1
|
Zhang Z, Li T, Tan Y, Liu L, Chen H, Zhang L, Mauk MG, Qiu X. Digital recombinase polymerase amplification chip based on asymmetric contact angle composite interface. Anal Chim Acta 2025; 1337:343543. [PMID: 39800502 DOI: 10.1016/j.aca.2024.343543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification. RESULT We designed with a pressure-driven and highly asymmetric contact angle composite interface to enable robust digital RPA. The addition of surfactants to the PDMS creates an asymmetric contact angle between the upper and lower surfaces of the fluid channel, improving reagent flow and facilitating entry into microwells. This design addresses the challenges posed by high-viscosity reagents, which typically complicate effective digital discretization and lead to fluorescence signal aggregation. By diluting specific components of the RPA reagent, we improved the uniformity of amplification and effectively reduced signal aggregation. The hydrophobic surface of results strong adsorption to biological macromolecules, such as nucleic acids and proteins, which will decrease the efficiency of dRPA amplification. To achieve efficient amplification of reagents in the microchamber, this work uses a surface modification strategy of PDMS doped surfactant, which eliminates the issue of PDMS materials hindering dRPA amplification efficiency. SIGNIFICANCE AND NOVELTY The ACA-DID chip demonstrated excellent analytical accuracy in the quantification of African swine fever DNA samples, highlighting its potential to enhance the accessibility and effectiveness of dRPA technology. This innovation promises to overcome key limitations in current digital RPA amplification platforms, driving broader adoption and application, especially in cost-sensitive or resource-limited settings.
Collapse
Affiliation(s)
- Zhongping Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Li
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Tan
- Ningbo Customs Technology Center, Ningbo, Zhejiang, 315012, China
| | - Luyao Liu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Chen
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Michael G Mauk
- MEAM Department, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, USA, 191045
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Zhang Z, Yuan H, Ni R, Yin J, Li M, Yang P, Cao X, Zhou J, Su X, Chen Y, Gao W, Jin Q. Minute level ultra-rapid and thousand copies level high-sensitive pathogen nucleic acid identification based on contactless impedance detection microsensor. Talanta 2024; 278:126487. [PMID: 39002258 DOI: 10.1016/j.talanta.2024.126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Early screening for pathogens is crucial during pandemic outbreaks. Nucleic acid testing (NAT) is a valuable method for keeping pathogens from spreading. However, the long detection time and large size of the instruments involved significantly limited the efficiency of detection. This work described an integrated NAT microsensor that facilitated rapid and extremely sensitive detection based on nucleic acid amplification (NAA) on a chip. The biochip consisted of two layers incorporating a heater, a thermometer, an interdigital electrode (IDE) and a reaction chamber. The Pt electrode based heater and thermometer were utilized to maintain a specific temperature for the sample in the chamber. The thermometer exhibited a good linear correlation with a sensitivity of 9.36 Ω/°C and the heater achieved a heating efficiency of approximately 6.5 °C/s. Multiple ions were released during NAA, resulting in a decrease in the impedance of the amplification system solution. A large signal of impedance was generated by the released ions due to its linear correlation with the logarithm of the ion concentration. With this detection principle, IDE was employed for real-time monitoring of the in-chip reaction system impedance and NAA process. Specific nucleic acids from two pathogens (SARS-CoV-2, Vibrio vulnificus) were detected with this microsensor. The samples were qualitatively analyzed on microchip within 3 min, with a limit of detection (LOD) of 103 copies/μL. The proposed sensor presented several advantages, including reduced NAT time and increased sensitivity. Consequently, it has shown significant potential in rapid and high-quality nucleic acid testing for the field of epidemic prevention.
Collapse
Affiliation(s)
- Zhikang Zhang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Haojun Yuan
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiawen Yin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Min Li
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Panhui Yang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinyi Cao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yongbin Chen
- Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, 315800, Ningbo, Zhejiang, China
| | - Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Qinghui Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
3
|
Kasputis T, Hosmer KE, He Y, Chen J. Ensuring food safety: Microfluidic-based approaches for the detection of food contaminants. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400003. [PMID: 38948318 PMCID: PMC11210746 DOI: 10.1002/ansa.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024]
Abstract
Detecting foodborne contamination is a critical challenge in ensuring food safety and preventing human suffering and economic losses. Contaminated food, comprising biological agents (e.g. bacteria, viruses and fungi) and chemicals (e.g. toxins, allergens, antibiotics and heavy metals), poses significant risks to public health. Microfluidic technology has emerged as a transformative solution, revolutionizing the detection of contaminants with precise and efficient methodologies. By manipulating minute volumes of fluid on miniaturized systems, microfluidics enables the creation of portable chips for biosensing applications. Advancements from early glass and silicon devices to modern polymers and cellulose-based chips have significantly enhanced microfluidic technology, offering adaptability, flexibility, cost-effectiveness and biocompatibility. Microfluidic systems integrate seamlessly with various biosensing reactions, facilitating nucleic acid amplification, target analyte recognition and accurate signal readouts. As research progresses, microfluidic technology is poised to play a pivotal role in addressing evolving challenges in the detection of foodborne contaminants. In this short review, we delve into various manufacturing materials for state-of-the-art microfluidic devices, including inorganics, elastomers, thermoplastics and paper. Additionally, we examine several applications where microfluidic technology offers unique advantages in the detection of food contaminants, including bacteria, viruses, fungi, allergens and more. This review underscores the significant advancement of microfluidic technology and its pivotal role in advancing the detection and mitigation of foodborne contaminants.
Collapse
Affiliation(s)
- Tom Kasputis
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | - Yawen He
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Juhong Chen
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
4
|
Li X, Wang H, Qi X, Ji Y, Li F, Chen X, Li K, Li L. PCR Independent Strategy-Based Biosensors for RNA Detection. BIOSENSORS 2024; 14:200. [PMID: 38667193 PMCID: PMC11048163 DOI: 10.3390/bios14040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
RNA is an important information and functional molecule. It can respond to the regulation of life processes and is also a key molecule in gene expression and regulation. Therefore, RNA detection technology has been widely used in many fields, especially in disease diagnosis, medical research, genetic engineering and other fields. However, the current RT-qPCR for RNA detection is complex, costly and requires the support of professional technicians, resulting in it not having great potential for rapid application in the field. PCR-free techniques are the most attractive alternative. They are a low-cost, simple operation method and do not require the support of large instruments, providing a new concept for the development of new RNA detection methods. This article reviews current PCR-free methods, overviews reported RNA biosensors based on electrochemistry, SPR, microfluidics, nanomaterials and CRISPR, and discusses their challenges and future research prospects in RNA detection.
Collapse
Affiliation(s)
- Xinran Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Haoqian Wang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China;
| | - Xin Qi
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Kai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| |
Collapse
|
5
|
Chen F, Lyu C, Li Z, Xiu L, Li H, Xie Y, Cao R, Hu Q, Yin K. Fully Integrated Microfluidic Platform for Multiplexed Detection of Hunov by a Dynamic Confined-Space-Implemented One-Pot Rpa-Lamp System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306612. [PMID: 38126673 PMCID: PMC10916549 DOI: 10.1002/advs.202306612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Human norovirus (HuNoV) is the leading cause of nonbacterial acute gastroenteritis, which is highly infectious, rapidly evolving, and easily transmitted through feces. The accurate and early detection of HuNoV subtypes is essential for effective treatment, early surveillance, risk assessment, and disease prevention. In this study, a portable multiplex HuNoV detection platform that combines integrated microfluidics and cascade isothermal amplification, using a streamlined protocol for clinical fecal-based diagnosis is presented. To overcome the problems of carryover contamination and the incompatibility between recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), a Dynamic confined-space-implemented One-pot RPA-LAMP colorimetric detection system (DORLA) is developed by creating a hydrogen bond network. The DORLA system exhibits excellent sensitivity, with detection limits of 10 copies µL-1 and 1 copy µL-1 for HuNoV GI and GII, respectively. In addition, a portable diagnostic platform consisting of a thermostatic control module and an integrated 3D-printed microfluidic chip for specific HuNoV capture, nucleic acid pretreatment, and DORLA detection, which enables simultaneous diagnosis of HuNoV GI and GII is developed. A DORLA-based microfluidic platform exhibits satisfactory performance with high sensitivity and portability, and has high potential for the rapid point-of-care detection of HuNoV in clinical fecal samples, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Chenang Lyu
- Department of Food Science and TechnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Zhao Li
- Stake Key Laboratory on Integrated OptoelectronicsInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Runzhen Cao
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
6
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
7
|
Ngoc LTN, Lee YC. Current Trends in RNA Virus Detection via Nucleic Acid Isothermal Amplification-Based Platforms. BIOSENSORS 2024; 14:97. [PMID: 38392016 PMCID: PMC10886876 DOI: 10.3390/bios14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ribonucleic acid (RNA) viruses are one of the major classes of pathogens that cause human diseases. The conventional method to detect RNA viruses is real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), but it has some limitations. It is expensive and time-consuming, with infrastructure and trained personnel requirements. Its high throughput requires sophisticated automation and large-scale infrastructure. Isothermal amplification methods have been explored as an alternative to address these challenges. These methods are rapid, user-friendly, low-cost, can be performed in less specialized settings, and are highly accurate for detecting RNA viruses. Microfluidic technology provides an ideal platform for performing virus diagnostic tests, including sample preparation, immunoassays, and nucleic acid-based assays. Among these techniques, nucleic acid isothermal amplification methods have been widely integrated with microfluidic platforms for RNA virus detection owing to their simplicity, sensitivity, selectivity, and short analysis time. This review summarizes some common isothermal amplification methods for RNA viruses. It also describes commercialized devices and kits that use isothermal amplification techniques for SARS-CoV-2 detection. Furthermore, the most recent applications of isothermal amplification-based microfluidic platforms for RNA virus detection are discussed in this article.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Lin SC, Bai GH, Lin PC, Chen CY, Hsu YH, Lee YC, Chen SY. Molecular and Genetics-Based Systems for Tracing the Evolution and Exploring the Mechanisms of Human Norovirus Infections. Int J Mol Sci 2023; 24:ijms24109093. [PMID: 37240438 DOI: 10.3390/ijms24109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City 10002, Taiwan
| | - Pei-Chun Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chung-Yung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Chang Lee
- Department of Infectious Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Infectious Diseases, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
9
|
Li D, Zhao J, Lan W, Zhao Y, Sun X. Effect of food matrix on rapid detection of Vibrio parahaemolyticus in aquatic products based on toxR gene. World J Microbiol Biotechnol 2023; 39:188. [PMID: 37156898 DOI: 10.1007/s11274-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Vibrio parahaemolyticus has become an important public threat to human health. Rapid and robust pathogen diagnostics are necessary for monitoring its outbreak and spreading. Herein, we report an assay for the detection of V. parahaemolyticus based on recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD), namely RAA-LFD. The RAA-LFD took 20 min at 36~38 ℃, and showed excellent specificity. It detected as low as 6.4 fg/µL of V. parahaemolyticus in genomic DNA, or 7.4 CFU/g spiked food samples with 4 h of enrichment. The limit of detection in shrimp (Litopenaeus Vannamei), fish (Carassius auratus), clam (Ruditapes philippinarum) evidenced that sensitivity was considerably affected by the food matrix. The presence of food matrix reduced the sensitivity of spiked food samples by 10 ~ 100 times. In the filed samples detection, RAA-LFD method showed good coincidence with GB4789.7-2013 method and PCR method at rates of 90.6% and 94.1%, respectively. RAA-LFD has high accuracy and sensitivity for the detection of V. parahaemolyticus, which can serve as a model tool to meet the growing need for point-of-care diagnosis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Darong Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiayi Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
10
|
Liu H, Ma S, Ning G, Zhang R, Liang H, Liu F, Xiao L, Guo L, Zhang Y, Li CP, Zhao H. A “peptide-target-aptamer” electrochemical biosensor for norovirus detection using a black phosphorous nanosheet@Ti3C2-Mxene nanohybrid and magnetic covalent organic framework. Talanta 2023; 258:124433. [PMID: 36996585 DOI: 10.1016/j.talanta.2023.124433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Norovirus (NoV) is a major foodborne pathogen responsible for acute gastroenteritis epidemics, and establishing a robust detection method for the timely identification and monitoring of NoV contamination is of great significance. In this study, a peptide-target-aptamer sandwich electrochemical biosensor for NoV was fabricated using Au@BP@Ti3C2-MXene and magnetic Au@ZnFe2O4@COF nanocomposites. The response currents of the electrochemical biosensor were proportional to the NoV concentrations ranging from 0.01-105 copies/mL with a detection limit (LOD) of 0.003 copies/mL (S/N = 3). To our best knowledge, this LOD was the lowest among published assays to date, due to the specific recognition of the affinity peptide and aptamer for NoV and the outstanding catalytic activity of nanomaterials. Furthermore, the biosensor showed excellent selectivity, anti-interference performance, and satisfactory stability. The NoV concentrations in simulative food matrixes were successfully detected using the constructed biosensor. Meanwhile, NoV in stool samples was also successfully quantified without complex pretreatment. The designed biosensor had the potential to detect NoV (even at a low level) in foods, clinical samples, and environmental samples, providing a new method for NoV detection in food safety and diagnosing foodborne pathogens.
Collapse
|
11
|
Wang J, Jiang H, Pan L, Gu X, Xiao C, Liu P, Tang Y, Fang J, Li X, Lu C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 2023; 11:1020430. [PMID: 36815884 PMCID: PMC9930993 DOI: 10.3389/fbioe.2023.1020430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
As nucleic acid testing is playing a vital role in increasingly many research fields, the need for rapid on-site testing methods is also increasing. The test procedure often consists of three steps: Sample preparation, amplification, and detection. This review covers recent advances in on-chip methods for each of these three steps and explains the principles underlying related methods. The sample preparation process is further divided into cell lysis and nucleic acid purification, and methods for the integration of these two steps on a single chip are discussed. Under amplification, on-chip studies based on PCR and isothermal amplification are covered. Three isothermal amplification methods reported to have good resistance to PCR inhibitors are selected for discussion due to their potential for use in direct amplification. Chip designs and novel strategies employed to achieve rapid extraction/amplification with satisfactory efficiency are discussed. Four detection methods providing rapid responses (fluorescent, optical, and electrochemical detection methods, plus lateral flow assay) are evaluated for their potential in rapid on-site detection. In the final section, we discuss strategies to improve the speed of the entire procedure and to integrate all three steps onto a single chip; we also comment on recent advances, and on obstacles to reducing the cost of chip manufacture and achieving mass production. We conclude that future trends will focus on effective nucleic acid extraction via combined methods and direct amplification via isothermal methods.
Collapse
Affiliation(s)
- Jingwen Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd., Ningbo, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd., Hangzhou, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd., Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoqian Li
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
12
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Wang S, Cai G, Duan H, Qi W, Lin J. Automatic and multi-channel detection of bacteria on a slidable centrifugal disc based on FTA card nucleic acid extraction and recombinase aided amplification. LAB ON A CHIP 2021; 22:80-89. [PMID: 34796896 DOI: 10.1039/d1lc00915j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rapid screening of foodborne pathogens is key to preventing food poisoning. In this study, a slidable centrifugal disc was developed for automatic and multi-channel detection of Salmonella typhimurium using Flinders Technology Associates (FTA) cards for nucleic acid extraction and recombinase aided amplification (RAA) for nucleic acid detection. The slidable FTA switching and centrifugal fluidic control were elaborately combined to achieve fully automatic operations, including centrifugation of the bacterial sample to obtain the concentrated bacteria, heating and drying of the FTA card to extract the nucleic acids, washing of the FTA card to remove the impurities, and RAA detection of the extracted DNA to determine the concentration. Under the optimal conditions, this slidable centrifugal disc was able to detect 10 CFU mL-1 in a spiked chicken meat supernatant in 1 h with an average recovery of 101.8% and an average standard deviation of 6.5%. This disc has been demonstrated as an alternative for sample-in-result-out detection of Salmonella and has shown potential for simultaneous detection of multiple bacteria.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hong Duan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| | - Wuzhen Qi
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|