1
|
Yamada T, Tsukakoshi K, Furusho A, Sugiyama E, Mizuno H, Hayashi H, Yamano T, Kumobayashi H, Hasebe T, Ikebukuro K, Toyo'oka T, Todoroki K. Simple and fast one-step FRET assay of therapeutic mAb bevacizumab using anti-idiotype DNA aptamer for process analytical technology. Talanta 2024; 277:126349. [PMID: 38852342 DOI: 10.1016/j.talanta.2024.126349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
We developed an aptamer-based fluorescence resonance energy transfer (FRET) assay capable of recognizing therapeutic monoclonal antibody bevacizumab and rapidly quantifying its concentration with just one mixing step. In this assay, two fluorescent dyes (fluorescein and tetramethylrhodamine) labeled aptamers bind to two Fab regions on bevacizumab, and FRET fluorescence is observed when both dyes come into close proximity. We optimized this assay in three different formats, catering to a wide range of analytical needs. When applied to hybridoma culture samples in practical settings, this assay exhibited a signal response that was concentration-dependent, falling within the range of 50-2000 μg/mL. The coefficients of determination (r2) ranged from 0.998 to 0.999, and bias and precision results were within ±24.0 % and 20.3 %, respectively. Additionally, during thermal and UV stress testing, this assay demonstrated the ability to detect denatured samples in a manner comparable to conventional Size Exclusion Chromatography. Notably, it offers the added advantage of detecting decreases in binding activity without changes in molecular weight. In contrast to many existing process analytical technology tools, this assay not only identifies bevacizumab but also directly measures the quality attributes related to mAb efficacy, such as the binding activity. As a result, this assay holds great potential as a valuable platform for providing highly reliable quality attribute information in real-time. We consider this will make a significant contribution to the worldwide distribution of high-quality therapeutic mAbs in various aspects of antibody manufacturing, including production monitoring, quality control, commercial lot release, and stability testing.
Collapse
Affiliation(s)
- Tomohiro Yamada
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Aogu Furusho
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Eiji Sugiyama
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Hajime Mizuno
- Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Hideki Hayashi
- Laboratory of Community Pharmaceutical Practice and Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Takeshi Yamano
- Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Hideki Kumobayashi
- Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Takashi Hasebe
- Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
2
|
Zulfajri M, Gedda G, Ulla H, Habibati, Gollavelli G, Huang GG. A review on the chemical and biological sensing applications of silver/carbon dots nanocomposites with their interaction mechanisms. Adv Colloid Interface Sci 2024; 325:103115. [PMID: 38422725 DOI: 10.1016/j.cis.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The development of new nanocomposites has a significant impact on modern instrumentation and analytical methods for chemical analysis. Due to their unique properties, carbon dots (CDs) and silver nanoparticles (AgNPs), distinguished by their unique physical, electrochemical, and optical properties, have captivated significant attention. Thus, combining AgNPs and CDs may produce Ag/CDs nanocomposites with improved performances than the individual material. This comprehensive review offers an in-depth exploration of the synthesis, formation mechanism, properties, and the recent surge in chemical and biological sensing applications of Ag/CDs with their sensing mechanisms. Detailed insights into synthesis methods to produce Ag/CDs are unveiled, followed by information on their physicochemical and optical properties. The crux of this review lies in its spotlight on the diverse landscape of chemical and biological sensing applications of Ag/CDs, with a particular focus on fluorescence, electrochemical, colorimetric, surface-enhanced Raman spectroscopy, and surface plasmon resonance sensing techniques. The elucidation of sensing mechanisms of the nanocomposites with various target analytes adds depth to the discussion. Finally, this review culminates with a concise summary and a glimpse into future perspectives of Ag/CDs aiming to achieve highly efficient and enduring Ag/CDs for various applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh 23245, Indonesia
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.; Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| | - Hidayath Ulla
- Department of Physics, School of Engineering, Presidency University, Bangalore 560064, India; Innovation and Translational Research Hub (iTRH), Presidency University, Bangalore 560064, Karnataka, India
| | - Habibati
- Department of Chemistry Education, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Ganesh Gollavelli
- Department of Humanities and Basic Science, Aditya Engineering College, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, India
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Kurt Z, Çimen D, Denizli A, Bereli N. Development of Optical-Based Molecularly Imprinted Nanosensors for Adenosine Detection. ACS OMEGA 2023; 8:18839-18850. [PMID: 37273602 PMCID: PMC10233842 DOI: 10.1021/acsomega.3c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
Adenosine nucleoside is an important molecule in human physiology. The levels of adenosine nucleoside in urine and plasma are directly or indirectly related to diseases such as neurodegenerative diseases and cancer. In the present study, adenosine-imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacrylic acid) (poly(HEMA-MAA)) surface plasmon resonance (SPR) nanosensors were prepared for the determination of adenosine nucleoside. First, MAA/adenosine pre-polymerization complexes were prepared at different molar ratios using adenosine as a template molecule and methacrylic acid (MAA) as a monomer, and SPR nanosensor surfaces were optimized by determining the highest imprinting factor of the chip surfaces. The surfaces of adenosine-imprinted and non-imprinted SPR nanosensors were characterized by using atomic force microscopy, ellipsometry, and contact angle measurements. Kinetic analyses were made with different concentrations in the range of 0.5-400.0 nM for the detection range with a pH 7.4 phosphate buffer solution. The limit of detection in adenosine aqueous solutions, artificial plasma, and artificial urine was determined to be 0.018, 0.015, and 0.013 nM, respectively. In the selectivity analysis of the developed nanosensors, the selectivity of adenosine SPR nanosensors in solutions at different concentrations was determined by using guanosine and cytidine nucleosides. The relative selectivity coefficients of adenosine-imprinted SPR nanosensors for adenosine/cytidine and adenosine/guanosine are 3.836 and 3.427, respectively. Since adenosine-imprinted SPR nanosensors are intended to be used in medical analysis and research, adenosine analysis has also been studied in artificial urine and artificial plasma samples.
Collapse
Affiliation(s)
- Zehra
Tuğçe Kurt
- Bioengineering
Division, Hacettepe University, Ankara 06230, Turkey
| | - Duygu Çimen
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Nilay Bereli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Zhang JH, Liu M, Zhou F, Yan HL, Zhou YG. Homogeneous Electrochemical Immunoassay Using an Aggregation-Collision Strategy for Alpha-Fetoprotein Detection. Anal Chem 2023; 95:3045-3053. [PMID: 36692355 DOI: 10.1021/acs.analchem.2c05193] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity and high efficiency. Homogeneous electrochemical assays, however, are not commonly accessed due to the requirement of electrode immobilization of the recognition elements. Herein, we demonstrate a new homogeneous electrochemical immunoassay based on the aggregation-collision strategy for the quantification of tumor protein biomarker alpha-fetoprotein (AFP). The detection principle relies on the aggregation of AgNPs induced by the molecular biorecognition between AFP and AgNPs-anti-AFP probes, which leads to an increased AgNP size and decreased AgNP concentration, allowing an accurate self-validated dual-mode immunoassay by performing nanoimpact electrochemistry (NIE) of the oxidation of AgNPs. The intrinsic one-by-one analytical capability of NIE as well as the participation of all of the atoms of the AgNPs in signal transduction greatly elevates the detection sensitivity. Accordingly, the current sensor enables a limit of detection (LOD) of 5 pg/mL for AFP analysis with high specificity and efficiency. More importantly, reliable detection of AFP in diluted human sera of hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the NIE-based homogeneous immunoassay shows great potential in HCC liquid biopsy.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng Zhou
- Personalized Prescribing Inc., Suite 500, 150 Ferrand Dr, Toronto, Ontario M3C 3E5, Canada
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Ren X, Huang L, Wang C, Ge Y, Zhang K, Jiang D, Liu X, Zhang Q, Wang Y. Urinary analysis based on surface-enhanced Raman scattering for the noninvasive screening of lung cancer. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Non-instrumental and Ultrasensitive Detection of Acetamiprid Residue Based on Tyndall Effect of Silver Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Somaraj G, Mathew S, Abraham T, Ambady KG, Mohan C, Mathew B. Nitrogen and Sulfur Co‐Doped Carbon Quantum Dots for Sensing Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gayathri Somaraj
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Sneha Mathew
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Thomas Abraham
- Department of Chemistry Catholicate College Pathanamthitta Kerala India
| | - K. G. Ambady
- Department of Special Education National Institute for the Empowerment of Persons with Intellectual Disabilities Telangana India
| | - Chitra Mohan
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Beena Mathew
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
8
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
9
|
Silver nanosol RRS aptamer assay of trace glyphosate based on gold-doped polystyrene nanocatalytic amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Khojastehnezhad A, Taghavi F, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. Talanta 2021; 235:122753. [PMID: 34517621 DOI: 10.1016/j.talanta.2021.122753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
The design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions. They can also be conjugated to optical and electronic probes such as quantum dot (QD) nanomaterials and provide unique QD aptasensing platforms. Currently, these Apt-based biosensors with excellent recognition features have attracted extensive attention due to the high specificity, rapid response and facile construction. Therefore, in this review article, recent achievements and advances in aptasensing detection of ATP based on different detection methods and types of QDs are discussed. In this regard, the optical and electrochemical aptasensors have been categorized based on detection methods; fluorescence (FL), electrochemiluminescence (ECL) and photoelectrochemical (PEC) and they have been also divided to two main groups based on QDs; metal-based (M-based) and carbon-based (C-based) materials. Then, their advantages and limitations have been highlighted, compared and discussed in detail.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Pan T, Shan X, Jiang D, Qi L, Wang W, Chen Z. Fluorometric Aptasensor for Determination of Escherichia coli O157:H7 by FRET Effect between Aminated Carbon Quantum Dots and Graphene Oxide. ANAL SCI 2021; 37:833-838. [PMID: 33041308 DOI: 10.2116/analsci.20p306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A fluorometric aptasensor based on Escherichia coli O157:H7 (E. coli O157:H7) aptamer labeled aminated carbon quantum dots (NH2-CQDs) and graphene oxide (GO) for the determination of E. coli O157:H7 was developed. In this research, carboxyl group (-COOH) terminated E. coli O157:H7 aptamer was steadily labeled to NH2-CQDs by amidation reaction, and played the role of energy donor and was responsible for chemical recognition. Correspondingly, GO served as an energy acceptor. The introduction of NH2-CQDs not only made the aptamer bond stably through covalent bond, but also significantly enhanced the fluorescence intensity compared with general CQDs. The NH2-CQDs-aptamer is adsorbed on the surface of GO through π-π stacking and hydrophobic interaction. The fluorescence of NH2-CQDs-aptamer was quenched via fluorescence resonance energy transfer (FRET) between NH2-CQDs and GO. After adding E. coli O157:H7, the specific binding affinity between NH2-CQDs-aptamer and E. coli O157:H7 lead to desorption of NH2-CQDs-aptamer from GO, and recovery of the fluorescence intensity of NH2-CQDs-aptamer. Under the optimal conditions, the increased fluorescence intensity showed a good linear relationship to concentrations of E. coli O157:H7 in the range 102 - 107 cells/mL, with a detection limit of 89 cells/mL. Furthermore, the developed method was successfully applied to the determination of E. coli O157:H7 in commercial milk samples.
Collapse
Affiliation(s)
- Tao Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Lu Qi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
12
|
Ayodele OO, Adesina AO, Pourianejad S, Averitt J, Ignatova T. Recent Advances in Nanomaterial-Based Aptasensors in Medical Diagnosis and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:932. [PMID: 33917467 PMCID: PMC8067492 DOI: 10.3390/nano11040932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Rapid and accurate diagnosis of various biomarkers associated with medical conditions including early detection of viruses and bacteria with highly sensitive biosensors is currently a research priority. Aptamer is a chemically derived recognition molecule capable of detecting and binding small molecules with high specificity and its fast preparation time, cost effectiveness, ease of modification, stability at high temperature and pH are some of the advantages it has over traditional detection methods such as High Performance Liquid Chromatography (HPLC), Enzyme-linked Immunosorbent Assay (ELISA), Polymerase Chain Reaction (PCR). Higher sensitivity and selectivity can further be achieved via coupling of aptamers with nanomaterials and these conjugates called "aptasensors" are receiving greater attention in early diagnosis and therapy. This review will highlight the selection protocol of aptamers based on Traditional Systematic Evolution of Ligands by EXponential enrichment (SELEX) and the various types of modified SELEX. We further identify both the advantages and drawbacks associated with the modified version of SELEX. Furthermore, we describe the current advances in aptasensor development and the quality of signal types, which are dependent on surface area and other specific properties of the selected nanomaterials, are also reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Tetyana Ignatova
- Nanoscience Department, The Joint School of Nanoscience & Nanoengineering, University of North Carolina, Greensboro, NC 27401, USA; (O.O.A.); (A.O.A.); (S.P.); (J.A.)
| |
Collapse
|
13
|
Li S, Zhang Z. Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta 2021; 223:121691. [PMID: 33303144 DOI: 10.1016/j.talanta.2020.121691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022]
Abstract
Recently, more and more attention has been focused on the construction and analytical applications of optical nanoassembly through combining carbon dots (CDs) with various other functional nanomaterials. The rational design and manufacture of CDs-based optical nanoassembly will be critical to meeting the needs of analytical science. The last decade has witnessed the immense potential of CDs-based optical nanoassembly in multiple sensing applications owing to their controlled optical properties, adjustable surface chemistry and microscopic morphology. This feature article collects the recent advances in the research and development of CDs-based optical nanoassembly and their applications in analytical sensors, aiming to provide vital insights and suggestions to inspire their broad sensing applications.
Collapse
Affiliation(s)
- Siqiao Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Li X, Qiao J, Li Z, Qi L. Dual protein ligand-modified gold nanoclusters for selective detection of serum sodium copper chlorophyllin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118798. [PMID: 32854084 DOI: 10.1016/j.saa.2020.118798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Precisely tuning the emission wavelength of dual ligands co-functionalized gold nanoclusters (AuNCs) presents a bright prospect for highly selective drug detection. In this study, gold nanoclusters (AuNCs) with strong red fluorescence at 633 nm were synthesized using bovine serum albumin (BSA) and bromelain (Bro) as dual ligands for highly selective detection of sodium copper chlorophyllin (SCC). Interestingly, the auto-fluorescence interference of the dual ligands was effectively avoided due to the fluorescence emission red-shifts of the prepared BSA/Bro@AuNCs; this may be mainly due to the rigid structure of the proteins. The fluorescence of BSA/Bro@AuNCs was quenched after addition of SCC, which performed well and provided a good linear calibration curve in the 5.0-25.0 μM range (R2 = 0.999), and a detection limit as low as 0.5 μM. The proposed assay was further applied to the measurement of SCC in rat serums after an intravenous injection. The dual protein ligand-capped AuNCs showed great potential for drug analysis in actual biological samples.
Collapse
Affiliation(s)
- Xiangfei Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, China; College of Chemical and Phamaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing 100049, China
| | - Zhiwei Li
- College of Chemical and Phamaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing 100049, China.
| |
Collapse
|
15
|
Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Mikrochim Acta 2020; 187:482. [PMID: 32749541 DOI: 10.1007/s00604-020-04450-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/12/2020] [Indexed: 02/08/2023]
Abstract
A composite, reduced graphene oxide (rGO) doped with silver nanoparticles (Ag NPs), was prepared by using binary reductants of sodium citrate and hydrazine hydrate. Carbon quantum dots (CQDs) synthesized by papaya peel combined with silver ions to form a CQDs-loaded silver nanoparticle (AgCQDs) nanocomposite. Polymer nanospheres (PNS) were generated via the infinite coordination polymer of ferrocene dicarboxylic acid and employed as carriers to load AgCQDs. The prepared AgCQDs@PNS-PEI has good biocompatibility and electrical conductivity and can be used as a matrix for the immobilization of a secondary antibody (Ab2). A sandwich-type electrochemiluminescence (ECL) immunosensor using AgCQDs@PNS-PEI nanocomposite as probe has been developed for the detection of human chorionic gonadotropin (HCG). The proposed immunosensor exhibits a linear range from 0.00100 to 500 mIU mL-1 and the detection limit is 0.33 μIU mL-1 (S/N = 3) under optimal conditions. The sensor exhibits excellent selectivity, good reproducibility, and high stability. These features demonstrate that the proposed method has promising potential for clinical protein detection and displays a new strategy to fabricate an immunosensor. Graphical abstract.
Collapse
|
16
|
Imanzadeh H, Bakirhan NK, Habibi B, Ozkan SA. A sensitive nanocomposite design via carbon nanotube and silver nanoparticles: Selective probing of Emedastine Difumarate. J Pharm Biomed Anal 2020; 181:113096. [DOI: 10.1016/j.jpba.2020.113096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022]
|