1
|
Dehaghani MST, Esfandiari Z, Khodadadi M. Application of L-leucine-based natural deep eutectic solvent and ferroferric oxide magnetic nanoparticles modified with silica and zeolitic imidazolate framework-8 (Fe 3O 4@SiO 2@ZIF-8) for extracting organophosphorus pesticides from cucumber. Food Chem 2025; 481:143939. [PMID: 40174382 DOI: 10.1016/j.foodchem.2025.143939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
An amino acid-based natural deep eutectic solvent (AABNADES) consisting of L-leucine, thymol, and lactic acid developed as a media for removing interfering agents, along with a magnetic adsorbent called ferroferric oxide modified with silica and zeolitic imidazolate framework-8 (Fe3O4@SiO2@ZIF-8) to determine the residue of four organophosphorus (OPs) pesticides in cucumber samples. The AABNADES was characterized using fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Magnetic adsorbents were characterized via field emission scanning electron microscopy (FESEM) and FTIR. Extraction conditions were optimized using response surface methodology (RSM) with a Box-Behnken design (BBD). The method was linear, accurate, and in the range of 10-50 μg/l. The detection and quantification limits ranged from 2.88-5.95 and 8.73-18.05 μg/l, respectively. The recovery for pesticide residues ranged from 97.1-143.2 % with a relative standard deviation of 3.97-12.24 %. The method is cost-effective, suitable for analyzing OPs in cucumber, and minimizes the use of harmful solvents.
Collapse
Affiliation(s)
- Mansoureh Sadat Taghavi Dehaghani
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Khodadadi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
2
|
Antonio M, Alcaraz MR, Culzoni MJ. Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products - A critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50012-50035. [PMID: 39088175 DOI: 10.1007/s11356-024-34525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina.
| |
Collapse
|
3
|
Zhou Y, Kou J, Zhang Y, Ma R, Wang Y, Zhang J, Zhang C, Zhan W, Li K, Li X. Magnetic-guided nanocarriers for ionizing/non-ionizing radiation synergistic treatment against triple-negative breast cancer. Biomed Eng Online 2024; 23:67. [PMID: 39003472 PMCID: PMC11245775 DOI: 10.1186/s12938-024-01263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the worst prognosis. Radiotherapy (RT) is one of the core modalities for the disease; however, the ionizing radiation of RT has severe side effects. The consistent development direction of RT is to achieve better therapeutic effect with lower radiation dose. Studies have demonstrated that synergistic effects can be achieved by combining RT with non-ionizing radiation therapies such as light and magnetic therapy, thereby achieving the goal of dose reduction and efficacy enhancement. METHODS In this study, we applied FeCo NPs with magneto thermal function and phototherapeutic agent IR-780 to construct an ionizing and non-ionizing radiation synergistic nanoparticle (INS NPs). INS NPs are first subjected to morphology, size, colloidal stability, loading capacity, and photothermal conversion tests. Subsequently, the cell inhibitory and cellular internalization were evaluated using cell lines in vitro. Following comprehensive assessment of the NPs' in vivo biocompatibility, tumor-bearing mouse model was established to evaluate their distribution, targeted delivery, and anti-tumor effects in vivo. RESULTS INS NPs have a saturation magnetization exceeding 72 emu/g, a hydrodynamic particle size of approximately 40 nm, a negatively charged surface, and good colloidal stability and encapsulation properties. INS NPs maintain the spectral characteristics of IR-780 at 808 nm. Under laser irradiation, the maximum temperature was 92 °C, INS NPs also achieved the effective heat temperature in vivo. Both in vivo and in vitro tests have proven that INS NPs have good biocompatibility. INS NPs remained effective for more than a week after one injection in vivo, and can also be guided and accumulated in tumors through permanent magnets. Later, the results exhibited that under low-dose RT and laser irradiation, the combined intervention group showed significant synergetic effects, and the ROS production rate was much higher than that of the RT and phototherapy-treated groups. In the mice model, 60% of the tumors were completely eradicated. CONCLUSIONS INS NPs effectively overcome many shortcomings of RT for TNBC and provide experimental basis for the development of novel clinical treatment methods for TNBC.
Collapse
Affiliation(s)
- Yun Zhou
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Junhao Kou
- College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Yuhuang Zhang
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Rongze Ma
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junfeng Zhang
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an, 710121, China
| | - Wenhua Zhan
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Xueping Li
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China.
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
4
|
Phosiri P, Santaladchaiyakit Y, Burakham R. A magnetic molecularly imprinted polymer based on an eco-friendly deep eutectic solvent for the selective recognition of dichlorodiphenyl trichloroethane and its degradation products in fruits and vegetables. J Chromatogr A 2023; 1712:464494. [PMID: 37951046 DOI: 10.1016/j.chroma.2023.464494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
A new magnetic molecularly imprinted polymer was successfully synthesized using a ternary deep eutectic solvent derived from caffeic acid-choline chloride-formic acid as a functional monomer, thymol-menthol deep eutectic solvent as a template, ethylene glycol dimethacrylate as a cross-linker, potassium peroxodisulfate as an initiator, and aqueous ethanol solution (90% (v/v)) as a porogen. The synthesized material was characterized and applied for magnetic solid-phase extraction of dichlorodiphenyl trichloroethane and its degradation products. Optimization of the extraction condition was carried out using the central composite design and response surface methodology. The good analytical performance of magnetic solid phase extraction/gas chromatography‒mass spectrometry using the proposed adsorbent shows a wide linear range of 0.07-500 ng g-1 with R2 greater than 0.992. Low detection limits and quantitation limits were observed in the ranges of 0.01-2.00 ng g-1 and 0.07-2.50 ng g-1, respectively. The precisions shown in terms of relative standard deviations were lower than 7.0% for intraday (n=5) and 8.6% for interday (n=5 × 3) experiments. The proposed method was applied for preconcentration and determination of dichlorodiphenyl trichloroethane and its degradation products in fruit and vegetable samples. The satisfactory recoveries of the real samples at three spiked concentrations were obtained in the range of 79.1%-110.9% with RSDs lower than 7.5%. The findings highlight the importance of developing efficient sorbents for the enrichment of persistent organic pollutants in food matrices.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
5
|
Korrani ZS, Khalili E, Kamyab H, Wan Ibrahim WA, Hashim H. A new solid phase extraction sorbent developed based on cyanopropyl functionalized silica nanoparticles for organophosphorus pesticides determination. ENVIRONMENTAL RESEARCH 2023; 238:117167. [PMID: 37722580 DOI: 10.1016/j.envres.2023.117167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In this work, a simple sol-gel approach was used for the preparation of cyanopropyl (CNPr) functionalized silica nanoparticles (SiO2-CNPr) that tetraethoxysilane (TEOS) and cyanopropyltriethoxysilane (CNPrTEOS) used as precursors. This as-prepared SiO2-CNPr nanoparticle sorbent was first characterized using FESEM, EDX, FTIR, TGA, and BET techniques. Then, the SiO2-CNPr nanoparticle was applied as a new SPE sorbent for determining trace levels of OPPs in environmental water samples. To enhance the simultaneous extraction of non-polar or/and polar OPPs and to obtain the most efficient sorbent, several sol-gel synthesis parameters were studied. In addition, the effect of several effective parameters on SPE performance was investigated toward simultaneous extraction of non-polar or/and polar OPPs. Moreover, the figures of merit such as precision, linearity, LOQ, LOD, and recovery were evaluated for the sorbent. Finally, the designed SiO2-CNPr SPE was used to determine OPPs in real water samples, and its extraction performance was compared to commercial cartridges based on cyanopropyl.
Collapse
Affiliation(s)
| | - Elham Khalili
- Department of Plant Science, Faculty of Science, Tarbiat Modarres University, Tehran, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Wan Aini Wan Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia.
| | - Haslenda Hashim
- Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
6
|
Zhang X, Li Z, Wang Y, Zhang S, Zang X, Wang C, Wang Z. Preparation of black phosphorus nanosheets/ zeolitic imidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides. J Chromatogr A 2023; 1708:464339. [PMID: 37660557 DOI: 10.1016/j.chroma.2023.464339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Design and preparation of new fiber coatings for solid-phase microextraction (SPME) is of significance to the sample preparation techniques. Herein, a facile strategy has been developed for the integration of the black phosphorus (BP) nanosheets with metal-organic framework (ZIF-8) to generate a BP/ZIF-8 nanocomposite. For the first time, the newly-synthesized BP/ZIF-8 nanocomposite was adopted as the SPME fiber coating for the extraction of organophosphorus pesticides (OPPs). Under the optimized conditions, the BP/ZIF-8 based SPME method gained acceptable linearity (0.04-20 µg L-1), low limits of detection (0.012-0.051 µg L-1) and good repeatability (3.2-8.1%). Coupled with gas chromatography-mass spectrometric detection, the developed SPME method was successfully used for the preconcentration of OPPs from environmental waters with the method recoveries from 92.0%-103.8%. This method offers a good alternative for the analysis of trace OPPs in environmental water samples.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yang Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
7
|
Manousi N, Ferracane A, Kalogiouri NP, Kabir A, Furton KG, Tranchida PQ, Zachariadis GA, Mondello L, Samanidou VF, Rosenberg E. Design and development of second-generation fabric phase sorptive extraction membranes: Proof-of-concept for the extraction of organophosphorus pesticides from apple juice prior to GC-MS analysis. Food Chem 2023; 424:136423. [PMID: 37247598 DOI: 10.1016/j.foodchem.2023.136423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this work, different sol-gel sorbent-coated second-generation fabric phase sorptive extraction (FPSE) membranes were synthesized using titania-based sol-gel precursors. The proposed membranes were tested for their efficiency to extract eleven selected organophosphorus pesticides (OPPs) from apple juice samples. Among the examined materials, sol-gel C18 coated titania-based FPSE membranes showed the highest extraction efficiency. These membranes were used for the optimization and validation of an FPSE method prior to analysis by gas chromatography-mass spectrometry. The detection limits for OPPs ranged between 0.03 and 0.08 ng mL-1. Moreover, the relative standard deviation was < 8.2% and 8.4% for intra-day and inter-day studies, respectively. The relative recoveries were 91-110% (intra-day study) and 90-106% (inter-day study) for all the target analytes, demonstrating good overall method accuracy. Moreover, the novel membranes were reusable at least 5 times. The titania-based membranes were compared to the conventional silica-based membranes and their utilization resulted in higher extraction recoveries.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonio Ferracane
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| |
Collapse
|
8
|
Enhancement of Cd2+ removal on CuMgAl-layered double hydroxide/montmorillonite nanocomposite: Kinetic, isotherm, and thermodynamic studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Samadifar M, Yamini Y, Khataei MM. Magnetically solid-phase extraction of diazinon and chlorpyrifos pesticides in vegetables using magnetic covalent triazine-based framework incorporated chitosan nanocomposite. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Liao W, Xu Y, Li D, Ye Y, Ning Y, Wang W, Wang AJ. Facile room temperature synthesis of a NiFe 2O 4-based magnetic covalent organic framework for the extraction of tetracycline residues in environmental water samples prior to HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4938-4946. [PMID: 36421069 DOI: 10.1039/d2ay01226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a functionalized magnetic covalent organic framework (NiFe2O4@TAPB-TPA) was fabricated with NiFe2O4 nanoparticles as the magnetic core, and 1,3,5-tris(4-aminophenyl)benzene (TAPB) and terephthalaldehyde (TPA) as building blocks by a facile room temperature strategy. Benefitting from the π-π stacking and hydrogen bond interaction, NiFe2O4@TAPB-TPA showed great potential as a magnetic adsorbent for the extraction of tetracyclines (TCs). Under optimal conditions, good linearities (R2 > 0.9990) were obtained between the peak area and TC concentration in the range of 1-500 μg L-1 with limits of detection ranging from 0.09 to 0.26 μg L-1. The intra-day and inter-day relative standard deviations were less than 2.2% and 4.7%, respectively. The established method was successfully applied for the determination of TCs in diverse environmental water samples with satisfactory recoveries in the range of 91.6-102.7%. In addition, NiFe2O4@TAPB-TPA showed good reusability with the recoveries for TCs higher than 73.1% after nine recycles, indicating potential application of NiFe2O4@TAPB-TPA as an ideal adsorbent for the enrichment of TCs.
Collapse
Affiliation(s)
- Wanliang Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dingyun Li
- Hydrological Management Center of Jinhua, Jinhua 321004, China
| | - Yixing Ye
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yuhan Ning
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
11
|
Sianglam P, Ngamdee K, Ittisanronnachai S, Promarak V, Ren XK, Ngeontae W. An effective strategy for the detection of tetracycline by N,S-doped carbon nanodots after preconcentration with a hybrid functional nanocomposite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Grover A, Mohiuddin I, Lee J, Brown RJC, Malik AK, Aulakh JS, Kim KH. Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis. ENVIRONMENTAL RESEARCH 2022; 214:114166. [PMID: 36027961 DOI: 10.1016/j.envres.2022.114166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of pollutants into the environment poses serious threats to environmental sustainability and human health. For trace-level analysis of pollutants, layered double hydroxide (LDH) is an attractive option to impart enhanced sorption capability and sensitivity toward pollutants because of its unique layered structure, tunable interior architecture, high anion-exchange capacities, and high porosity (e.g., Zn/Cr LDH/DABCO-IL, Ni/Al LDH, CS-Ni/Fe LDH, SDS-Fe3O4@SiO2@Mg-Al LDH, Boeh/Mg/Al LDH/pC, and Fe@NiAl LDH). In concert with the well-defined analytical methodologies (e.g., HPLC and GC), the LDH materials can be employed to detect trace-level targets (e.g., as low as ∼ 20 fg/L for phenols) in aqueous environments. This review highlights LDH as a promising material for pre-treatment of a variety of organic and inorganic target pollutants in complex real matrices. Challenges and future requirements for research into LDH-based analytical methods are also discussed.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Elencovan V, Yahaya N, Raoov M, Zain NNM. Exploring a novel silicone surfactant-based deep eutectic solvent functionalized magnetic iron particles for the extraction of organophosphorus pesticides in vegetable samples. Food Chem 2022; 396:133670. [PMID: 35853378 DOI: 10.1016/j.foodchem.2022.133670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/25/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
The current study discussed the use of silicone surfactant-based deep eutectic solvent as a surface modifier for magnetic iron particles (Fe3O4) to produce a novel adsorbent and its application for the extraction of organophosphorus pesticides (OPPs) in vegetable samples. A deep eutectic solvent (DES) was prepared using low toxic and inexpensive substances such as silicone surfactant (SS) and dodecanoic acid (DoAc). This new eco-friendly SS:DoAc based DES was explored as a substitution to traditional organic reagents for surface modification of Fe3O4 to increase the adsorption capacity and to reduce the matrix interferences, hazardous waste generation and environmental pollution. The newly synthesized SS:DoAc@Fe3O4 adsorbent was successfully characterized and applied in magnetic solid phase extraction (MSPE). Under optimized conditions, the proposed approach exhibited excellent linearity ranging from 0.1 to 200 µg/kg (R2 ≥ 0.9970), low detection limit (0.03-0.1 µg/kg) and acceptable relative recovery (80-119 %) for the studied OPPs.
Collapse
Affiliation(s)
- Vasagee Elencovan
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
14
|
Phosiri P, Santaladchaiyakit Y, Burakham R. Natural deep eutectic solvent-decorated magnetic layered double hydroxide as a sorbent for the enrichment of organochlorine pesticides in environmental samples. J Chromatogr A 2022; 1673:463111. [DOI: 10.1016/j.chroma.2022.463111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
|
15
|
Nasiri M, Ahmadzadeh H, Amiri A. Magnetic solid‐phase extraction of organophosphorus pesticides from apple juice and environmental water samples using magnetic graphene oxide coated with poly(2‐aminoterephthalic acid‐co‐aniline) nanocomposite as a sorbent. J Sep Sci 2022; 45:2301-2309. [DOI: 10.1002/jssc.202100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Maryam Nasiri
- Department of Chemistry Faculty of Science Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Hossein Ahmadzadeh
- Department of Chemistry Faculty of Science Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Amirhassan Amiri
- Department of Chemistry Faculty of Science Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| |
Collapse
|
16
|
Gamonchuang J, Santaladchaiyakit Y, Burakham R. Magnetic Solid-Phase Extraction of Carbamate Pesticides Using Magnetic Metal-Organic Frameworks Derived from Benzoate Ligands, Followed by Digital Image Colorimetric Screening and High-Performance Liquid Chromatography Analysis. ACS OMEGA 2022; 7:12202-12211. [PMID: 35449973 PMCID: PMC9016810 DOI: 10.1021/acsomega.2c00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Magnetic sorbents based on iron-aluminum-mixed metal hydroxides composited with metal-organic frameworks (MOFs) were designed and synthesized using different benzoate ligands, including terephthalic acid, 2-aminoterephthalic acid, 2,5-dihydroxyterephthalic acid, 1,3,5-benzenetricarboxylic acid, and 1,2,4,5-benzenetetracarboxylic acid. The magnetic MOF derived from terephthalic acid ligand exhibited an excellent extraction efficiency, with adsorption capacities in the range of 2193-4196 mg kg-1, and was applied for magnetic solid-phase extraction (MSPE) of carbamate pesticides, that is, bendiocarb, carbosulfan, carbofuran, carbaryl, propoxur, isoprocarb, and promecarb. Simple digital image colorimetry based on the diazotization reaction and high-performance liquid chromatography (HPLC) were utilized for fast screening and quantification purposes, respectively. A good analytical performance for a simple screening approach using portable equipment was obtained with detection limits in the range of 1.0-18.0 μg L-1. Under the optimized MSPE-HPLC conditions, the entire developed procedure provided a wide linear range between 0.015 and 1000 μg L-1, low limits of detection, and limits of quantitation ranging from 0.005 to 0.090 and 0.015-0.300 μg L-1, respectively. Enrichment factors up to 184 were achieved. The intra- and interday relative standard deviations were below 6.7 and 9.4%, respectively. The proposed MSPE-digital image colorimetry and MSPE-HPLC methods were successfully applied for screening and determining carbamate pesticides in fruits and vegetables. The recoveries were obtained in a satisfactory range of 71.5-122.8%. This discovery has led to the development of integration methods using newly synthesized sorbent materials for the enrichment of carbamate pesticides prior to their analysis in complicated samples. The developed MSPE coupled with digital image colorimetry was efficient for fast carbamate contamination screening, while MSPE-HPLC offered a sensitive analytical methodology for quantifying contaminated samples.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Materials
Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department
of Chemistry, Faculty of Engineering, Rajamangala
University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Rodjana Burakham
- Materials
Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Gao M, Zhang X, Ma S, Wang J, Mammah M, Du L, Wang X. Ionic-liquid-based effervescence-enhanced magnetic solid-phase extraction for organophosphorus pesticide detection in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:661-671. [PMID: 35084403 DOI: 10.1039/d1ay01698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, an ionic-liquid-based effervescence-enhanced magnetic solid-phase extraction (ILE-MSPE) approach for the extraction/concentration of organophosphorus pesticides in waters is reported with high stability and portability for rapid sample pretreatment in the field. The ionic-liquid-based magnetic effervescent tablet, composed of magnetic nanoparticles (Fe3O4), sodium carbonate (Na2CO3) as an alkaline source, and an ionic liquid ([C6MIM][PF6]), played triple functions: extractant, dispersant, and retrieving agent. Based on the one-factor-at-a-time method, the important variables for the ILE-MSPE approach were optimized as follows: as an extractant, 70 μL of [C6MIM][PF6]; molar ratio of alkaline to acidic sources (Na2CO3 : H2C4H4O6) as 1 : 1; and mass of magnetic nanoparticles (MNPs) of 30 mg. By integrating HPLC-DAD detection, the ILE-MSPE approach offered the limits of detection of 0.14-0.22 μg L-1 and fortified recoveries of 81.4-97.6% for three representative species (methamidophos, phoxim, and parathion) in water samples. The relative standard deviations were lower than 4.9% for both the intra-day and inter-day precision. Overall, the newly developed method is environmentally benign, time-saving, and feasible for outdoor application.
Collapse
Affiliation(s)
- Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, P. R. China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, P. R. China
| | - Xiaofan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Sai Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, P. R. China
| | - Marcus Mammah
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Liyang Du
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, P. R. China
| |
Collapse
|
18
|
Vichapong J, Kachangoon R, Burakham R, Santaladchaiyakit Y, Srijaranai S. In-Situ Formation of Modified Nickel–Zinc-Layered Double Hydroxide Followed by HPLC Determination of Neonicotinoid Insecticide Residues. Molecules 2021; 27:molecules27010043. [PMID: 35011271 PMCID: PMC8746430 DOI: 10.3390/molecules27010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
A single-step preconcentration procedure using the in-situ formation of modified nickel–zinc-layered double hydroxides (LDHs) prior to high-performance liquid chromatography (HPLC) is investigated for the determination of neonicotinoid insecticide residues in honey samples. The LDHs could be prepared by the sequential addition of sodium hydroxide, sodium dodecyl sulfate, nickel nitrate 6-hydrate and zinc nitrate 6-hydrate, which were added to the sample solution. The co-precipitate phase and phase separation were obtained by centrifugation, and then the precipitate phase was dissolved in formic acid (concentrate) prior to HPLC analysis. Various analytical parameters affecting extraction efficiency were studied, and the characterization of the LDHs phase was performed using Fourier-transformed infrared spectroscopy and scanning electron microscopy. Under optimum conditions, the limit of detection of the studied neonicotinoids, in real samples, were 30 μg L−1, for all analytes, lower than the maximum residue limits established by the European Union (EU). The developed method provided high enrichment, by a factor of 35. The proposed method was utilized to determine the target insecticides in honey samples, and acceptable recoveries were obtained.
Collapse
Affiliation(s)
- Jitlada Vichapong
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
- Correspondence: ; Tel./Fax: +66-4375-4246
| | - Rawikan Kachangoon
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (R.B.); (S.S.)
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand;
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (R.B.); (S.S.)
| |
Collapse
|
19
|
Santaladchaiyakit Y, Sila-Am W, Sribunrueng S, Gissawong N, Srijaranai S. Co-precipitation based on layered double hydroxides and anionic surfactants for preconcentration of six benzoylurea insecticides in soft drinks before simultaneous analysis by high-performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5735-5748. [PMID: 34812804 DOI: 10.1039/d1ay01435h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layered-double hydroxides (LDHs) modified with anionic surfactants via a co-precipitation method were developed for preconcentrating and simultaneous analysis of six benzoylurea insecticides (BUs) by high-performance liquid chromatography (HPLC). The anionic surfactants with different chain lengths, including sodium dodecylbenzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium 1-nonane sulfonate (SNS), and sodium 1-hexane sulfonate monohydrate (SHS) were investigated to improve the extraction efficiency of LDHs. The SDBS-LDHs provided the highest efficiency for the enrichment of the BUs studied. Under the chosen conditions, enrichment factors in the range of 38-69 and detection limits in the range of 0.1-0.3 μg L-1 were achieved. Good reproducibilities (RSD < 13.8%) and recoveries (71.4-118.7%) were also obtained. The proposed preconcentration method, used as an in situ procedure offers rapid and simple simultaneous preparation of LDHs and extraction of BUs. The method was successfully applied for residue analysis of BUs in fruit- and flower-derived soft drink samples.
Collapse
Affiliation(s)
- Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | - Wisansaya Sila-Am
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | - Suwanida Sribunrueng
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | - Netsirin Gissawong
- Materials Chemistry Research Unit, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Unit, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
20
|
Akbari M, Mirzaei M, Amiri A. Synergistic effect of lacunary polyoxotungstates and carbon nanotubes for extraction of organophosphorus pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Liu T, AgyeKum E, Ma S, Ye H, Li J, Gao M, Ni M, Zhang X, Wang X. Novel nanohybrids for effervescence enhanced magnetic solid-phase microextraction of wide-polarity organic pollutants in roasted meat samples. J Sep Sci 2021; 44:4313-4326. [PMID: 34661968 DOI: 10.1002/jssc.202100482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022]
Abstract
To simultaneously and efficiently extract pollutants with differential polarities, we herein fabricated and characterized a multifunctional nanocomposite. The novel nanohybrids used NiFe2 O4 as magnetic cores, and NH2 -MIL-101(Al), β-cyclodextrin and graphene oxide as functional components combined with magnetic cores. With the aid of graphene oxide's large π-conjugated system, NH2 -MIL-101(Al)'s strong adsorption to moderately/strongly polar chemicals, and β-cyclodextrin's specific recognition effect, the nanohybrids realized synergistically efficient extraction of polyaromatic hydrocarbons and bisphenols with a logKow range of 3-6. Combined with acidic and alkaline sources, the nanohybrids-based effervescent tablets were prepared. Based on effervescent reaction-enhanced nanohybrids-based efficient adsorption/extraction and high performance liquid chromatography and fluorescence detection, we successfully developed an excellent microextraction method for the simultaneous determination of both polyaromatic hydrocarbons and bisphenols in roasted meat samples. Several important variables were optimized as follows: Na2 CO3 and tartaric acid as acidic and alkaline sources, 900 μLof the mixed solvent (acetone and hexane at 2:1 by v/v) as the eluent, 5 min of elution time. Under optimized conditions, the novel method gave low limits of detection (0.07-0.30 μg kg-1 ), satisfactory recoveries (86.9-103.9%), and high precision (relative standard deviations of 1.9-6.7%) in roasted lamb, beef, pork, chicken, and sausage samples.
Collapse
Affiliation(s)
- Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China.,Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Evans AgyeKum
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Sai Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Hanzhang Ye
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Jiani Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China.,Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Xiaofan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| |
Collapse
|
22
|
Phosiri P, Burakham R. Deep eutectic solvent-modified mixed iron hydroxide-silica: Application in magnetic solid-phase extraction for enrichment of organochlorine pesticides prior to GC-MS analysis. J Sep Sci 2021; 44:3636-3645. [PMID: 34355518 DOI: 10.1002/jssc.202100329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023]
Abstract
A new type of magnetic material based on silica-coated mixed iron hydroxides functionalized with deep eutectic solvent was utilized for the magnetic solid-phase extraction of organochlorine pesticides prior to gas chromatography-mass spectrometry analysis. Choline chloride and phenol were selected as the hydrogen bond acceptor and donor, respectively, for preparing the deep eutectic solvent-modified magnetic surface. The modified surface possessed superior enrichment capability for organochlorine pesticides. Under optimal extraction conditions, viz., 10 mg sorbent, 5 mL sample solution, and 200 μL acetone (desorption solvent), linearity was obtained in the range 0.005-200 μg/L, with coefficients of determination greater than 0.997. The limits of detection and quantification were as low as 0.6-10 and 5-60 ng/L, respectively, whereas the enrichment factors were in the range of 31-100. The precisions evaluated in terms of the relative standard deviations of the intra- and inter-day experiments were <4.9 and 7.6%, respectively. The developed method was successfully applied for determining the organochlorine residues in agricultural products. Satisfactory recoveries in the range of 71.2-110.3% were obtained, with a relative standard deviation of <8.0%. The proposed material is a promising sorbent for the preconcentration of organochlorine residues.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Rodjana Burakham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
23
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
24
|
ZrO 2 Nanoparticles and Poly(diallyldimethylammonium chloride)-Doped Graphene Oxide Aerogel-Coated Stainless-Steel Mesh for the Effective Adsorption of Organophosphorus Pesticides. Foods 2021; 10:foods10071616. [PMID: 34359486 PMCID: PMC8304140 DOI: 10.3390/foods10071616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
A novel sorbent based on the ZrO2 nanoparticles and poly(diallyldimethylammonium chloride)-modified graphene oxide aerogel-grafted stainless steel mesh (ZrO2/PDDA-GOA-SSM) was used for the extraction and detection of organophosphorus pesticides (OPPs). Firstly, the PDDA and GO composite was grafted onto the surface of SSM and then freeze-dried to obtain the aerogel, which efficiently reduced the accumulation of graphene nanosheets. It integrated the advanced properties of GOA with a thin coating and the three-dimensional structural geometry of SSM. The modification of ZrO2 nanoparticles brought a selective adsorption for OPPs due to the combination of the phosphate group as a Lewis base and ZrO2 nanoparticles with the Lewis acid site. The ZrO2/PDDA-GOA-SSM was packed into the solid-phase extraction (SPE) cartridge to extract OPPs. According to the investigation of different factors, the extraction recovery was mainly affected by the hydrophilic-hydrophobic properties of analytes. Effective extraction and elution parameters such as sample volume, sample pH, rate of sample loading, eluent, and eluent volume, were also investigated and discussed. Under the optimal conditions, the linearity of phoxim and fenitrothion was in the range of 1.0-200 μg L-1, and the linearity of temephos was in the range of 2.5-200 μg L-1. The limits of detection were ranged from 0.2 to 1.0 μg L-1. This established method was successfully applied to detect OPPs in two vegetables. There was no OPP detected in real samples, and results showed that the matrix effects were in the range of 46.5%-90.1%. This indicates that the ZrO2/PDDA-GOA-SSM-SPE-HPLC method could effectively extract and detect OPPs in vegetables.
Collapse
|
25
|
Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
27
|
Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. CHEMOSPHERE 2021; 266:129222. [PMID: 33360614 DOI: 10.1016/j.chemosphere.2020.129222] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polydopamine has high adsorption capacities for pollutants such as pesticides in food and environmental matrices. Consequently, it has found applications in some sorbent-based micro-extraction techniques such as solid phase micro-extraction and magnetic solid phase extraction. This paper gives a detailed review of the application of polydopamine-based adsorbents for the extraction of pesticides in food and environmental matrices using these techniques. The adhesive properties of polydopamine have made it to be a suitable material for the immobilisation of the components of electrochemical sensors used to detect pesticides in food and environmental matrices. This paper also gives a comprehensive review on the application of polydopamine in electrochemical sensors such as acetylcholinesterase sensors, molecularly imprinted sensors and aptasensors. The use of polydopamine-based adsorbents during the extraction and electrochemical sensing of pesticides in food and environmental matrices is not free of challenges. In this review, the challenges encountered during the use of polydopamine-based adsorbents are also discussed.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
28
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Kukkar D, Kim KH. Chitosan-Ni/Fe layered double hydroxide composites as an efficient solid phase extraction sorbent for HPLC-PDA monitoring of parabens in personal care products. CHEMOSPHERE 2021; 264:128429. [PMID: 33011479 DOI: 10.1016/j.chemosphere.2020.128429] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
There is a dire need for development of efficient and sensitive methods to efficiently screen parabens. In this research, we focused on quantification of four parabens (i.e., methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butyl paraben (BP)) using chitosan intercalated nickel/iron layered double hydroxide (CS-Ni/Fe-LDH) composites as solid phase extraction sorbent prior to HPLC-PDA analysis. CS-Ni/Fe LDH composites with a heterogeneous, porous texture, and coral reef-like structure exhibit appealing extraction efficiency for the target parabens due to the enhanced possibility for the formation of hydrogen bonding and hydrophobic interactions. The performance of the composites was assessed and optimized for solid phase extraction of parabens from standard samples and real samples (rose water, cream, toothpaste, hair serum, and sunscreen). The LDH-SPE-HPLC method exhibited a wide linear range (e.g., 100-50,000 ng L-1), good linearity (R2 ≥ 0.999), and good precision (relative standard deviation (RSD) < 3%). This method successfully enriched selected parabens with remarkable recovery above 85.95% and a good RSD (0.01-2.90%). The quantitation of MP, EP, PP, and BP was made at detection range (and limits of detection (LOD)) of 5-15 (9.8), 11-21 (16.2), 6-18 (12.4), and 10-20 (15.6) ng L-1, respectively. The prepared composites also displayed excellent performance with enhanced reusability/durability (n = 30 cycles) and reproducibility (n = 5).
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India; Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | | | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
29
|
Nojavan S, Mahdavi P, Bayatloo MR, Chalavi S. Application of magnetic nanomaterials in bioanalysis. MAGNETIC NANOMATERIALS IN ANALYTICAL CHEMISTRY 2021:121-154. [DOI: 10.1016/b978-0-12-822131-0.00001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Chen D, Ma S, Zhang X, Wang X, Gao M, Li J, Wang H. Enhanced extraction of organophosphorus pesticides from fruit juices using magnetic effervescent tablets composed of the NiFe2O4@SiO2@PANI-IL nanocomposites. RSC Adv 2021; 11:1668-1678. [PMID: 35424117 PMCID: PMC8693588 DOI: 10.1039/d0ra09100f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
The reported ionic liquid (IL)-based magnetic effervescent tablets are a result of direct addition of ILs and magnetic nanoparticles (MNPs). In effervescent reaction-enhanced microextraction procedures, the dissociation between ILs and MNPs easily leads to loss of ILs due to aqueous solubility, thereby decreasing the extraction efficiency. Herein, we attached a hydrophilic IL ([BMIM]Br) onto the surface of NiFe2O4@SiO2@polyaniline (NiFe2O4@SiO2@PANI-IL) to prepare novel core–shell-like multi-layer nanocomposites. Magnetic effervescent tablets were composed of Na2CO3 as an alkaline source, tartaric acid as an acidic source and as-synthesized nanocomposites as an extractant. The nanocomposites were used in an effervescent reaction-enhanced magnetic solid-phase extraction (ERMSE) for the extraction of four organophosphorus pesticides (OPPs) in fruit juices prior to HPLC-DAD detection. Under optimized conditions, this method provided low limits of detection (0.06–0.17 μg L−1), high recoveries (80.6–97.3%) and excellent precision (1.1–5.2%) for OPP quantification in five fruit juices. Notably, the three-layer core–shell nanocomposites were efficiently recycled for at least eight extraction cycles with a recovery loss of <10%. The novelty of this study lies in: (1) for the first time, the ILs-based hybrid magnetic nanocomposites were prepared with appropriate pore size/volume and more active sites for OPPs; (2) the combination of the nanocomposites with effervescent tablets realizes rapid dispersion of CO2 bubbles, and convenient magnetic separation/collection into one synchronous step; and (3) due to there being no requirement of electrical power, it is feasible for use in field conditions. Thus, the ERMSE method has excellent potential for conventional monitoring of trace-level OPPs in complex fruit juice matrices. The reported ionic liquid (IL)-based magnetic effervescent tablets are a result of direct addition of ILs and magnetic nanoparticles (MNPs).![]()
Collapse
Affiliation(s)
- Dechao Chen
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Sai Ma
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xiaofan Zhang
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xuedong Wang
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Ming Gao
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Jieyi Li
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Huili Wang
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| |
Collapse
|
31
|
Santaladchaiyakit Y, Srijaranai S. Dissolvable Mg/Al layered double hydroxides and surfactant as an extractant for trace analysis of benzoylurea insecticides by high performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5380-5391. [PMID: 33111727 DOI: 10.1039/d0ay01346c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A rapid and simple preconcentration method using dissolvable Mg/Al layered-double hydroxides (LDHs) and high performance liquid chromatography-photodiode array detection (HPLC-PDA) was developed for the analysis of benzoylurea insecticides (BUs) in water and honey samples. The proposed dissolvable LDHs for the extraction can be prepared in one step by the sequential addition of sodium hydroxide, magnesium chloride, aluminium chloride, and sodium dodecyl sulfate into the sample solution containing the target BUs. The co-precipitate phase was simply obtained after centrifugation, and the phase was then dissolved with formic acid before analysis by HPLC. The developed method provided an enrichment factor of 12.5-23.7. LODs were obtained in the range of 0.1-0.3 μg L-1 for deionized water, 0.2-2.0 μg L-1 for environmental waters, and 0.5-2.0 μg L-1 for the analyzed honey samples. Good recoveries ranging from 78.4 to 117.8% and 72.7 to 117.9% for water and honey samples, respectively, were obtained.
Collapse
Affiliation(s)
- Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | | |
Collapse
|
32
|
Jullakan S, Bunkoed O, Pinsrithong S. Solvent-assisted dispersive liquid-solid phase extraction of organophosphorus pesticides using a polypyrrole thin film–coated porous composite magnetic sorbent prior to their determination with GC-MS/MS. Mikrochim Acta 2020; 187:677. [DOI: 10.1007/s00604-020-04649-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
|
33
|
Alipanahpour Dil E, Asfaram A, Javadian H. A new approach for microextraction of trace albendazole sulfoxide drug from the samples of human plasma and urine, and water by the molecularly imprinted polymer nanoparticles combined with HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122249. [PMID: 33059159 DOI: 10.1016/j.jchromb.2020.122249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 01/30/2023]
Abstract
In this research study, a method of dispersive-micro-solid phase extraction (D-µ-SPE) combined with molecularly imprinted polymer nanoparticles (MIP-NPs) with HPLC-UV was developed for the fast and selective detection of the trace amount of albendazole sulfoxide (ABZSO) in the biological samples. To investigate the effective factors on ABZSO microextraction by the method, central composite design (CCD) was utilized, and the optimum conditions for ABZSO microextraction were sample pH of 8.0, MIP-mass of 15 mg, sonication time of 12 min, and eluent (methanol) volume of 0.25 mL. Under the obtained optimal extraction conditions, the value for the limit of detection (LOD) and limit of quantification (LOQ) was respectively showed to be 0.074 and 0.246 ng mL-1. In addition, the calculated peak areas exhibited a linear relationship with the ABZSO concentration ranging from 0.4 to 4200 ng mL-1. The analyses of the samples including human plasma and urine, and water were successfully performed by the usage of the D-µ-SPE method, which was a simple and sensitive technique and a suitable alternative for the analysis of ABZSO. In the analysis of ABZSO in various samples, the recoveries at various levels of ABZSO concentrations (50, 300, and 500 ng mL-1) were in the range of 95.7-103.0 %, and the relative standard deviations (RSDs; n = 3) varied from 2.2 to 4.4%.
Collapse
Affiliation(s)
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Preparation of magnetic flower-like molybdenum disulfide hybrid materials for the extraction of organophosphorus pesticides from environmental water samples. J Chromatogr A 2020; 1631:461583. [DOI: 10.1016/j.chroma.2020.461583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
|
35
|
Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 2020; 218:121139. [DOI: 10.1016/j.talanta.2020.121139] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/20/2023]
|
36
|
Xu Q, Qiao K, Yan C, Liu Z, Lu R, Zhou W. Dispersive micro-solid phase extraction based on a graphene/polydopamine composite for the detection of pyrethroids in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3115-3122. [PMID: 32930171 DOI: 10.1039/d0ay00562b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a simple, rapid, precise, and environmentally friendly microextraction named dispersive micro-solid phase extraction based on a graphene/polydopamine composite as a sorbent was investigated for the analysis of four pyrethroids (fenpropathrin, cyhalothrin, etofenprox and bifenthrin) in water samples. The graphene/polydopamine composite was successfully synthesized using a one-step method, and was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy and X-ray photoelectron spectroscopy. The simplicity and rapidity of dispersive micro-solid phase extraction and the high surface area and adsorptivity of the graphene/polydopamine composite were combined in the proposed method. Several main parameters, including the amount of the sorbent, extraction time, ionic strength and desorption conditions, were independently optimized and the results were compared to find the best extraction setup for dispersive micro-solid phase extraction. Under the optimal conditions, good linearity was observed for all the target analytes, with the coefficient of determination ranging from 0.9997 to 0.9999. The extraction recoveries obtained using the proposed method ranged from 76.81% to 85.29%, and the limits of detection varied from 1.5 to 3 μg L-1. In addition, the relative standard deviation values for the intra-day precision were between 0.41% and 3.00%, while the inter-day precision showed relative standard deviation values ranging from 1.61% to 5.59%. Overall, the figures of merit of the entire procedure showed that this technique could produce satisfactory results in the detection of pyrethroids in water samples or other organic pollutants in the future.
Collapse
Affiliation(s)
- Qinqin Xu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Kexin Qiao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Chen Yan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Zikai Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|