1
|
Aslan V. The analysis of classical, polynomial regression and cubic spline mathematical models in hemp biodiesel optimization: an experimental comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9392-9407. [PMID: 38191726 PMCID: PMC10824821 DOI: 10.1007/s11356-023-31720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Post-pandemic inflationist pressures, climate changes and extremes, regional conflicts, and soaring food prices caused the food crisis to increase rapidly worldwide. This global problem directs producers and researchers to use oils used as feedstock in biodiesel production effectively. In this context, it is important to assay the transesterification parameters and conduct new optimization studies to increase biodiesel yield. In this study, methyl ester was produced from hemp oil by transesterification using sodium hydroxide (NaOH). Next, classical optimization study was carried out to determine the effects of catalyst amount, alcohol:oil molar ratio, reaction temperature, and reaction time variables on biodiesel yield. Secondly, the cubic spline mathematical model (CSMM) and polynomial regression mathematical model (PRMM) were applied to the first data of this optimization. Among these optimization methods, the utmost biodiesel yield registered was 96.115% at hemp seed oil (HSO):methanol molar ratio of 5.59:1, catalyst concentration of 0.531 wt%, reaction temperature of 42.5 °C, reaction time of 62.1 min, and agitation intensity of 600 rpm at PRMM. Some vital fuel properties obtained from HSO biodiesels as a result of three optimizations satisfied the EN 14214 standard. The results illustrated that the optimal yields from CSMM and PRMM are 0.765% and 1.065% higher, respectively, according to the maximum efficiency obtained from the classical optimization. The outcomes showed that CSMM and PRMM are cost-effective, easy to handle, and promising new approaches.
Collapse
Affiliation(s)
- Volkan Aslan
- Department of Mechanical Engineering, Faculty of Engineering-Architecture, Yozgat Bozok University, Yozgat, 66200, Turkey.
| |
Collapse
|
2
|
Kumar V, Choudhary AK. Assessment and usability of Jatropha biodiesel blend with phenolic antioxidant to control NOx emissions of an unmodified diesel engine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108051-108066. [PMID: 37747609 DOI: 10.1007/s11356-023-29995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
The excessive utilization of fossil fuels has worsened global warming and exacerbated the levels of air pollution in the environment, forcing us to consider alternative fuels for compression ignition engines. The current research aims to explore the possibilities of renewable fuels outperforming diesel fuel in terms of combustion, performance, and emission characteristics. Biodiesel is an environmentally friendly and renewable alternative fuel. The major drawback of biodiesel is the significant rise in nitrogen oxide (NOx) emissions. The main novelty and objective of this research is to investigate the performance and emission characteristics of variable compression ratio diesel engine using DPA antioxidant additive. For this investigation, diesel, Jatropha biodiesel (B30) and 100 ppm of phenolic antioxidant diphenylamine (DPA) blended with B30 have been used as fuel named B30+DPA100. From experimental outcomes, the inclusion of diphenylamine to B30 blend resulted in brake-specific fuel consumption (BSFC) and exhaust gas temperature (EGT) being reduced by 8.86% and 4.12%, respectively, compared to B30. Simultaneously, there was a 1.11% increase in brake thermal efficiency (BTHE). The B30+DPA100 fuel blend demonstrates effective control over NOx and other emissions. The emissions of NOx, carbon monoxide (CO), hydrocarbon (HC), and smoke from the B30+DPA100 blend have shown a reduction of 6.8%, 5.34%, 7.86%, and 15.67%, respectively, when compared to diesel. However, there has been an increase in carbon dioxide (CO2) by 7.8%. One notable advantage of the B30+DPA100 blend is the significant decrease in NOx emissions. Additionally, the cylinder pressure for B30+DPA100 has been lowered by 4.93% compared to B30. On the other hand, the net heat release rate (NHR) has experienced a 1.72% increase. The particle size of different elements present in the crankcase oil has been calculated by Zetasizer Nano. The analysis revealed varying particle sizes for different elements in the crankcase oil: aluminum (2.724 μm), chromium (2.78 μm), iron (2.423 μm), and lead (2.587 μm).
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Mechanical Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| | - Akhilesh Kumar Choudhary
- Department of Mechanical Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India.
| |
Collapse
|
3
|
Oza S, Thakar H, Kodgire P, Kachhwaha SS. Utilizing an ultra-sonication process to optimize a two-step biodiesel production from Karanja oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28711-6. [PMID: 37454011 DOI: 10.1007/s11356-023-28711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Currently, biodiesel is produced from non-edible oils, which have various poisonous and un-saponifiable components; therefore, it is harmful and unfit for humans. Biodiesel replaces petro-diesel fuel, which can be used as additives or substitutes for diesel engines. The novelty of the present study is to optimize the process parameters of a two-step (esterification and transesterification) process for biodiesel production using high free fatty acid (FFA) containing Karanja oil (Pongamia pinnata oil), with the ultrasound (US) process intensification (PI) technique, which is carried out for the first time. In the first step, a reduction in the initial FFA concentration of 11.06% was achieved through optimization of the esterification process using response surface methodology (RSM)-supported central composite design (CCD) method in which methanol:oil molar ratio of 6:1 and 60 °C reaction temperature kept as fixed parameter, whereas H2SO4 catalyst loading (0.5-1.5 w/w%) and reaction time (15-45 min.) were varied. The FFA value is reduced to 1.56% under the optimal condition (32.8 min reaction time and 1.14 w/w% of catalyst loading). The second step of optimization of the transesterification of esterified oil was performed by applying RSM supported Box-Behnken design (BBD) method with varying independent parameter ranges such as the molar ratio (A), CH3OK catalyst loading (B), and reaction time (C) with the range of 6:1-9:1 (methanol: oil), 0.5-1.5 w/w%, and 10-30 min., respectively. A biodiesel yield of 98.16% was obtained under optimal conditions of a molar ratio of 7.6:1, catalyst loading of 0.98 w/w%, a reaction time of 20.6 min., and a reaction temperature of 60 °C (constant). Superior optimization results were observed than the conventional stirring method. The biodiesel's estimated characteristics were discovered to be within ASTM criteria and suitable for blending with diesel fuel.
Collapse
Affiliation(s)
- Suvik Oza
- Chemical Engineering Department, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426
- Centre for Biofuel and Bioenergy Studies, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426
| | - Harshil Thakar
- Chemical Engineering Department, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426
- Centre for Biofuel and Bioenergy Studies, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426
| | - Pravin Kodgire
- Chemical Engineering Department, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426.
- Centre for Biofuel and Bioenergy Studies, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426.
| | - Surendra Singh Kachhwaha
- Centre for Biofuel and Bioenergy Studies, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426
- Mechanical Engineering Department, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382426
| |
Collapse
|
4
|
Sangeetha B, Mohana Priya S, Pravin R, Tamilarasan K, Baskar G. Process optimization and technoeconomic assessment of biodiesel production by one-pot transesterification of Ricinus communis seed oil. BIORESOURCE TECHNOLOGY 2023; 376:128880. [PMID: 36921639 DOI: 10.1016/j.biortech.2023.128880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In the present study, Ricinus communis seed oil with high free fatty acid content was utilized for the one-pot biodiesel production using 1-(2,3-dihydroxy)-propyl-3-methylimidazolium hydroxide, a basic ionic liquid catalyst. The 97.83% biodiesel yield was obtained at the optimized conditions of 6.26 % (w/w) of catalyst concentration, 10.51:1 M ratio of methanol to oil, 57.87 °C temperature and reaction time of 61.01 min. The transesterification of Ricinus communis seed oil to biodiesel exhibited an activation energy of 37.60 kJ/mol. The technoeconomic analysis, the profitability and the sensitivity analysis were investigated for the simulated process design. The technoeconomic analysis reported a total revenue of 20,455,431 $/yr, with gross margins, ROI, payback period, IRR, and NPV of 23.54%, 35.72%, 2.8 years, 28.20%, and 19,287,000 $, respectively. According to the sensitivity analysis, the two most important factors determining the economic viability of the simulated process are Ricinus communis seed oil cost and biodiesel selling price.
Collapse
Affiliation(s)
- Baskaran Sangeetha
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | | | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | | | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| |
Collapse
|
5
|
Utami M, Setiawan P, Izul Falah I, Suheryanto, Shidiq M, Wijaya K, Jarin T, Sumathijones C, Abd- Elkader OH, O H Abd-Elkader M, Woong Chang S, Ravindran B. Synthesis of biodiesel from castor oil catalyzed by sodium hydroxide dispersed on bentonite. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS 2022; 53:102526. [DOI: 10.1016/j.seta.2022.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Venkataramana SH, Shivalingaiah K, Davanageri MB, Selvan CP, Lakshmikanthan A, Chandrashekarappa MPG, Razak A, Anand PB, Linul E. Niger Seed Oil-Based Biodiesel Production Using Transesterification Process: Experimental Investigation and Optimization for Higher Biodiesel Yield Using Box–Behnken Design and Artificial Intelligence Tools. APPLIED SCIENCES 2022; 12:5987. [DOI: 10.3390/app12125987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present work aims at cost-effective approaches for biodiesel conversion from niger seed (NS) oil by employing the transesterification process, Box–Behnken design (BBD), and artificial intelligence (AI) tools. The performances of biodiesel yield are reliant on transesterification variables (methanol-to-oil molar ratio M:O, reaction time Rt, catalyst concentration CC, and reaction temperature RT). BBD matrices representing the transesterification parameters were utilized for experiment reductions, analyzing factor (individual and interaction) effects, deriving empirical equations, and evaluating prediction accuracy. M:O showed a dominant effect, followed by CC, Rt, and RT, respectively. All two-factor interaction effects are significant, excluding the two interactions (Rt with RT and M:O with RT). The model showed a good correlation or regression coefficient with a value equal to 0.9869. Furthermore, the model produced the best fit, corresponding to the experimental and predicted yield of biodiesel. Three AI algorithms were applied (the big-bang big-crunch algorithm (BB-BC), firefly algorithm (FA), and grey wolf optimization (GWO)) to search for the best transesterification conditions that could maximize biodiesel yield. GWO and FA produced better fitness (biodiesel yield) values compared to BB-BC. GWO and FA experimental conditions resulted in a maximum biodiesel yield equal to 95.3 ± 0.5%. The computation time incurred in optimizing the biodiesel yield was found to be equal to 0.8 s for BB-BC, 1.66 s for GWO, and 15.06 s for FA. GWO determined that the optimized condition is recommended for better solution accuracy with a slight compromise in computation time. The physicochemical properties of the biodiesel yield were tested according to ASTM D6751-15C; the results are in good agreement and the biodiesel yield would be appropriate to use in diesel engines.
Collapse
Affiliation(s)
- Srikanth Holalu Venkataramana
- Department of Aeronautical Engineering, Nitte Meenakshi Institute of Technology, Visvesvaraya Technological University, Bangalore 560064, India
| | - Kanchiraya Shivalingaiah
- Department of Mechanical Engineering, Government Engineering College, Visvesvaraya Technological University, Hassan 573201, India
| | | | - Chithirai Pon Selvan
- School of Science and Engineering, Curtin University, Dubai 345031, United Arab Emirates
| | - Avinash Lakshmikanthan
- Department of Mechanicall Engineering, Nitte Meenakshi Institute of Technology, Visvesvaraya Technological University, Bangalore 560064, India
| | | | - Abdul Razak
- Department of Mechanical Engineering, P. A. College of Engineering, Visvesvaraya Technological University, Mangaluru 574153, India
| | - Praveena Bindiganavile Anand
- Department of Mechanicall Engineering, Nitte Meenakshi Institute of Technology, Visvesvaraya Technological University, Bangalore 560064, India
| | - Emanoil Linul
- Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 300222 Timisoara, Romania
| |
Collapse
|
7
|
Mengistu TG, Reshad AS. Synthesis and characterization of a heterogeneous catalyst from a mixture of waste animal teeth and bone for castor seed oil biodiesel production. Heliyon 2022; 8:e09724. [PMID: 35756125 PMCID: PMC9218382 DOI: 10.1016/j.heliyon.2022.e09724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
The present study focused on the synthesis of heterogeneous catalyst from a mixture of waste animal teeth and bone through thermal method. The produced catalyst was used for castor seed oil (CO) biodiesel production. A different mixing ratio of teeth and bone was used with a calcination temperature range from 650 °C to 1250 °C with 100 °C increment for 3h calcination duration. Thermogravimetric analysis (TGA) for animal teeth and bone was performed to identify the common decomposition temperature range. The effect of calcination temperature on basicity of the catalyst and yield of biodiesel was studied for each teeth and bone mixing ratio. Maximum basicity of 6.12mmol HCl/g and biodiesel of 89.5wt% was obtained by mixing ratio of 25wt% teeth and 75wt% bone at calcination temperature of 1150 °C for 3h. The purity of the produced biodiesel in terms of mono fatty acid methyl esters (FAME) formation was found to be 92.6%. X-ray Diffraction (XRD), X-Ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FT-IR) and TGA was used to characterize the raw and produced catalyst. The maximum yield of FAME (89.5wt% with 92.6% purity) was obtained by 5wt% catalyst loading and 9:1 M ratio of methanol to castor seed oil at 60 °C reaction temperature for 3h. Compositional analysis of the produced CO FAME was performed by FT-IR, gas chromatography-mass spectroscopy (GC-MS) and nuclear magnetic resonance (NMR). The performance of the produced catalyst was also checked using its reusability for transesterification CO. Further, the physico-chemical properties including rheological properties of the produced CO FAME were characterized by ASTM methods to check its suitability as a liquid biofuel.
Collapse
Affiliation(s)
- Tamrat Getachew Mengistu
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Ali Shemsedin Reshad
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Center of Excellence for Sustainable Energy Research, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Baskar G, Anita NT, Jeehoon H, Naveenkumar R. Ionic Liquid Co-Catalyst Assisted Biodiesel Production From Waste Cooking Oil Using Heterogeneous Nanocatalyst: Optimization and Characterization. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.823759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present work, the biodiesel was produced from waste cooking oil (WCO) using heterogeneous zinc doped iron nanocatalyst and tetrabutylammonium iodide (TBAI) as co-catalyst. The heterogeneous zinc doped iron nanocatalyst was synthesized and characterized. The functional group in the heterogeneous nanocatalyst was confirmed using FTIR analysis, the crystalline nature was studied by XRD analysis, and the size and structure of the nanocatalyst were analyzed by SEM. The optimization of transesterification parameters like oil to methanol molar ratio, zinc doped iron concentration, TBAI concentration, temperature, and time were carried out for the maximum conversion of biodiesel from WCO. At 50 min the maximum biodiesel conversion of 90% was achieved at 55°C with 12% catalyst, 30% co-catalyst, and 1:11 WCO to methanol ratio. The presence of functional groups and the methyl ester composition of the biodiesel from WCO were confirmed by FTIR and GC-MS analysis. The use of zinc doped iron nanocatalyst with TBAI showed good catalytic activity to produce biodiesel from WCO.
Collapse
|
9
|
GEBREHİWOT H, ZELELEW D. Ricinus Communis Seed oils as a Source of Biodiesel; A Renewable Form of Future Energy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1019969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Silva BH, Sena Gusmão A, Pedroza da Silva S, V. Faria RP, E. Rodrigues A, P. Schuler AR, Moraes de Abreu CA. Kinetics of the production of alkyl esters by transesterification of soybean oil. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamim Henrique Silva
- Laboratory of Catalytic Process, Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| | - Amanda Sena Gusmão
- Department of Food Engineering, Federal University of Agreste of Pernambuco Garanhuns Brazil
| | | | - Rui P. V. Faria
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE‐LCM), Department of Chemical Engineering Faculty of Engineering of University of Porto Porto Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE‐LCM), Department of Chemical Engineering Faculty of Engineering of University of Porto Porto Portugal
| | - Alexandre Ricardo P. Schuler
- Laboratory of Catalytic Process, Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| | - Cesar A. Moraes de Abreu
- Laboratory of Catalytic Process, Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| |
Collapse
|
11
|
Omrani I. High performance biobased pour-in-place rigid polyurethane foams from facile prepared castor oil-based polyol: Good compatibility with pentane series blowing agent. J CELL PLAST 2021. [DOI: 10.1177/0021955x211062632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, biobased and environmentally friendly rigid polyurethane foams (RPUF) from high hydroxyl value castor oil-based polyols have been prepared without the addition of petroleum-based polyols in the formulation. The new Biopolyol with high hydroxyl value was designed on the basis of the analysis of functionality, structure and hydroxyl value relation and synthesized directly from castor oil in a facile one-pot three-step system. A series of Biopolyols with hydroxyl values in the range of 550–650 mg KOH/g were obtained through transesterification, epoxidation, and hydrolysis. The Biopolyol chemical structure was characterized using FT-IR,1H NMR spectroscopies. The formulated blend polyol with amine catalysts and cyclopentane as a blowing agent have good cyclopentane solubility and phase separation between cyclopentane and polyol was not observed after 30 days. The foaming characteristics were evaluated and improved results were obtained. The thermal conductivity, thermal stability, compressive strength, morphology, dimensional stability, density, and foam flow of the RPUFs were characterized. The results are compared with RPUF prepared using standard commercial polyether polyols for pour-in-place RPUFs. The prepared biobased RPUFs from Biopolyol was able to reach the required satisfactory properties for the appliance industry.
Collapse
Affiliation(s)
- Ismail Omrani
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
12
|
Vignesh P, Pradeep Kumar A, Shankar Ganesh N, Jayaseelan V, Sudhakar K. A review of conventional and renewable biodiesel production. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Elsharkawy EA, Abou Al-sood MM, El-Fakharany MK, Ahmed M. Assessing and Comparing the Characteristics of CI Engine Powered by Biodiesel–Diesel and Biodiesel–Kerosene Blends. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05703-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Influence of Light Intensity and Photoperiod on the Photoautotrophic Growth and Lipid Content of the Microalgae Verrucodesmus verrucosus in a Photobioreactor. SUSTAINABILITY 2021. [DOI: 10.3390/su13126606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgal biomass has the capacity to accumulate relatively large quantities of triacylglycerides (TAG) for the conversion of methyl esters of fatty acids (FAME) which has made microalgae a desirable alternative for the production of biofuels. In the present work Verrucodesmus verrucosus was evaluated under autotrophic growth conditions as a suitable source of oil for biodiesel production. For this purpose BG11 media were evaluated in three different light:dark photoperiods (L:D; 16:08; 12:12; 24:0) and light intensities (1000, 2000 and 3000 Lux) in a photobioreactor with a capacity of three liters; the evaluation of the microalgal biomass was carried out through the cell count with the use of the Neubauer chamber followed by the evaluation of the kinetic growth parameters. So, the lipid accumulation was determined through the lipid extraction with a Soxhlet system. Finally, the fatty acid profile of the total pooled lipids was determined using gas chromatography-mass spectroscopy (GC-MS). The results demonstrate that the best conditions are a photoperiod of 12 light hours and 12 dark hours with BG11 medium in a 3 L tubular photobioreactor with 0.3% CO2, 25 °C and 2000 Lux, allowing a lipid accumulation of 50.42%. Palmitic acid is identified as the most abundant fatty acid at 44.90%.
Collapse
|
15
|
Abukhadra MR, Basyouny MG, El-Sherbeeny AM, El-Meligy MA, Luqman M. Sonocogreen Decoration of Clinoptilolite by CaO Nanorods as Ecofriendly Catalysts in the Transesterification of Castor Oil into Biodiesel; Response Surface Studies. ACS OMEGA 2021; 6:1556-1567. [PMID: 33490815 PMCID: PMC7818616 DOI: 10.1021/acsomega.0c05371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
A CaO/clinoptilolite green nanocomposite (CaO/Clino) was synthesized by a green modification technique using calcium nitrate and green tea extract. The CaO/Clino nanocomposite promises a total basicity of 4.82 mmol OH/g, surface area of 252.4 m2/g, and ion exchange capacity of 134.3 mequiv/100 g, which qualifies the product as an effective catalyst in the transesterification of castor oil. The transesterification performance of the CaO/Clino catalyst was addressed statistically based on the response surface methodology and central composite rotatable design, considering the essential experimental parameters. Based on the interaction effect between the studied variables, the CaO/Clino catalyst can achieve an experimental biodiesel yield of 93.8% after 2.5 h at 120 °C with 3.5 wt % catalyst loading and 15:1 ethanol/castor oil molar ratio. The optimization function of the design suggested enhancement in the performance of the CaO/Clino catalyst to achieve a yield of 95.4% if the test time interval increased to 2.65 h and the ethanol content increased to 16:1 as a molar ratio to castor oil. The produced biodiesel over CaO/ClinO has acceptable technical qualifications according to the international requirements (EN 14214 and ASTM D-6751). The synthetic green CaO/Clino nanocomposite has better recyclability as a heterogeneous catalyst and higher activity than some investigated catalysts in literature.
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
| | - Mohamed Gameel Basyouny
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Physics
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Monis Luqman
- Mechanical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
16
|
Naveenkumar R, Baskar G. Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. BIORESOURCE TECHNOLOGY 2021; 320:124347. [PMID: 33160213 DOI: 10.1016/j.biortech.2020.124347] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
In the present work, zinc doped calcium oxide was used as a nanocatalyst for biodiesel production from castor oil. The optimal conditions of biodiesel conversion and green chemistry balance were obtained with response surface methodology. Five green chemistry parameters like carbon efficiency, atom economy, reaction mass efficiency, stoichiometric factor and environmental factor were optimized. The sustainable biodiesel yield 84.9% and green chemistry balance 0.902 was achieved at methanol to oil molar ratio 10.5:1, temperature 57 °C, time 70 min, and catalyst concentration 2.15%. The synthesized biodiesel was characterized by GCMS and FTIR, and physic-chemical properties were determined. Based on experimental study annually 20.3 million kg capacity plant was simulated using SuperPro designer. The sensitivity analysis of oil purchase cost and biodiesel selling price on ROI, payback period, IRR and NPV were investigated. The optimization and technoeconomic analysis provided a sustainable platform for commercial based biodiesel production.
Collapse
Affiliation(s)
- R Naveenkumar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India.
| |
Collapse
|
17
|
Chakraborty I, Chatterjee K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends. Biomacromolecules 2020; 21:4639-4662. [PMID: 33222440 DOI: 10.1021/acs.biomac.0c01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent years have seen rapid growth in utilizing vegetable oils to derive a wide variety of polymers to replace petroleum-based polymers for minimizing environmental impact. Nonedible castor oil (CO) can be extracted from castor plants that grow easily, even in an arid land. CO is a promising source for developing several polymers such as polyurethanes, polyesters, polyamides, and epoxy-polymers. Several synthesis routes have been developed, and distinct properties of polymers have been studied for industrial applications. Furthermore, fillers and fibers, including nanomaterials, have been incorporated in these polymers for enhancing their physical, thermal, and mechanical properties. This review highlights the development of CO-based polymers and their composites with attractive properties for industrial and biomedical applications. Recent advancements in CO-based polymers and their composites are presented along with a discussion on future opportunities for further developments in diverse applications.
Collapse
Affiliation(s)
- Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
18
|
Abukhadra MR, Mohamed AS, El-Sherbeeny AM, Soliman ATA, Abd Elgawad AEE. Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization. CHEMICAL ENGINEERING AND PROCESSING - PROCESS INTENSIFICATION 2020; 154:108024. [DOI: 10.1016/j.cep.2020.108024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Abstract
An attractive alternative to the use of fossil fuels is biodiesel, which can be obtained from a variety of feedstock through different transesterification systems such as ultrasound, microwave, biological, chemical, among others. The efficient and cost-effective biodiesel production depends on several parameters such as free fatty acid content in the feedstock, transesterification reaction efficiency, alcohol:oil ratio, catalysts type, and several parameters during the production process. However, biodiesel production from vegetable oils is under development, causing the final price of biodiesel to be higher than diesel derived from petroleum. An alternative to decrease the production costs will be the use of economical feedstocks and simple production processes. Castor oil is an excellent raw material in terms of price and quality, but especially this non-edible vegetable oil does not have any issues or compromise food security. Recently, the use of castor oil has attracted attention for producing and optimizing biodiesel production, due to high content of ricinoleic fatty acid and the possibility to esterify with only methanol, which assures low production costs. Additionally, biodiesel from castor oil has different advantages over conventional diesel. Some of them are biodegradable, non-toxic, renewable, they can be used alone, low greenhouse gas emission, among others. This review discusses and analyzes different transesterification processes, technologies, as well as different technical aspects during biodiesel production using castor oil as a feedstock.
Collapse
|
20
|
Navas MB, Ruggera JF, Lick ID, Casella ML. A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0291-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThis paper describes the preparation and characterization of MgO and ZnO-based catalysts, pure and mixed in different proportions, supported on γ-Al2O3. Their catalytic performance was studied in the transesterification of soybean oil and castor oil with methanol and butanol, attempting to produce biodiesel. XRD (X-ray diffraction), SEM–EDS (scanning electron microscopy–energy dispersive X-ray spectroscopy), CO2-adsorption and N2-adsorption allowed characterizing the prepared catalysts. The characterization results were in all cases consistent with mesoporous solids with high specific surface area. All the catalysts exhibited good results, especially in the transesterification of castor oil using butanol. For this reaction, the reuse was tested, maintaining high FABE (fatty acid butyl esters) yields after four cycles. This good performance can be attributed to the basic properties of the Mg species, and simultaneously, to the amphoteric properties of ZnO, which allow both triglycerides and free fatty acids to be converted into esters. Using these catalysts, it is possible to obtain second-generation biodiesel, employing castor oil, a raw material that does not compete with the food industry. In addition, butanol can be produced from renewable biomass.
Collapse
|
21
|
Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization. ENERGIES 2019. [DOI: 10.3390/en12203811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimizing the process parameters of biodiesel production is the key to maximizing biodiesel yields. In this study, artificial neural network models integrated with ant colony optimization were developed to optimize the parameters of the two-step Cerbera manghas biodiesel production process: (1) esterification and (2) transesterification. The parameters of esterification and transesterification processes were optimized to minimize the acid value and maximize the C. manghas biodiesel yield, respectively. There was excellent agreement between the average experimental values and those predicted by the artificial neural network models, indicating their reliability. These models will be useful to predict the optimum process parameters, reducing the trial and error of conventional experimentation. The kinetic study was conducted to understand the mechanism of the transesterification process and, lastly, the model could measure the physicochemical properties of the C. manghas biodiesel.
Collapse
|