1
|
Coelho NDS, Menezes HC, Cardeal ZDL. Development of new PDMS in tube extraction microdevice for enhanced monitoring of polycyclic aromatic hydrocarbons and their derivatives in water. Talanta 2025; 281:126882. [PMID: 39298806 DOI: 10.1016/j.talanta.2024.126882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.
Collapse
Affiliation(s)
- Nathan de Souza Coelho
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Helvécio Costa Menezes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Zenilda de Lourdes Cardeal
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Li Y, Zhao H, Han G, Li Z, Mugo SM, Wang H, Zhang Q. Portable Saliva Sensor Based on Dual Recognition Elements for Detection of Caries Pathogenic Bacteria. Anal Chem 2024; 96:9780-9789. [PMID: 38848497 DOI: 10.1021/acs.analchem.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Hao Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Samuel M Mugo
- Physical Science Department, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Zhou H, Li J, Li H, Liu H, Wang X, Du X. Controlled construction of 2D hierarchical core-shell ZnO/MnO 2 nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2024; 1298:342402. [PMID: 38462331 DOI: 10.1016/j.aca.2024.342402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are an important class of potentially toxic persistent organic pollutants in environmental water. Their concentrations are usually too low to allow for direct determination with analytical instruments, and the preconcentration is required prior to instrumental analysis. Solid phase microextraction (SPME) is considered as a high-performance green sample preparation technique for volatile and non-volatile organic compounds due to its high enrichment factor. In fact, the nature of SPME coatings governs the adsorption performance. Therefore, more efforts have devoted to the controlled construction of novel long-life SPME fibers with enhanced adsorption performance and improved adsorption selectivity. RESULTS 2D hierarchical core-shell ZnO/MnO2 nanosheets (NSs) were constructed on a Nitinol (NiTi) fiber substrate by layer-by-layer assembly for enhanced and selective SPME of PAHs. Firstly, hexagonal ZnO NSs were electrodeposited on the NiTi substrate. Subsequently smaller secondary MnO2 NSs were uniformly grown on the surface of ZnO NSs by a facile hydrothermal oxidation process. ZnO NSs were well protected by the chemically stable MnO2 shell, making the coating highly durable and efficient for SPME application. Meanwhile, the ZnO/MnO2 NSs coating demonstrated superior adsorption performance for PAHs. After the optimization of SPME conditions, the proposed SPME-HPLC-UV method exhibited good analytical performance for preconcentrating and determining trace PAHs with wide linear ranges (0.03-200 μg L-1) and low LODs (0.005-0.112 μg L-1) as well as good repeatability (1.4%-6.9%) and fiber-to-fiber reproducibility (5.3%-7.1%). Moreover, the proposed method showed good precision and recovery in the preconcentration and determination of target PAHs in real water samples. SIGNIFICANCE As compared with representative commercially available fibers, the NiTi@ZnO/MnO2 NSs fiber showed enhanced adsorption efficiency and improved adsorption selectivity for PAHs. The constructed fiber can be used as an alternative to commercial fibers for the adsorption and preconcentration of target PAHs in the environmental water samples. Moreover, the preparation strategy is expected to provide new insights into the precisely controlled construction of the efficient and stable core-shell bimetallic oxide nanostructures on the superielastic NiTi-based fibers.
Collapse
Affiliation(s)
- Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huirong Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Koonani S, Ghiasvand A. A highly porous fiber coating based on a Zn-MOF/COF hybrid material for solid-phase microextraction of PAHs in soil. Talanta 2024; 267:125236. [PMID: 37757692 DOI: 10.1016/j.talanta.2023.125236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This study involved the development of a novel adsorbent by combining a Zn-based MOF with a melamine-based COF, resulting in the formation of a hybrid material known as Zn-MOF/COF. The adsorbent was characterized using FT-IR, SEM, XRD, EDX, and BET analysis techniques. The resulting Zn-MOF/COF sorbent was employed to prepare solid-phase microextraction (SPME) fibers for the extraction and enrichment of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil samples, after coupling with GC-FID. A Box-Behnken design (BBD) was used to optimize key variables of SPME conditions. Under optimal conditions of 85 °C for 30 min extraction with 23 μL g-1 sample's moisture level, linear responses of six PAHs were ranging from 1 to 20000 ng g⁻1 with determination coefficients greater than 0.99. Limits of detection (LODs) were over the ranges of 0.1-1 ng g-1. The RSDs for intra-fiber and inter-fiber analyses were obtained 2.2-6.6% and 5.2-11.6%, respectively. Relative recoveries values for real soil samples were found to be 91.1-110.2%. The results showed lower cost and higher extraction efficiency for the Zn-MOF/COF fiber, compared with commercial and homemade adsorbents.
Collapse
Affiliation(s)
- Samira Koonani
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| |
Collapse
|
5
|
Skok A, Bazel Y. Headspace Microextraction. A Comprehensive Review on Method Application to the Analysis of Real Samples (from 2018 till Present). Crit Rev Anal Chem 2023; 55:375-405. [PMID: 38079469 DOI: 10.1080/10408347.2023.2291695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This work describes current trends in the development of headspace microextraction methods. The main trends in the selection of detection techniques used in combination with microextraction and preferences in the selection of headspace liquid-phase microextraction (HS-LPME) or headspace solid-phase microextraction (HS-SPME) methods, depending on the analytes and their quantity, are also briefly presented. In the main part of the work, on the basis of current journal literature, headspace microextraction analytical methods used for the determination of various inorganic and organic analytes are classified and compared over the last five years. The work also reflects the current modifications of techniques and approaches proposed for these microextraction methods.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
6
|
Alves ICB, Dos Santos JRN, Marques EP, Sousa JKC, Beluomini MA, Stradiotto NR, Marques ALB. Electrochemical sensor based on carbon nanotube decorated with manganese oxide nanoparticles for naphthalene determination. ANAL SCI 2023; 39:1681-1692. [PMID: 37269536 DOI: 10.1007/s44211-023-00374-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
In this work, an electrochemical sensor was developed for the determination of naphthalene (NaP) in well water samples, based on a glass carbon electrode (GCE) modified as a nanocomposite of manganese oxides (MnOx) and COOH-functionalized multi-walled carbon nanotubes (MWCNT). The synthesis of MnOx nanoparticles was performed by the sol-gel method. The nanocomposite was obtained by mixing MnOx and MWCNT with the aid of ultrasound, followed by stirring for 24 h. Surface modification facilitated the electron transfer process through the MnOx/MWCNT/GCE composite, which was used as an electrochemical sensor. The sensor and its material were characterized by cyclic voltammetry (CV), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Important parameters influencing electrochemical sensor performance (pH, composite ratios) were investigated and optimized. The MnOx/MWCNT/GCE sensor showed a wide linear range of 2.0-16.0 μM, a detection limit of 0.5 μM and a quantification limit of 1.8 μM, in addition to satisfactory repeatability (RSD of 7.8%) and stability (900 s) in the determination of NaP. The determination of NaP in a sample of water from a gas station well using the proposed sensor showed results with recovery between 98.1 and 103.3%. The results obtained suggest that the MnOx/MWCNT/GCE electrode has great potential for application in the detection of NaP in well water.
Collapse
Affiliation(s)
| | | | - Edmar Pereira Marques
- NEEP (LPQA & LAPQAP), PPG-BIONORTE, Federal University of Maranhão (UFMA), São Luis, MA, Brazil
| | | | | | | | | |
Collapse
|
7
|
Wu X, Yang H, Lyu H, Chen H, Dang X, Liu X. A Zn-based metal coordination cluster Zn 5 used for solid phase microextraction of ten phenolic compounds from water and soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131382. [PMID: 37054643 DOI: 10.1016/j.jhazmat.2023.131382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Exploring coating materials with superior extraction efficiency has always been the pursuit in the field of solid phase microextraction (SPME). Metal coordination clusters with high thermal and chemical stability, abundant functional groups as active adsorption site are the promising coatings. In the study, a Zn5(H2Ln)6(NO3)4 (Zn5, H3Ln =(1,2-bis-(benzo[d]imidazol-2-yl)-ethenol) cluster coating was prepared and applied for SPME of ten phenols. Zn5 based SPME fiber exhibited high extraction efficiencies for phenols in headspace (HS) mode, which circumvented the pollution of SPME fiber. The adsorption isotherm and theoretical calculation indicated the adsorption mechanism of phenols on Zn5 was hydrophobic interaction, H-bond interaction and π-π stacking. Under the optimized extraction conditions, an HS-SPME-GC-MS/MS method was developed for the determination of ten phenols in water and soil samples. For ten phenolic compounds in water and soil samples, the linear ranges were 0.5-5000 ng/L and 0.5-250 ng/g, respectively. The limits of detection (LODs, S/N = 3) were 0.010-1.20 ng/L and 0.0048-0.16 ng/g, respectively. The precisions of single fiber and fiber-to-fiber were lower than 9.0% and 14.1%, respectively. The proposed method was applied for the detection of ten phenolic compounds in various water and soil samples, showing satisfactory recovery (72.1-118.8%). This study delivered a novel and efficient SPME coating material for the extraction of phenols.
Collapse
Affiliation(s)
- Xinze Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Hao Yang
- Public Inspection and Testing Center, Xinzhou District, Wuhan, China
| | - Hui Lyu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Huaixia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China.
| | - Xueping Dang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Xiaolan Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Lang Y, Wang Y, Zhou R, Wu P. Self-Immolative Polythiophene for Sunlight Inactivation of Harmful Cyanobacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7800-7808. [PMID: 37163388 DOI: 10.1021/acs.est.2c08868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Harmful cyanobacterial blooms and the released microcystins (MCs) caused serious environmental and public health concerns to drinking water safety. Photo-oxidation is an appealing treatment option and alternative to conventional flocculation and microbial antagonists, but the performances of current photosensitizers (either inorganic or organic) are unsatisfactory. Here, a polythiophene photosensitizer (PT10) with both high yield of reactive oxygen species (ROS) production (mainly 1O2, ΦΔ = 0.51, > 8 h continuous generation) and moderate photostability was used as a powerful algaecide to inhibit Microcystis aeruginosa. Due to the positive charge of PT10, the algal cells were quickly flocculated, followed by efficient inactivation in 4 h under white light irradiation (96.7%, 10 mW/cm2). Meanwhile, PT10 was self-immolated in about 6 h. Upon biosafety evaluation with adult zebrafish, the low toxicity of PT10 and the degradation products of PT10 and algae (early logarithmic growth stage) were confirmed. In addition, microcystin-LR (MC-LR), a toxic microcystin that will be released during the destruction of the algal cells, was also degraded. Therefore, PT10-based photoinactivation of M. aeruginosa featured both high performance and low secondary pollution. In real-world aquatic systems, PT10 was confirmed to be capable of sunlight-assisted inactivation of M. aeruginosa and prevent algal blooms, thus making it appealing for environmental remediation.
Collapse
Affiliation(s)
- Yunhe Lang
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ying Wang
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Li L, Zhao D, Du KZ, Li J, Fang S, He J, Tian F, Chang Y. A vortex-enhanced magnetic solid phase extraction for the selective enrichment of four quaternary ammonium alkaloids from Zanthoxyli Radix. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123617. [PMID: 36716512 DOI: 10.1016/j.jchromb.2023.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Zanthoxyli Radix, the dried root of Zanthozylum nitidum (Roxb.) DC, one of traditional Chinese medicines (TCMs), exhibits various pharmacological activities such as anti-bacterial, anti-inflammatory, anti-tumor, analgesic activity. A sustainable vortex-enhanced magnetic solid phase extraction (VE-MSPE) method combined with ultra-high performance liquid chromatography (UHPLC) was established to enrich and analyze the bioactive quaternary ammonium alkaloids (QAAs) of Zanthoxyli Radix. Fe3O4@C@CMCS magnetic nanoparticles (MNPs) was first synthesized for selectively adsorbing target QAAs (magnolinine, sanguinarine, nitidine chloride and chelerythrine), which possess excellent adsorption performance after being reused 10 times. The results revealed that the great adsorption rate of Fe3O4@C@CMCS MNPs for the four QAAs could reach 55.1-78.7 %. In addition, a reliable linear relationship (r ≥ 0.9995) and good recovery (97.5-104 %) was obtained. Consequently, the VE-MSPE method applying Fe3O4@C@CMCS MNPs as a sustainable adsorbent exhibited great potential in the selective enrichment of QAAs in TCM.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danhui Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun-Ze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Comnea-Stancu IR, van Staden JKF, Stefan-van Staden RI, State RN. Simultaneous determination of anthracene and phenanthrene using a poly-alizarin red S/carbon paste electrode. CHEMOSPHERE 2023; 310:136909. [PMID: 36265711 DOI: 10.1016/j.chemosphere.2022.136909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A polymer-based carbon paste electrode was constructed by electropolymerized Alizarin Red S (ARS) film on the carbon paste electrode (CPE) surface. The electrochemical properties of poly-ARS/CPE were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was utilized for electrode characterization. The electropolymerization cycles for the construction of the sensor and the supporting electrolyte were optimized. With 0.1 M LiClO4 as a supporting electrolyte, poly-ARS/CPE was able to generate oxidation peaks for anthracene (ANT) and phenanthrene (PHE), that were clearly defined and easily distinguished from one to another when operating in square wave voltammetry (SWV). In the simultaneous detection the linear ranges of ANT and PHE were within 80-1000 μM, with detection limits of 24 μM. The variation of peak parameters with scan rate was investigated to determine the nature of electrooxidation and the number of electrons involved in the electrode process. Poly-ARS/CPE was successfully utilized for the detection of ANT and PHE in different water samples and the obtained results suggested the selectivity, stability and reproducibility of the modified electrode.
Collapse
Affiliation(s)
- Ionela Raluca Comnea-Stancu
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania.
| | - Jacobus Koos Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Razvan Niculae State
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei Street, 060021, Bucharest, Romania
| |
Collapse
|
11
|
Carbonized MXene-polyvinylpyrrolidone as an adsorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons from tea beverages prior to GC analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
|
13
|
Myint Zaw M, Poorahong S, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A simple gelatin aerogel tablet sorbent for the effective vortex assisted solid phase extraction of polycyclic aromatic hydrocarbons from tea samples. Food Chem 2022; 383:132388. [DOI: 10.1016/j.foodchem.2022.132388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 01/22/2023]
|
14
|
Li D, Li M, Zhu S, Gao Y, Mu M, Zhang N, Wang Y, Lu M. Porous Hexagonal Boron Nitride as Solid-Phase Microextraction Coating Material for Extraction and Preconcentration of Polycyclic Aromatic Hydrocarbons from Soil Sample. NANOMATERIALS 2022; 12:nano12111860. [PMID: 35683716 PMCID: PMC9182517 DOI: 10.3390/nano12111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment plays important role in the analysis and detection of trace pollutants in complex matrices, such as environmental and biological samples. The adsorption materials of sample pretreatment receive considerable attention, which has a significant effect on the sensitivity and selectivity of the analytical method. In this work, the porous hexagonal boron nitride (h-BN) was utilized as a coating material of solid-phase microextraction (SPME) to extract and preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to separation and detection with GC-FID. Attributed to the multiple interactions including hydrophobicity, hydrogen bonding and strong π–π interaction, the h-BN coating showed excellent extraction performance for PAHs. Under the optimal conditions, the method showed the linear relationship in the range of 0.1–50 ng mL−1 for acenaphthene, 0.05–50 ng mL−1 for pyrene, and 0.02–50 ng mL−1 for fluorene, phenanthrene and anthracene with a correlation coefficient (R2) not lower than 0.9910. The enrichment factors were achieved between 1526 and 4398 for PAHs with h-BN as SPME fiber coating. The detection limits were obtained in the range of 0.004–0.033 ng mL−1, which corresponds to 0.08–0.66 ng g−1 for soil. The method was successfully applied to analysis of real soil samples. The recoveries were determined between 78.0 and 120.0% for two soil samples. The results showed that h-BN material provided a promising alternative in sample pretreatment and analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Zhang
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| | | | - Minghua Lu
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| |
Collapse
|
15
|
Alhendal A, Almoaeen RA, Rashad M, Husain A, Mouffouk F, Ahmad Z. Aramid-wrapped CNT hybrid sol–gel sorbent for polycyclic aromatic hydrocarbons. RSC Adv 2022; 12:18077-18083. [PMID: 35800310 PMCID: PMC9207600 DOI: 10.1039/d2ra02659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
This work describes the preparation of an analytical microextraction sorbent using a simple and versatile sol–gel hybrid composite, i.e., aramid oligomers wrapping multi-walled carbon nanotubes (CNTs) covalently bonded to a porous silica network.
Collapse
Affiliation(s)
- Abdullah Alhendal
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Randa Abd Almoaeen
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Mohamed Rashad
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Ali Husain
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Zahoor Ahmad
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
16
|
Zhang J, Ma X, Dang X, Chen H, Hu Y. Adsorption mechanism of polycyclic aromatic hydrocarbons on polythiophene-graphene covalent complex and its analytical application in food contact materials. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
18
|
Monisha S, Mary Saral A, Senthil Kumar A. Electrochemical investigation of a tulsi-holy basil-crude plant extract on graphitized mesoporous carbon nanomaterial surface: Selective electrocatalytic activity of surface-confined rosmarinic acid for phenyl hydrazine-pollutant oxidation reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Delińska K, Rakowska PW, Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Li H, Hou B, Wang L, Zang X, Wang C, Wang Z. Boron nitride modified reduced graphene oxide as solid-phase microextraction coating material for the extraction of seven polycyclic aromatic hydrocarbons from water and soil samples. J Sep Sci 2021; 44:1521-1528. [PMID: 33511696 DOI: 10.1002/jssc.202001088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
A novel hexagonal boron nitride modified reduced graphene oxide material was synthesized and used as the adsorbent for the solid-phase microextraction of seven polycyclic aromatic hydrocarbons from water and soil samples prior to their detection by gas chromatography-flame ionization detector. Under optimal conditions, the linear response range of the analytes for water sample is 0.25-50 ng/mL with the correlation coefficients (r) ranging between 0.9953 and 0.9996. The linear range for soil sample is 1.0-400 ng/g with r ranging from 0.9959 to 0.9999. On the basis of the signal-to-noise ratio of 3, the limits of detections for the analytes ranged from 0.05 to 0.15 ng/mL for water samples, and from 0.3 to 0.5 ng/g for soil samples. The relative recoveries of the seven polycyclic aromatic hydrocarbons for water and soil samples were in the range of 79.55-120.0 and 78.76-120.8%, respectively. The relative standard deviations for the determination of the analytes in water and soil samples were lower than 11 and 10%, respectively. The method is simple and suitable for the determination of polycyclic aromatic hydrocarbon residues in water and soil samples.
Collapse
Affiliation(s)
- Hongda Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Baoxiu Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ling Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|
21
|
Zhang J, Zhang B, Dang X, Song Z, Hu Y, Chen H. A polythiophene/UiO-66 composite coating for extraction of volatile organic compounds migrated from ion-exchange resins prior to their determination by gas chromatography. J Chromatogr A 2020; 1633:461627. [PMID: 33128970 DOI: 10.1016/j.chroma.2020.461627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A Poly (3,4-ethylenedioxothiophene) (PEDOT)/UiO-66 composite was electrodeposited on an etched stainless-steel wire as head-space solid-phase microextraction (HS-SPME) coating. A robust, well controlled thickness, and uniform coating of metal organic framework composites can be realized by the electrodeposited strategy. The incorporated UiO-66 not only enhanced the uniformity and stability of the composite coating, but also effectively decreased the stacking phenomenon of PEDOT and improved its extraction efficiency, which was over 100 times higher than that of the PEDOT coating without UiO-66. The composite coating was used to enrich seven types of volatile organic compounds (VOCs) in ion-exchange resins, including methyl cyclohexane, benzene, toluene, ortho-xylene, styrene, para-xylene and divinyl-benzene. The results of adsorption isotherm analysis showed that π stacking effect played dominant role between the composite coating and VOCs in the extraction process. The composite coating was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared and thermogravimetric analysis, respectively. A determination method for seven kinds of VOCs was established by HS-SPME coupled with gas chromatography-flame ionization detection (GC-FID). Under the optimal experimental conditions, the detection linear range (LRs) was 0.09-100 ng mL-1, and the detection limit (LODs) was 0.03-0.06 ng mL-1 (S/N = 3). The method was applied for the migration detection of VOCs in four types of ion-exchange resin, which showed satisfactory recovery (84.5-117.2%).
Collapse
Affiliation(s)
- Jiayang Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Birong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xueping Dang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Zhiyong Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Huaixia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
22
|
Ji X, Feng J, Li C, Han S, Sun M, Feng J, Sun H, Fan J, Guo W. Corncob biochar as a coating for trace analysis of polycyclic aromatic hydrocarbons in water samples by online in-tube solid-phase microextraction coupled to high performance liquid chromatography. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Ji X, Feng J, Li C, Han S, Sun M, Feng J, Sun H, Fan J, Guo W. Application of biocharcoal aerogel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. J Sep Sci 2020; 43:4364-4373. [PMID: 32979006 DOI: 10.1002/jssc.202000910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
A facile method was introduced for preparing a biocharcoal aerogel, which was derived from pomelo peel as the only raw material. The inner spongy layer of pomelo peel was freeze-dried for maintaining three-dimensional structure and then carbonized under high temperature and oxygen-limited conditions. The morphological structure and graphitization degree of biocharcoal aerogel were characterized using a scanning electron microscope and Raman spectrum. After sifting and grinding, the biocharcoal aerogel as an adsorbent was coated onto the surface of stainless steel wires. Through placing the wires into a polyetheretherketone tube, the in-tube solid-phase microextraction device was obtained. Coupled with high-performance liquid chromatography, it exhibited good extraction performance for polycyclic aromatic hydrocarbons, then an online analytical method was established with low limits of detection (0.005-0.050 ng/mL), wide linear ranges (0.017-15 ng/mL) with superior correlation coefficients higher than 0.9990, high enrichment factors (1128-3425), and acceptable intra- and inter-day repeatabilities (relative standard deviations ≤ 6.7%, n = 3). The method was applied to detect polycyclic aromatic hydrocarbons in bottled water samples, environmental water samples, and soft drinks with satisfactory recoveries (83.3-120.9%). This research not only developed a new carbon aerogel but also evaluated its adsorption performance in sample preparation.
Collapse
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jing Fan
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| |
Collapse
|
24
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Alipanahpour Dil E, Asfaram A, Goudarzi A, Zabihi E, Javadian H. Biocompatible chitosan-zinc oxide nanocomposite based dispersive micro-solid phase extraction coupled with HPLC-UV for the determination of rosmarinic acid in the extracts of medical plants and water sample. Int J Biol Macromol 2020; 154:528-537. [PMID: 32194117 DOI: 10.1016/j.ijbiomac.2020.03.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
In the present research, a procedure was described for the recovery of rosmarinic acid (RA) from medical extract samples using chitosan‑zinc oxide nanoparticles as a biocompatible nanocomposite (CS-ZnO-NC). The dispersive micro-solid phase extraction (D-μ-SPE) of RA from the medical extract samples was investigated by using the prepared biocompatible composite as a solid phase. The HPLC-UV method was used for measuring the extracted RA. The important variables (pH, biocompatible composite mass, contact time, and volume of eluent) associated with the extraction process were analyzed by the application of central composite design (CCD). The achieved optimum values for the mentioned variables were 7.0, 10 mg, 4 min, and 180 μL, respectively. The extraction recovery (99.68%) obtained from the predicted model was in agreement with the experimental data (98.22 ± 1.33%). In addition, under the obtained optimum conditions and over the concentration in the range of 2-3500 ng mL-1, a linear calibration curve was obtained with R2 > 0.993. The limit of detection (LOD) and quantification (LOQ) values were computed, and the obtained ranges were respectively from 0.060 to 0.089 ng mL-1 and 0.201 to 0.297 ng mL-1. In addition, the enrichment factors were obtained in the range of 93.7-110.5 with preconcentration factor of 83.3. Therefore, the D-μ-SPE-HPLC-UV method could be used for analyzing RA in the samples of the extracts obtained from the medical plants and water with the recovery values of the analyte in the range of 96.6%-105.4% and the precision with relative standard deviation <5.7%.
Collapse
Affiliation(s)
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Alireza Goudarzi
- Department of Polymer Engineering, Golestan University, PO Box 491888369, Gorgan, Iran
| | - Erfan Zabihi
- Department of Polymer Engineering, Golestan University, PO Box 491888369, Gorgan, Iran
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Mehrani Z, Ebrahimzadeh H, Moradi E. Use of aloin-based and rosin-based electrospun nanofibers as natural nanosorbents for the extraction of polycyclic aromatic hydrocarbons and phenoxyacetic acid herbicides by microextraction in packed syringe method prior to GC-FID detection. Mikrochim Acta 2020; 187:401. [PMID: 32572604 DOI: 10.1007/s00604-020-04374-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The synthesis of three kinds of sorbents is described. The first kind was a hydrophobic nanofiber as a specific sorbent for non-polar compounds. The second one was a hydrophilic nanofiber as a specific sorbent for polar compounds and the third one was a generic sorbent synthesized from hydrophilic and hydrophobic compounds. The functional groups were natural compounds extracted from aloin plant and gum of pine tree. The aloin/polyacrylonitrile (PAN), rosin/PAN, and aloin/rosin/PAN electrospun nanofibers were synthesized through electrospinning strategy and then characterized using field emission scanning electron microscopy and Fourier transform infrared spectroscopy. Thereafter, the synthesized sorbents were used in microextraction using the packed syringe (MEPS) method. The determination was conducted using gas chromatography with flame ionization detection (GC-FID). Under the optimum condition, the method using aloin/rosin/PAN nanofibers as a sorbent showed a good linearity in the range 1.0-250 ng mL-1 for polycyclic aromatic hydrocarbons (PAHs) (as a model for non-polar compounds) and 1.0-200 ng mL-1 for phenoxyacetic acid herbicides (CAPs) (as a model for polar compounds) with correlation coefficient (R2) higher than 0.997. Limits of detections (LODs) for PAHs and CAPs were in the range 0.1-0.3 ng mL-1 and 0.3-0.5 ng mL-1, respectively. The intra-day (n = 3) and inter-day (between 3 days) relative standard deviations (RDSs%) were in the range 6.3-12.3% for a single syringe. Finally, the MEPS-GC-FID method was applied as a simple, facile, and time and cost-effective method to analyze environmental, farm, and industrial water samples. Graphical abstract Herein, aloin/rosin/polyacrylonitrile (PAN) electrospun nanofiber was successfully synthesized and applied as a sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) as non-polar compounds and phenoxyacetic acid herbicides (CPAs) as polar compounds from aqueous solutions before GC-FID analysis.
Collapse
Affiliation(s)
- Zahra Mehrani
- Department of Chemistry and Pollutants, Shahid Beheshti University, G.C., Evin, P.O. Box 1983969411, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Chemistry and Pollutants, Shahid Beheshti University, G.C., Evin, P.O. Box 1983969411, Tehran, Iran.
| | - Ebrahim Moradi
- Department of Chemistry and Pollutants, Shahid Beheshti University, G.C., Evin, P.O. Box 1983969411, Tehran, Iran
| |
Collapse
|
27
|
Chang Q, Wang M, Zhang G, Zang X, Li H, Zhang S, Wang C, Wang Z. Carbon nanospheres as solid‐phase microextraction coating for the extraction of polycyclic aromatic hydrocarbons from water and soil samples. J Sep Sci 2020; 43:2594-2601. [DOI: 10.1002/jssc.201901294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Qingyun Chang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Mengting Wang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Guijiang Zhang
- College of Science & TechnologyHebei Agricultural University Cangzhou P.R. China
| | - Xiaohuan Zang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Hongda Li
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Shuaihua Zhang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Chun Wang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Zhi Wang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| |
Collapse
|
28
|
Shi Z, Jiang J, Pang W, Ma H, Chu X, Zhou C, Zhang H. Dispersive micro-solid phase extraction using cotton based carbon fiber sorbent for the determination of three polycyclic aromatic hydrocarbons in tea infusion by gas chromatography-quadrupole mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Electrospun acrylonitrile butadiene styrene nanofiber film as an efficient nanosorbent for head space thin film microextraction of polycyclic aromatic hydrocarbons from water and urine samples. Talanta 2019; 205:120080. [DOI: 10.1016/j.talanta.2019.06.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
|
30
|
Zeng W, Liu L, Yi Y, Wu Y, Sun N, Lv B, Zhu G. A double-signal nanoprobe based on molybdenum disulfide quantum dots/manganese dioxide nanosheets for glutathione detection. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Mehrani Z, Ebrahimzadeh H, Asgharinezhad AA, Moradi E. Determination of copper in food and water sources using poly m-phenylenediamine/CNT electrospun nanofiber. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Hasanli F, Bahmaei M, Mohammadiazar S, Sharif AAM. Electroless deposition of silver nanofractals on copper wire by galvanic displacement as a simple technique for preparation of porous solid-phase microextraction fibers. J Sep Sci 2019; 42:3110-3118. [PMID: 31364241 DOI: 10.1002/jssc.201900351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/02/2019] [Accepted: 07/20/2019] [Indexed: 01/13/2023]
Abstract
A novel and porous solid-phase microextraction fiber was prepared by quick and simple galvanic displacement reaction and applied to the determination of some polycyclic aromatic hydrocarbons in sunflower oil. The parameters affecting the porosity and thickness of the fiber, and parameters affecting the extraction efficiency, including the extraction time, temperature, and ionic strength, were investigated and optimized. The morphology of prepared fiber was characterized by optical and scanning electron microscopy and thermal and chemical stabilities of the fiber were studied. Under the optimum conditions, the limits of detection ranged between 0.1 ng/mL for pyrene to 1.2 ng/mL for anthracene, and LOQ ranged between 0.3 ng/mL for pyrene to 3.6 ng/mL for anthracene. The relative standard deviations, including repeatability (within fibers) and reproducibility (between fibers), varied between 3.2-8.9 and 5.6-9.8%, respectively.
Collapse
Affiliation(s)
- Fateme Hasanli
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Manochehr Bahmaei
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sirwan Mohammadiazar
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | |
Collapse
|
33
|
Corn-like stationary phase for solid phase microextraction prepared by electro-assisted deposition of sol-gel/silica nanoparticles composite. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|