1
|
Wu X, Li T, He Y, He H, Tong T, Fan B, Gao J, Xu J. Visualizing the spatial distribution of functional metabolites in the root of Codonopsis pilosula: An investigation integrating metabolomics, serum pharmacochemistry, and MALDI-MSI. J Pharm Biomed Anal 2025; 262:116873. [PMID: 40203560 DOI: 10.1016/j.jpba.2025.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Codonopsis pilosula is a traditional Chinese tonic herb commonly used as food and medicine, particularly for the treatment of spleen deficiency syndrome. However, the specific bioactive components responsible for C. pilosula effects remain unclear, and their distribution in the root of C. pilosula has not been fully elucidated due to the lack of efficient analytical techniques. In this work, we combined metabolomics with serum pharmacochemistry to investigate C. pilosula effects in a rat model of spleen deficiency syndrome. Pearson correlative analysis was applied to discover that 8 chemical compounds, including lobetyolin, atractylenolide III, syringin, luteolin, asperuloside, O-acetyl-L-serine, L-citrulline and creatine, were significantly correlated with biomarkers and considered as potential pharmacodynamic basis of C. pilosula. Furthermore, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was performed to visualize the spatial distribution of the bioactive substances in the root of C. pilosula. L-citrulline was widely distributed in roots. The content of atractylenolide III and luteolin in the cortex and xylem was much higher than that in the phloem. O-Acetyl-L-serine was present in the entire phloem and a small portion of the xylem. Creatine, lobetyolin, asperuloside, and syringin were mostly distributed in the peridermal cortex, and their contents were low. By integrating metabolomics, serum pharmacochemistry and MALDI-MSI, our proposed analytical method elucidated the material basis of C. pilosula and figured out their spatial distribution in the root of C. pilosula, which provides new insights for improving the quality of medicinal herbs.
Collapse
Affiliation(s)
- Xinjie Wu
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tongtong Li
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yan He
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Hui He
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tong Tong
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jianping Gao
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Jinfang Xu
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
2
|
Ma S, Chen Y, Zhou Z, Ma A. Effect of Wei Qi Booster on immune and anti-oxidative function in aged mice. Front Vet Sci 2024; 11:1446770. [PMID: 39113720 PMCID: PMC11303205 DOI: 10.3389/fvets.2024.1446770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
This research was conducted to examine the impact of Wei Qi Booster (WQB) on immune parameters and anti-oxidative function in aged mice. Fifty aged mice were randomly assigned to five different groups. Group A was designated as the control group. Mice in Group B were receiving Levamisole at 10 mg/kg body weight. Each mouse in groups C, D and E received 0.1, 1, and 2% WQB, respectively. Another ten young mice, designated as group F, were fed regularly. The mice were fed according to the above methods for 28 days. Results showed that relative to the control group, the body weight and immune organs indexes experienced a substantial rise in the group with 1% WQB. In addition, 1% WQB could improve the activity of SOD and reduce the MDA levels. Expressions of CD4 and sIgA increased while CD8 decreased in the jejunum of aged mice treated with WQB. IL2 and IFN-γ levels increased in the 1% WQB group, showing no notable difference compared to the young mice group. The results demonstrated that WQB can elevate immune levels and enhance anti-oxidative functions in aged mice.
Collapse
Affiliation(s)
- Shuang Ma
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Heibei, China
| | - Yuming Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Heibei, China
| | - Zhilong Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Heibei, China
| | - Aituan Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Zhan X, Xiao Y, Jian Q, Dong Y, Ke C, Zhou Z, Liu Y, Tu J. Integrated analysis of metabolomic and transcriptomic profiling reveals the effect of Atractylodes oil on Spleen Yang Deficiency Syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117205. [PMID: 37741473 DOI: 10.1016/j.jep.2023.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spleen Yang Deficiency Syndrome (SYDS), which is a syndrome commonly treated with Traditional Chinese Medicine (TCM), manifests as overall metabolic dysfunction caused mainly by digestive system disorders. Atractylodes lancea (Thunb.) DC. (AL) is a widely used traditional herb with the efficacy of eliminate dampness and strengthen the spleen, Atractylodes oil (AO) is a medicinal component of AL and can be used to treat various gastrointestinal disorders. However, its effects on SYDS and underlying mechanisms have not been clarified to date. AIM OF THE STUDY The present study aimed to investigate the efficacy of AO in the improvement of the symptoms of SYDS in rat and the underlying mechanism by integrating transcriptomics, and metabolomics. MATERIALS AND METHODS The SYDS rats induced by reserpine were treated with AO. The protective effect of AO on SYDS rats was evaluated by serum biochemical detection, histopathological analyses. Enzyme-linked immunosorbent assay (ELISA), colorimetric assay and immunofluorescence (IF) were performed to determine the levels of relevant indicators of mitochondrial function and energy metabolism in the liver. Liver metabolites and transcript levels were assessed by non-targeted metabolomics and transcriptomics to analyze potential molecular mechanisms and targets. The expression of the corresponding proteins was verified using Western blotting. RESULTS AO not only regulated the digestion, absorption function and oxidative stress status of SYDS rats, but also improved mitochondrial function and alleviated energy metabolism disorders in SYDS rats. Metabolomic and transcriptomic analyses demonstrated that AO regulation is mainly exerted in amino acid metabolism, unsaturated fatty acid metabolism, TCA cycle as well as PPAR and AMPK signaling pathways. In addition, The AMPK signaling pathway was verified and AO promoted AMPK phosphorylation and the expression of SIRT1, PGC-1α, and PPARα in SYDS rats. CONCLUSIONS The therapeutic effect of AO on SYDS is potentially attributable to activation of the AMPK/SIRT1/PGC-1α signaling pathway, which enhances transport and regulation of energy metabolism.
Collapse
Affiliation(s)
- Xin Zhan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qipan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| |
Collapse
|
4
|
Zeng W, Chen Y, Zhang H, Peng L, Li Y, Liu B, Liang H, Du B, Li P. Probiotic-fermented Qushi decoction alleviates reserpine-induced spleen deficiency syndrome by regulating spleen function and gut microbiota dysbiosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7702-7711. [PMID: 37439120 DOI: 10.1002/jsfa.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Spleen deficiency syndrome (SDS) is associated with elevated inflammatory factors and dysregulation of gastrointestinal motility hormones and intestinal microbiota. Qushi decoction (QD), a traditional formula, has not been reported using modern scientific research methods for changes in its probiotic fermented QD (FQD) composition and its potential mechanisms to alleviate SDS. Therefore, the aim of this study was to investigate the splenic protection of FQD in SDS rats by modulating gastrointestinal motility hormones and intestinal microbiota. RESULTS The results showed that FQD increased total polysaccharides, total protein, total flavonoids and the other active ingredients compared to QD, effectively improved splenic inflammation and apoptosis in SDS rats, and modulated gastrointestinal motility hormones to alleviate diarrhea and other symptoms. In addition, the dysregulation of the gut microbiota was reversed by increasing the levels of Bifidobacterium and decreasing the levels of Escherichia-Shigella and Proteobacteria, which may be related to the regulation of bacterial metabolites to alleviate SDS. CONCLUSION These results suggest that FQD is an effective formula for improving SDS. Our findings show that FQD beneficial to the implications for the treatment of SDS. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenshen Zeng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yang Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Huan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Luwei Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hongbo Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Yi YL, Li Y, Guo S, Yan H, Ma XF, Tao WW, Shang EX, Niu Y, Qian DW, Duan JA. Elucidation of the Reinforcing Spleen Effect of Jujube Fruits Based on Metabolomics and Intestinal Flora Analysis. Front Cell Infect Microbiol 2022; 12:847828. [PMID: 35402299 PMCID: PMC8987507 DOI: 10.3389/fcimb.2022.847828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Jujube (Ziziphus jujuba Mill.) fruit (JF) is widely consumed as food in Asian countries due to its potential effects for human health. As a traditional Chinese medicine, JF is often used to treat anorexia, fatigue and loose stools caused by spleen deficiency syndromes in China, but the mechanism underlying this effect has not been thoroughly elucidated. In this study, a rat model of spleen deficiency syndromes was adopted to investigate the therapeutic effect of JF extract and its possible mechanism by metabolomics analyses of plasma and urine as well as the intestinal flora analysis. The results showed that the changes in plasma and urine metabolites caused by spleen deficiency were reversed after administration of JF, and these changed endogenous metabolites were mainly involved in retinol metabolism, pentose and glucuronate interconversions, nicotinate and niacinamide metabolism pathways. The 16S rDNA sequencing results showed that JF could regulate intestinal flora imbalance caused by spleen deficiency. The covariance analysis of intestinal flora structure and metabolome indicated that Aerococcus may be a candidate strain for predicting and treating the metabolic pathways of spleen deficiency and related disorders. In summary, it can be revealed that spleen deficiency, which alters metabolic profiles and the intestinal flora, could be alleviated effectively by JF extract.
Collapse
Affiliation(s)
- Yan-ling Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-fei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Da-wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Liu Y, Liao W, Liu X, Hu Y, Zhu X, Ju L, Feng F, Qu W, Liu W, Xu J. Digestive promoting effect and mechanism of Jiao Sanxian in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114334. [PMID: 34126213 DOI: 10.1016/j.jep.2021.114334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao Sanxian, a customary term for the three Traditional Chinese Medicines of charred hawthorn (Crataegi Fructus), charred malt (Hordei Fructus Germinatus) and Liu Shenqu (Massa Medicata Fermentata), is a classic prescription for the treatment of functional dyspepsia (FD). This prescription is called "Jiao Sanxian" in China because people believe that it is a miracle medicine for enhancing digestion and improving stagnation of digestive system. Even though Jiao Sanxian is widely used in clinical treatment, the underlying mechanism has not been clarified to date. AIM OF THE STUDY The present study is aimed to explore the efficacy and mechanism of Jiao Sanxian in improving the symptoms of FD in rats by using multiple pharmacological methods. MATERIALS AND METHODS The Sprague Dawley (SD) rats were divided into control, model, Jiao Sanxian decoction low-dosage (JSXD LD), Jiao Sanxian decoction medium-dosage (JSXD MD), and Jiao Sanxian decoction high-dosage (JSXD HD) group at random. A FD model was established with reserpine, and animals were given intragastric administration. During this period, weight and food intake of animals were recorded. Samples of rat gastric antrum, spleen, and duodenum were collected for pathological staining and immunohistochemical determination of Ghrelin protein expression after 19 days of treatment. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of related brain gut peptides in serum. Moreover, 16S rRNA sequencing was used to valuate the influence of intestinal flora structure of the cecal contents of experimental rats. And plasma metabolomics by Ultra Performance Liquid Chromatography coupled with Quadrupole-Time-of-Flight mass spectrometry (UPLC-Q/TOF-MS) were performed to further reveal the mechanism of action. RESULTS Jiao Sanxian decoction (JSXD) group with different dosage could increase body weight and food intake, improve histopathological changes, and alter disordered brain gut peptides in FD rats. 16S rRNA sequencing results described that JSXD improved the disorder of structural composition, biodiversity and function of gut microbiota in FD rats. Metabolomics illustrated 26 metabolites with JSXD treatment underwent continuous changes, which revealed JSXD might exert digestive effect by ameliorating abnormal metabolic pathways. The most relevant metabolic pathways were arachidonic acid metabolism, pyruvate metabolism, glycerophospholipid metabolism, alanine, aspartate and glutamate metabolism. CONCLUSIONS JSXD can improve functional dyspepsia in rats and the mechanism is related to regulate secretion of brain gut peptides, significantly improve the disorder of intestinal flora and ameliorated multi-metabolic pathways.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xingran Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunwei Hu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiaoxia Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Longtao Ju
- Nantong Hospital of Integrated Traditional Chinese and Western Medicine, Nantong, 226000, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Jian Xu
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Li FT, Yang D, Song FY, Liu M, Dai YL, Zheng F, Yue H. In Vitro Effects of Ginseng and the Seed of Zizyphus jujuba var. spinosa on Gut Microbiota of Rats with Spleen Deficiency. Chem Biodivers 2020; 17:e2000199. [PMID: 32578291 DOI: 10.1002/cbdv.202000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
Ginseng and the seed of Zizyphus jujuba var. spinosa, which are traditional Chinese medicinal materials, were often used in ancient Chinese recipes as a pair of medicines. They can replenish the primordial qi and tonify the spleen. This study investigated the effects of ginseng and the seed of Zizyphus jujuba var. spinosa (GS) extract on gut microbiota diversity in rats with spleen deficiency syndrome (SDS). A total of 52 compounds (including 16 flavonoids, 35 saponins, and 1 alkaloid) were identified and analyzed from the GS extract by UPLC-Q-Orbitrap-MS/MS. The GS extract significantly increased the relative abundance of Firmicutes and Bacteroidetes in rats with SDS but decreased that of Proteobacteria and Actinobacteria. At the genus level, the GS extract significantly increased the relative abundance of Lactobacillus and Bifidobacterium in rats with SDS but decreased that of Streptococcus, Escherichia-Shigella, Veillonella, and Enterococcus. In addition, the GS extract influenced glucose and amino acid metabolism. In summary, the results showed that the GS extract changed the structure and diversity of gut microbiota in rats with SDS and balanced the metabolic process.
Collapse
Affiliation(s)
- Fang-Tong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Di Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Feng-Yuan Song
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Ming Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Yu-Lin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| |
Collapse
|