1
|
Lababidi JM, Kabil MF, Azzazy HMES. Sofosbuvir: A comprehensive profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2025; 50:1-41. [PMID: 39855774 DOI: 10.1016/bs.podrm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Sofosbuvir, a nucleotide analogue, is an antiviral medication that belongs to the class of direct-acting antivirals (DAAs). It is primarily used in the treatment of chronic hepatitis C virus (HCV) infections. Sofosbuvir works by inhibiting the replication of HCV, disrupting its ability to produce RNA and effectively reducing the viral load in the body. This chapter offers a comprehensive examination of sofosbuvir, including its nomenclature, physiochemical attributes, synthesis, and thermal analysis. Furthermore, it presents various analytical methods employed for both spectrophotometric and chromatographic assessments of sofosbuvir in different matrices.
Collapse
Affiliation(s)
- Jude Majed Lababidi
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Egypt
| | - Mohamed Fawzy Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Egypt; Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
2
|
Foster H, Nilsson M, Adams RW, Morris GA. Universally Quantitative Band-Selective Pure Shift NMR Spectroscopy. Anal Chem 2024; 96:9601-9609. [PMID: 38812212 PMCID: PMC11170551 DOI: 10.1021/acs.analchem.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
NMR spectroscopy is often described as a quantitative analytical technique. Strictly, only the simple pulse-acquire experiment is universally quantitative, but the poor signal resolution of the 1H NMR pulse-acquie experiment frequently complicates quantitative analysis. Pure shift NMR techniques provide higher resolution, by reducing signal overlap, but they are susceptible to a variety of sources of site-dependent signal loss. Here, we introduce a new method that corrects for signal loss from such sources in band-selective pure shift NMR experiments, by performing different numbers of iterations of the same pulse sequence elements before acquisition to allow extrapolation back to the loss-free signal. We apply this method to both interferogram and semi-realtime acquisition modes, obtaining integrals within 1% of those acquired from a pulse-acquire experiment for a three-component mixture.
Collapse
Affiliation(s)
- Howard
M. Foster
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gareth A. Morris
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
El-Sayed A, Sabry MA, Elmansi H, Eid M, Shalan S. Stability indicating eco-friendly quantitation of terbutaline and its pro-drug bambuterol using quantitative proton nuclear magnetic spectroscopy. BMC Chem 2024; 18:25. [PMID: 38291471 PMCID: PMC10829239 DOI: 10.1186/s13065-024-01120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Quantitative 1H-NMR became an increasingly important issue in pharmaceutical analytical chemistry. This study used NMR spectroscopy to assay the bronchodilator drug terbutaline sulfate and its pro-drug bambuterol hydrochloride in pure form and pharmaceutical preparations. The technique proceeded using deuterium oxide (D2O) as an 1H-NMR solvent and phloroglucinol anhydrous as an internal standard (IS). Comparatively, to the phloroglucinol signal at 5.9 ppm, the resulting quantitative signals of the studied drugs were corrected. The terbutaline singlet signal at 6.3 ppm was chosen for quantification, while the bambuterol quantitative singlet signal was at 2.9 ppm. The two drugs were rectilinear over the concentration range of 1.0-16.0 mg/mL. LOD values were 0.19 and 0.21 mg/mL while LOQ values were 0.58 and 0.64 mg/mL for terbutaline and bambuterol respectively. The developed method has been validated according to the International Conference of Harmonization (ICH) regarding linearity, accuracy, precision, specificity, and robustness. A greenness profile assessment was applied, and the method proved to be green. The method enables the assay of the two drugs in pure drug and pharmaceutical preparations. The method also enables the assay of the two drugs in the presence of each other; thus, it is considered a stability-indicating method where terbutaline is an acid degradation product of bambuterol.
Collapse
Affiliation(s)
- Asmaa El-Sayed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed A Sabry
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manal Eid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Shereen Shalan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Jeong HJ, Min S, Baek J, Kim J, Chung J, Jeong K. Real-Time Reaction Monitoring of Azide-Alkyne Cycloadditions Using Benchtop NMR-Based Signal Amplification by Reversible Exchange (SABRE). ACS MEASUREMENT SCIENCE AU 2023; 3:134-142. [PMID: 37090259 PMCID: PMC10120034 DOI: 10.1021/acsmeasuresciau.2c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
Rufinamide, possessing a triazole ring, is a new antiepileptic drug (AED) relatively well-absorbed in the lower dose range (10 mg/kg per day) and is currently being used in antiepileptic medications. Triazole derivatives can interact with various enzymes and receptors in biological systems via diverse non-covalent interactions, thus inducing versatile biological effects. Strain-promoted azide-alkyne cycloaddition (SPAAC) is a significant method for obtaining triazoles, even under physiological conditions, in the absence of a copper catalyst. To confirm the progress of chemical reactions under biological conditions, research on reaction monitoring at low concentrations is essential. This promising strategy is gaining acceptance for applications in fields such as drug development and nanoscience. We investigated the optimum Ir catalyst and magnetic field for achieving maximum proton hyperpolarization transfer in triazole derivatives. These reactions were analyzed using signal amplification by reversible exchange (SABRE) to overcome the limitations of low sensitivity in nuclear magnetic resonance spectroscopy, when monitoring copper-free click reactions in real time. Finally, a more versatile copper-catalyzed click reaction was monitored in real time, using a 60 MHz benchtop NMR system, in order to analyze the reaction mechanism.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Physics and Chemistry, Korea Military
Academy, Seoul 01805, South Korea
| |
Collapse
|
5
|
Cressy D, Akula M, Frederick A, Shipley K, Osborne D. A method for the nucleophilic fluorination of 4-dimethylaminopyridine (DMAP) pyridinium salts. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Zhao Y, Wu B, Hua Z, Xu P, Xu H, Shen W, DI B, Wang Y, Su M. Quantification of Cathinone Analogues without Reference Standard Using 1H Quantitative NMR. ANAL SCI 2021; 37:1577-1582. [PMID: 33994416 DOI: 10.2116/analsci.21p048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synthetic cathinones are a type of new psychoactive substances (NPS) that have been seriously abused. Owing to the rapid variation in their structures, the absence of reference standards poses a challenge in quantitative investigations. In this study, a 1H quantitative nuclear magnetic resonance (1H qNMR) method was established using maleic acid as the internal standard and the shared signal (i.e., the methylidyne hydrogen) on the parent synthetic cathinones structure as the quantitative peak. Taking 3-methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) as an example, this study optimized the acquisition parameters and conducted method validation, including an evaluation of the specificity, linearity, accuracy, precision, and robustness. Using this 1H qNMR method, the contents of mexedrone and its analogues, including 1-(3-chlorophenyl)-2-(ethylamino)-propan-1-one (3-CEC), 4-chloro-α-pyrroli-dinopropiophenone (4-Cl-α-PVP), 1-(3,4-methylenedioxy-phenyl)-2-propylamino-propan-1-one (propylone), and methcathinone, were obtained. The obtained results showed that the method was accurate, rapid, versatile, and can be used to address the qualitative and quantitative issues related to similar substances.
Collapse
Affiliation(s)
- Yuxin Zhao
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| | - Bo Wu
- School of Pharmacy, China Pharmaceutical University.,The Narcotic Control Division, Nanjing Municipal Public Security Bureau
| | - Zhendong Hua
- China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security
| | - Peng Xu
- China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security
| | - Hui Xu
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| | - Wenbin Shen
- Center for Instrumental Analysis, China Pharmaceutical University
| | - Bin DI
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| | - Youmei Wang
- China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| |
Collapse
|
7
|
Khalil A, Kashif M. Nuclear Magnetic Resonance Spectroscopy for Quantitative Analysis: A Review for Its Application in the Chemical, Pharmaceutical and Medicinal Domains. Crit Rev Anal Chem 2021; 53:997-1011. [PMID: 34752175 DOI: 10.1080/10408347.2021.2000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Nuclear magnetic resonance (NMR) is a rapid and accurate analytical tool for qualification and quantification. The capacity of NMR of being quantitative can also justify the calibration of other analytical methods. In pharmaceutical domain, quantitative NMR (qNMR) can be applied in the identification and quantification of drug simultaneously. The early drug development stage requires a minimum sample for analysis. Thus, priority should be given to utilize this technique to attain results with least investment, rapid analysis time and minimum sample consumption. This technique is a significant phenomenon to identify impurities, drug substance, residual solvents of in-process control (IPC) samples and characterizing the formulations. From an analyst's perspective, qNMR proved to be a routine practice in pharmaceutical industry to qualify any drug product. The absolute and relative methods offer great help in quantifying the component of interest in the process control samples and finished products. This review highlights the evolution of NMR application in the pharmaceutical industry, where determining the purity of drug substance, drug product and establishing the identity of impurities and its level are the challenging aspects. NMR in medicinal field emerging as a numero uno for Covid-19 severity detection and its dire consequences, accelerated vaccine development and the mapping of SAR-COV-2 RNA and proteins via chemical shift assignments.
Collapse
Affiliation(s)
- Adila Khalil
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Kashif
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
8
|
Aboras SI, Abdine HH, Ragab MAA, Korany MA. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit Rev Anal Chem 2021; 52:1878-1900. [PMID: 34138669 DOI: 10.1080/10408347.2021.1923456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
9
|
Wu N, Danoun S, Balayssac S, Malet-Martino M, Lamoureux C, Gilard V. Synthetic cannabinoids in e-liquids: A proton and fluorine NMR analysis from a conventional spectrometer to a compact one. Forensic Sci Int 2021; 324:110813. [PMID: 33993010 DOI: 10.1016/j.forsciint.2021.110813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/27/2023]
Abstract
The 1H NMR profiles of 13 samples of e-liquids supplied by French customs were obtained with high-field and low-field NMR. The high-field 1H NMR spectra allowed the detection of matrix signals, synthetic cannabinoids, and flavouring compounds. Quantitative results were obtained for the five synthetic cannabinoids detected: JWH-210, 5F-MDMB-PICA, 5F-ADB, 5F-AKB48, and ADB-FUBINACA. Conventional GC-MS analysis was used to confirm compound identification. Fluorine-19 NMR was proposed for the quantification of fluorinated synthetic cannabinoids and was successfully implemented on both 400 MHz and 60 MHz NMR spectrometers. This study based on few examples explored the potentiality of low-field NMR for quantitative and quantitative analysis of synthetic cannabinoids in e-liquids.
Collapse
Affiliation(s)
- Nao Wu
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (UMR CNRS 5068), Université Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse Cedex, 31062, France
| | - Saïda Danoun
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (UMR CNRS 5068), Université Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse Cedex, 31062, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (UMR CNRS 5068), Université Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse Cedex, 31062, France
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (UMR CNRS 5068), Université Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse Cedex, 31062, France
| | | | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (UMR CNRS 5068), Université Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse Cedex, 31062, France.
| |
Collapse
|
10
|
Jaki BU, Bzhelyansky A, Pauli GF. Quantitative NMR (qNMR) for pharmaceutical analysis: The pioneering work of George Hanna at the US FDA. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:7-15. [PMID: 32910504 DOI: 10.1002/mrc.5099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
In the last two decades, quantitative NMR (qNMR) has become increasingly important for the analysis of pharmaceuticals, chemicals, and natural products including dietary supplements. For the purpose of quality control and chemical standardization of a large variety of pharmaceutical, chemical, and medicinal products, qNMR has proven to be a valuable orthogonal quantification method and a compelling alternative to chromatographic techniques. This work reviews a fundamental component of the early development of qNMR, reflected in the pioneering work of the late George M. Hanna during the years between 1984 and 2006 at the US Food and Drug Administration (FDA). Because Hanna performed the majority of his groundbreaking work on a 90-MHz instrument, his legacy output connects with recent progress in low-field benchtop NMR instrumentation. Hanna gradually established the utility of qNMR for the routine quality control analyses practiced in pharmaceutical and related operations well ahead of his peers. His work has the potential to inspire new developments in qNMR applied to small molecules of biomedical importance.
Collapse
Affiliation(s)
- Birgit U Jaki
- Institute for Tuberculosis Research (ITR), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and WHO Collaborating Center for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Anton Bzhelyansky
- The United States Pharmacopeial Convention (USP), Rockville, MD, USA
| | - Guido F Pauli
- Institute for Tuberculosis Research (ITR), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and WHO Collaborating Center for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|