelina Martins de Carvalho
- NUPCELT, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64064-260 Piaui, Brazil
| | - Josy Anteveli Osajima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil.
| |
Collapse
|
47
|
Abstract
Porosity in plasma-sprayed coatings is vital for most engineering applications. Porosity has its merits and demerits depending on the functionality of the coating and the immediate working environment. Consequently, the formation mechanisms and development of porosity have been extensively explored to find out modes of controlling porosity in plasma-sprayed coatings. In this work, a comprehensive review of porosity on plasma-sprayed coatings is established. The formation and development of porosity on plasma-sprayed coatings are governed by set spraying parameters. Optimized set spraying parameters have been used to achieve the most favorable coatings with minimum defects. Even with the optimized set spraying parameters, defects like porosity still occur. Here, we discuss other ways that can be used to control porosity in plasma-sprayed coating with emphasis to atmospheric plasma-sprayed chromium oxide coatings. Techniques like multilayer coatings, nanostructured coatings, doping with rare earth elements, laser surface re-melting and a combination of the above methods have been suggested in adjusting porosity. The influences of porosity on microstructure, properties of plasma-sprayed coatings and the measurement methods of porosity have also been reviewed.
Collapse
|
48
|
In Vitro Activity Assays of Sputtered HAp Coatings with SiC Addition in Various Simulated Biological Fluids. COATINGS 2019. [DOI: 10.3390/coatings9060389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Considering the requirements of medical implantable devices, it is pointed out that biomaterials should play a more sophisticated, longer-term role in the customization and optimization of the material–tissue interface in order to ensure the best long-term clinical outcomes. The aim of this contribution was to assess the performance of silicon carbide–hydroxyapatite in various simulated biological fluids (Dulbecco’s modified Eagle’s medium (DMEM), simulated body fluid (SBF), and phosphate buffer solution (PBS)) through immersion assays for 21 days at 37 ± 0.5 °C and to evaluate the electrochemical behavior. The coatings were prepared on Ti6Al4V alloy substrates by magnetron sputtering method using two cathodes made of hydroxyapatite and silicon carbide (SiC). After immersion assays the coating’s surface was analyzed in terms of morphology, chemical and phase composition, and chemical bonds. According to the electrochemical behavior in the media investigated at 37 ± 0.5 °C, SiC addition inhibits the dissolution of the hydroxyapatite in DMEM acellular media. Furthermore, after adding SiC, the slow degradation of hydroxyapatite in PBS and SBF media as well as biomineralization in DMEM were observed.
Collapse
|
49
|
Zheng Y, Yang Y, Deng Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:770-782. [PMID: 30889752 DOI: 10.1016/j.msec.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
Abstract
Bone grafting on defects caused by trauma or tumor stimulates bone regeneration, a complex process requiring highly orchestrated cell-signal interactions. Bone vascular growth is coupled with osteogenesis, but less is known about the interplay between angiogenesis and osteogenesis. Understanding this relationship is relevant to improved bone regeneration. Here, tricalcium phosphate (TCP) scaffolds doped with varying concentration of cobalt (Co-TCP) were designed to investigate the dosage effect of vascularization on bone formation. The surface structure, phase composition, mechanical features, and chemical composition were investigated. Co doping improved the mechanical properties of TCP. Co-TCP, particularly 2% and 5% Co-TCP, boosted cell viability of bone marrow stromal cells (BMSCs). The 2% Co-TCP promoted alkaline phosphatase activity, matrix mineralization, and expression of osteogenic genes in BMSCs in vitro. However, excessive Co doping decreased TCP-induced osteogenesis. Meanwhile, Co-TCP dose-dependently favored the growth and migration of human umbilical vein endothelial cells (HUVECs), and the expression of vascular endothelial growth factor (VEGF). The 2% Co-TCP significantly shrank the defect area in rat alveolar bone compared with TCP. Smaller bone volume and more abundant blood vessels were observed for 5% Co-TCP compared with 2% Co-TCP. The CD31 immunostaining in the 5% Co-TCP group was more intense than the other two groups, indicating of the increment of endothelium cells. Besides, 5% Co-TCP led to mild inflammatory response in bone defect area. Overall, TCP doped appropriately with Co has positive effect on osteogenesis, while excessive Co suppressed osteoblast differentiation and bone formation. These data indicate that vascularization within a proper range promotes osteogenesis, which may be a design consideration for bone grafts.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuanyi Yang
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|