1
|
Zeng Y, Zhang M, Ding L, Xie S, Liu P, Xie D, Wang S, Cheng F. Molecularly imprinted polymer photoelectrochemical sensor for the detection of triazophos in water based on carbon quantum dot-modified titanium dioxide. Mikrochim Acta 2024; 191:277. [PMID: 38647714 DOI: 10.1007/s00604-024-06364-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.
Collapse
Affiliation(s)
- Yinan Zeng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Lei Ding
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shilei Xie
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Dong Xie
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
2
|
Saccomandi P. Design Considerations of an ITO-Coated U-Shaped Fiber Optic LMR Biosensor for the Detection of Antibiotic Ciprofloxacin. BIOSENSORS 2023; 13:362. [PMID: 36979574 PMCID: PMC10046811 DOI: 10.3390/bios13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The extensive use of antibiotics has become a serious concern due to certain deficiencies in wastewater facilities, their resistance to removal, and their toxic effects on the natural environment. Therefore, substantial attention has been given to the detection of antibiotics because of their potential detriment to the ecosystem and human health. In the present study, a novel design of indium tin oxide (ITO) coated U-shaped fiber optic lossy mode resonance (LMR) biosensor is presented for the sensitive detection of the antibiotic ciprofloxacin (CIP). The performance of the designed U-shaped LMR sensor is characterized in terms of its sensitivity, full width at half maximum (FWHM), the figure of merit (FOM), and the limit of detection (LOD). For the proposed U-shaped LMR sensing probe, the various crucial factors such as the thickness (d) of the ITO layer, sensing region length (L), and bending radius (R) are optimized. The thickness of the ITO layer is optimized in such a way that two LMR curves are observed in the transmission spectrum and, thereafter, the performance parameters are evaluated for each LMR. It is observed that the designed U-shaped LMR sensor with optimized parameters shows an approximately seven-fold enhancement in sensitivity compared to the straight-core fiber optic LMR sensor. The numerical results revealed that the designed U-shaped fiber optic LMR biosensor can provide a maximum sensitivity of 17,209.9 nm/RIU with the highest FOM of 91.42 RIU-1, and LOD of 6.3 × 10-5 RIU for the detection of CIP hydrochloride in the concentration range of 0.001 to 0.029 mol∙dm-3. Thus, it is believed that the designed LMR biosensor can practically explore its potential use in environmental monitoring and biomedical applications and hence, opens a new window of opportunity for the researchers working in the field of U-shaped fiber optic LMR biosensing.
Collapse
|
3
|
Ayankojo AG, Reut J, Nguyen VBC, Boroznjak R, Syritski V. Advances in Detection of Antibiotic Pollutants in Aqueous Media Using Molecular Imprinting Technique-A Review. BIOSENSORS 2022; 12:bios12070441. [PMID: 35884244 PMCID: PMC9312920 DOI: 10.3390/bios12070441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
Antibiotics constitute one of the emerging categories of persistent organic pollutants, characterised by their expansion of resistant pathogens. Antibiotic pollutants create a major public health challenge, with already identifiable detrimental effects on human and animal health. A fundamental aspect of controlling and preventing the spread of pollutants is the continuous screening and monitoring of environmental samples. Molecular imprinting is a state-of-the-art technique for designing robust biomimetic receptors called molecularly imprinted polymers (MIPs), which mimic natural biomolecules in target-selective recognition. When integrated with an appropriate sensor transducer, MIP demonstrates a potential for the needed environmental monitoring, thus justifying the observed rise in interest in this field of research. This review examines scientific interventions within the last decade on the determination of antibiotic water pollutants using MIP receptors interfaced with label-free sensing platforms, with an expanded focus on optical, piezoelectric, and electrochemical systems. Following these, the review evaluates the analytical performance of outstanding MIP-based sensors for environmentally significant antibiotics, while highlighting the importance of computational chemistry in functional monomer selection and the strategies for signal amplification and performance improvement. Lastly, the review points out the future trends in antibiotic MIP research, as it transits from a proof of concept to the much demanded commercially available entity.
Collapse
|
4
|
Ultrasensitive detection and removal of carbamazepine in wastewater using UCNPs functionalized with thin-shell MIPs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|