1
|
Zhao T, Chen H, Song Z, Hou Y, Xu Y, Wang Q, Liu Q. Red emitting carbon dots for detection of endogenous glutathione with fluorescence enhancement and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125901. [PMID: 39961256 DOI: 10.1016/j.saa.2025.125901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Glutathione (GSH) as a key endogenous antioxidant plays the essential role in many bioprocesses, and the lack of GSH would result in a series of diseases. In order to develop a fluorescent indicator for monitoring the fluctuation of GSH and provide information for clinical diagnosis, the red fluorescence carbon dots containing double bonds (DB-CDs) were developed by one-pot hydrothermal process. Owing to photoinduced electron transfer (PET) process between the surface amine groups and the carbon core, the DB-CDs presented the weak fluorescence. Upon addition of GSH, PET process was inhibited by addition reaction between sulfhydryl group of GSH and double bonds, and the bright red fluorescence was exhibited with an emission maximum (λflmax) of 630 nm. A good linear relationship was exhibited in the range of 0.12-75 μM with the detection limit as low as 34.6 nM. Moreover, the cell imaging and the fast kinetic data all demonstrated that the DB-CDs could detect the endogenous GSH without interferences from metal ions and other amino acids, suggesting that the DB-CDs could be used as fluorescence probe for GSH detection in living systems.
Collapse
Affiliation(s)
- Tongtong Zhao
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Huilin Chen
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Ziyan Song
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Yujia Hou
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Yuan Xu
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Qin Wang
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Qiaoling Liu
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China.
| |
Collapse
|
2
|
Yao Z, Wang C, Ma Z, Huang R, Wang B, Zhang J, Zhao X, Zhang W, Shi H. Solid-Phase Pyrolysis Synthesis of Amino Acid-Based Nitrogen-Doped Carbon Dots as an "On-Off-On" Fluorescent Probe for the Detection of Copper Ions and Glutathione. J Fluoresc 2025:10.1007/s10895-025-04206-0. [PMID: 39985613 DOI: 10.1007/s10895-025-04206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
This study introduces the synthesis of amino acid-based nitrogen-doped carbon dots (N-L-Ser-CDs) from L-serine (L-Ser) and urea through a straightforward and economical one-step solid-phase pyrolysis process. The incorporation of nitrogen into the carbon dots resulted in a remarkable 27.6-fold increase in fluorescence intensity, featuring a peak emission at 405 nm when excited at 330 nm and a significant fluorescence quantum yield of 22.5%. These N-L-Ser-CDs displayed a specific binding affinity for Cu2+, leading to a pronounced fluorescence quenching effect. However, upon interaction with glutathione (GSH), the fluorescence of the N-L-Ser-CDs + Cu2+ complex was selectively restored. This restoration was attributed to the displacement of Cu2+ from the surface of the N-L-Ser-CDs due to the strong interaction between GSH and Cu2+. The mechanism underlying this fluorescence quenching was elucidated as an electron transfer process from the excited state of the N-L-Ser-CDs to Cu2+. Additionally, the sensor developed in this study exhibited a linear detection range of 0-90 µM for Cu2+ with a detection limit of 3 µM, and a linear detection range of 0-120 µM with a detection limit of 3 µM for GSH. By integrating the detection capabilities for both Cu2+ and GSH, a successful "on-off-on" fluorescent probe was developed. Most importantly, this proposed method offers simplicity, affordability, and ease of use, while also showing potential for practical GSH detection in real urine samples.
Collapse
Affiliation(s)
- Zhuoru Yao
- School of Health Engineering, Lanzhou University of Information Science and Technology, Lanzhou, 730050, PR China
| | - Cunjin Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, PR China.
| | - Zixin Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, PR China
| | - Ruixin Huang
- School of Health Engineering, Lanzhou University of Information Science and Technology, Lanzhou, 730050, PR China
| | - Baozhong Wang
- School of Health Engineering, Lanzhou University of Information Science and Technology, Lanzhou, 730050, PR China
| | - Jing Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, PR China
| | - Xiaoliang Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, PR China
| | - Weijie Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, PR China
| | - Huanxian Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Shaanxi University Engineering Research Center of Traditional Chinese Medicine and Aroma Industry, Xianyang, 712046, PR China.
| |
Collapse
|
3
|
Liu L, Chen M, Zhao T, Yuan L, Mi Z, Bai Y, Fei P, Liu Z, Li C, Wang L, Feng F. Ratiometric fluorescence and smartphone-assisted sensing platform based on dual-emission carbon dots for brilliant blue detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124782. [PMID: 38991616 DOI: 10.1016/j.saa.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, an innovative ratiometric fluorescence and smartphone-assisted visual sensing platform based on blue-yellow dual-emission carbon dots (BY-CDs) was constructed for the first time to determine brilliant blue. The BY-CDs was synthesized via a facile one-step hydrothermal process involving propyl gallate and o-phenylenediamine. The synthesized BY-CDs exhibit favorable water solubility and exceptional fluorescence stability. Under excitation at 370 nm, BY-CDs show two distinguishable fluorescence emission bands (458 and 558 nm). Upon addition of brilliant blue, the fluorescence intensity at 558 nm exhibited a significant quenching effect attributed to fluorescence resonance energy transfer (FRET), while the fluorescence intensity at 458 nm was basically unchanged. The prepared BY-CDs can effectively serve as a ratiometric nanosensor for determining brilliant blue with the ratio of fluorescence intensities at 458 and 558 nm (F458/F558) as response signal. In addition, the developed ratiometric fluorescence sensor exhibits a noticeable alteration in color from yellow to green under UV light with a wavelength of 365 nm upon addition of varying concentrations of brilliant blue, which provides the possibility of visual detection of brilliant blue by a smartphone application. Finally, the BY-CDs based dual-mode sensing platform successfully detected brilliant blue in actual food samples and achieved a desirable recovery rate. This study highlights the merits of fast, convenient, economical, real-time, visual, high accuracy, excellent precision, good selectivity and high sensitivity for brilliant blue detection, and paves new paths for the monitoring of brilliant blue in real samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Ting Zhao
- Shanxi Datong University, Datong 037009, PR China
| | - Lin Yuan
- Shanxi Normal University, Taiyuan 030032, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Yunfeng Bai
- Shanxi Datong University, Datong 037009, PR China
| | - Peng Fei
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Caiqing Li
- Shanxi Datong University, Datong 037009, PR China
| | - Ligang Wang
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China; Shanxi Normal University, Taiyuan 030032, PR China.
| |
Collapse
|
4
|
Dong H, Xie H, Xie X, Wang Q, Sun H, Zhu W, Zhao G, Xu C, Yin K, Zhang J. Ampicillin-derived carbon dots as the sensitive probe for the detection of Fe 3+ and Cu 2+ in living cells and water samples. Mikrochim Acta 2024; 191:759. [PMID: 39585453 DOI: 10.1007/s00604-024-06849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Water-soluble N-doped fluorescent (FL) carbon dots (ACDs) were successfully fabricated hydrothermally using ampicillin sodium as sole precursor. The produced ACDs exhibit satisfactory optical behavior, favorable photostability, and acceptable water solubility. With bright blue emission at 450 nm, the ACDs were utilized for multivariate sensing Fe3+ and Cu2+ based on the synergistic effect of the inner filter effect (IFE) and static quenching with detection limits of 0.31 μM and 0.26 μM, respectively. The practicality of ACDs has been verified by the successful determination of Fe3+ and Cu2+ in real water and living cells. These findings confirm the feasibility of the proposed ACDs as FL sensors for efficient and selective detection of Fe3+ and Cu2+, which present promising prospects for real-time monitoring these two metal ions in environmental and biological systems.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Xiaoman Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Wenju Zhu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China.
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China.
| |
Collapse
|
5
|
Nandhini K, Ilanchelian M. Orange-Red-Emitting Carbon Dots for Bilirubin Detection and Its Antibacterial Activity Against Escherichia coli and Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:2936-2950. [PMID: 38593036 DOI: 10.1021/acsabm.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this study, orange-red-emitting carbon dots (OR-CDs) were prepared from p-phenylenediamine (p-PDA) and urea as starting precursors through the hydrothermal method. The OR-CDs exhibited bright orange-red fluorescence at 618 nm when excited at 480 nm. The obtained OR-CDs exhibited stable photophysical properties under different physiological conditions. The unique photophysical property of OR-CDs were then utilized for fluorometric determination of bilirubin. The fluorometric assay revealed that the fluorescence intensity of OR-CDs is gradually quenched upon the addition of bilirubin (1-20 μM). The mechanism of fluorescence quenching was evaluated by steady-state fluorescence analysis and time-correlated single photon counting measurements. The OR-CDs showed good selectivity and sensitivity toward bilirubin over other common interfering biomolecules. The present fluorometric assay showed a linear response toward bilirubin between 1 and 10 μM with a limit of detection of 4.80 nM. Further, a fluorescence test cotton swab-based detection probe has been successfully developed by incorporating OR-CDs for the point-of-care detection of bilirubin in biofluids. Furthermore, a light-emitting diode light that emits orange-red light was prepared by embedding the OR-CDs within the poly(vinyl alcohol) polymer matrix. Moreover, the antibacterial activity of OR-CDs was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antibacterial efficacy of OR-CDs was demonstrated by various mechanisms, such as reactive oxygen species generation, destruction of cell structure, chemical binding to membrane, and surface wrapping. Interestingly, the survival assay against L929 fibroblast cells exhibits favorable biocompatibility and bioimaging.
Collapse
Affiliation(s)
- Karuppasamy Nandhini
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
6
|
Ma J, Sun L, Gao F, Zhang S, Zhang Y, Wang Y, Zhang Y, Ma H. A Review of Dual-Emission Carbon Dots and Their Applications. Molecules 2023; 28:8134. [PMID: 38138622 PMCID: PMC10745998 DOI: 10.3390/molecules28248134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Carbon dots (CDs), as a rising star among fluorescent nanomaterials with excellent optical properties and fascinating dual-emission characteristics, have attracted increasing attention in sensing, bio-imaging, drug delivery, and so on. The synthesis of dual-emission CDs (DE-CDs) and the establishment of ratiometric fluorescence sensors can effectively diminish background interference and provide more accurate results than single-emission CDs. Although DE-CDs have generated increased attention in many fields, the review articles about DE-CDs are still insufficient. Therefore, we summarized the latest results and prepared this review. This review first provides an overview of the primary synthesis route and commonly used precursors in DE-CDs synthesis. Then, the photoluminescence mechanism behind the dual-emission phenomenon was discussed. Thirdly, the application of DE-CDs in metal cation detection, food safety analysis, biosensing, cell imaging, and optoelectronic devices has been extensively discussed. Finally, the main challenges and prospects for further development are presented. This review presents the latest research progress of DE-CDs synthesis and its application in ratiometric sensing; hopefully, it can help and encourage researchers to overcome existing challenges and broaden the area of DE-CDs research.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Lingbo Sun
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China; (L.S.); (Y.Z.)
| | - Feng Gao
- Xi’an Zhongkai Environmental Testing Co., Ltd., Xi’an 710000, China;
| | - Shiyu Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Yuhan Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China; (L.S.); (Y.Z.)
| | - Yixuan Wang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Hongyan Ma
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| |
Collapse
|
7
|
Liu Y, Liang F, Sun J, Sun R, Liu C, Deng C, Seidi F. Synthesis Strategies, Optical Mechanisms, and Applications of Dual-Emissive Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2869. [PMID: 37947715 PMCID: PMC10650469 DOI: 10.3390/nano13212869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Tuning the optical properties of carbon dots (CDs) and figuring out the mechanisms underneath the emissive phenomena have been one of the most cutting-edge topics in the development of carbon-based nanomaterials. Dual-emissive CDs possess the intrinsic dual-emission character upon single-wavelength excitation, which significantly benefits their multi-purpose applications. Explosive exploitations of dual-emissive CDs have been reported during the past five years. Nevertheless, there is a lack of a systematic summary of the rising star nanomaterial. In this review, we summarize the synthesis strategies and optical mechanisms of the dual-emissive CDs. The applications in the areas of biosensing, bioimaging, as well as photoelectronic devices are also outlined. The last section presents the main challenges and perspectives in further promoting the development of dual-emissive CDs. By covering the most vital publications, we anticipate that the review is of referential significance for researchers in the synthesis, characterization, and application of dual-emissive CDs.
Collapse
Affiliation(s)
- Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (F.L.); (J.S.); (R.S.); (C.L.); (C.D.); (F.S.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Atulbhai SV, Singhal RK, Basu H, Kailasa SK. Perspectives of different colour-emissive nanomaterials in fluorescent ink, LEDs, cell imaging, and sensing of various analytes. LUMINESCENCE 2023; 38:867-895. [PMID: 35501299 DOI: 10.1002/bio.4272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
In the past 2 decades, multicolour light-emissive nanomaterials have gained significant interest in chemical and biological sciences because of their unique optical properties. These materials have drawn much attention due to their unique characteristics towards various application fields. The development of novel nanomaterials has become the pinpoint for different application areas. In this review, the recent progress in the area of multicolour-emissive nanomaterials is summarized. The different emissions (white, orange, green, red, blue, and multicolour) of nanostructure materials (metal nanoclusters, quantum dots, carbon dots, and rare earth-based nanomaterials) are briefly discussed. The potential applications of different colour-emissive nanomaterials in the development of fluorescent inks, light-emitting diodes, cell imaging, and sensing devices are briefly summarized. Finally, the future perspectives of multicolour-emissive nanomaterials are discussed.
Collapse
Affiliation(s)
- Sadhu Vibhuti Atulbhai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Hirakendu Basu
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
9
|
Patel S, Shrivas K, Sinha D, Karbhal I, Patle TK. A portable smartphone-assisted digital image fluorimetry for analysis of methiocarb pesticide in vegetables: Nitrogen-doped carbon quantum dots as a sensing probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122824. [PMID: 37192578 DOI: 10.1016/j.saa.2023.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
The increasing use of pesticides in the agriculture fields strengthen the crop production to meet the needs of increasing population. The residues in water and food materials cause several health hazards. Herein, nitrogen-doped carbon quantum dot (N-CQDs) is designed for determination of methiocarb pesticide in vegetables by fluorescent paper sensor and compared the results with fluorimetry. The fluorescent paper-based detection is performed by recording the change in fluorescence of N-CQDs with introduction of methiocarb using smartphone and ImageJ software. Good linear range was acquired for analysis of methiocarb from 10 to 1000 μgL-1 with a low detection limit (LOD) of 3.5 μgL-1 in fluorimetry; and 700-10,000 μgL-1 with a LOD of 500 μgL-1 in fluorescent paper sensor. A better recovery from 92.0 to 95.4% illustrating the selectivity of both methods for analysis of methiocarb in vegetables. Thus, the advantage of using N-CQDs as a fluorescent sensor for analysis of methiocarb in vegetables is instrument free, portable and user-friendly.
Collapse
Affiliation(s)
- Sanyukta Patel
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG 492010, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishanakar Shukla University, Raipur 492010, CG, India.
| | - Deepak Sinha
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG 492010, India.
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishanakar Shukla University, Raipur 492010, CG, India
| | - Tarun Kumar Patle
- Department of Chemistry, Pt. Sundarlal Sharma Open University, Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
10
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
11
|
Energy transfer mediated rapid and visual discrimination of tetracyclines and quercetin in food by using N, Cu Co-doped carbon dots. Anal Chim Acta 2023; 1239:340706. [PMID: 36628714 DOI: 10.1016/j.aca.2022.340706] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The appearance of multi-drug resistant Escherichia coli makes the combination of tetracyclines (TCs) and quercetin (QCT) more common to fight stubborn bacterial infections so that the effective detections of TCs and QCT are essential and necessary. Here, a novel fluorescence probe for differentiating TCs and QCT is developed based on the nitrogen and copper co-doped carbon dots (N, Cu-CDs). The N, Cu-CDs are prepared from ethylene diamine tetraacetic acid (EDTA) and anhydrous copper chloride as precursors through hydrothermal process and exhibit bright blue fluorescence with excellent optical stability. With the presence of four tetracyclines (DOX, TC, CTC and OTC), the fluorescence intensity of N, Cu-CDs is quenched directly due to the internal filtration effect (IFE), and the detection limit obtained through single-signal fluorescence sensing is as low as 23.8 nM for DOX, 37.2 nM for TC, 43.8 nM for OTC and 28.8 nM for CTC. More remarkably, three dimensional ratiometric fluorescence probe for detecting QCT is proposed based on the appearance of another emission at (410 nm, 490 nm) due to electron transform (ET) process. This new method shows a good linear relationship in the range of 10-100 μM with a low detection limit of 59.3 nM. Furthermore, a dual-channel fluorescence sensing platform based on microfluidics paper-based analytical devices (μPADs) is developed for simultaneously visual discrimination of TCs (DOX is chosen as the typical detecting model for TCs) and QCT. This investigation provides a new way for the development of CDs as multifunction fluorescence probes.
Collapse
|
12
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
da Cruz MGA, Onwumere JN, Chen J, Beele B, Yarema M, Budnyk S, Slabon A, Rodrigues BVM. Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2196031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Márcia G. A. da Cruz
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joy N. Onwumere
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Björn Beele
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Maksym Yarema
- Department of Information Technology and Electrical Engineering, Institute for Electronics, ETH Zurich, Zurich, Switzerland
| | | | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Bruno V. M. Rodrigues
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
14
|
Synthesis of trichromatic carbon dots from a single precursor by solvent effect and its versatile applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
15
|
Li X, Zhao L, Wu Y, Zhou A, Jiang X, Zhan Y, Sun Z. Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce 4+ and ratiometric detection of Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121638. [PMID: 35908499 DOI: 10.1016/j.saa.2022.121638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots have been widely focused on the field of metal ion detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and boron co-doped carbon dots (NB-CDs) are obtained by one-pot solvothermal using p-phenylenediamine and boric acid as raw materials. The NB-CDs exhibit excitation-independent emissions and the maximum emission wavelength is 597 nm at 420 nm excitation. The fluorescence can be quenched by Ce4+ effectively and selectively, and the detection range of Ce4+ is gained from 0.14 to 180 μM with a detection limit of as low as 0.14 μM. Furthermore, Al3+ can also recombine with NB-CDs surface functional groups, which shows a detection range from 1.07 to 100 μM and a detection limit of as low as 1.07 μM, accompanied with a blue-shift to 527 nm.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Liuxi Zhao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhan Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ao Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xuanfeng Jiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhengguang Sun
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
16
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Li Z, Zhou Q, Li S, Liu M, Li Y, Chen C. Carbon dots fabricated by solid-phase carbonization using p-toluidine and l-cysteine for sensitive detection of copper. CHEMOSPHERE 2022; 308:136298. [PMID: 36064008 DOI: 10.1016/j.chemosphere.2022.136298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 μM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
18
|
Fabrication of polyaspartic acid surface-modified highly fluorescent carbon quantum dot nanoprobe for sensing of reduced glutathione in real sample. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Xu J, Guo Y, Gong T, Cui K, Hou L, Yuan C. B, N co-doped carbon dots based fluorescent test paper and hydrogel for visual and efficient dual ion detection. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Red-emission carbon dots as fluorescent “on–off–on” probe for highly sensitive and selective detection of Cu2+ and glutathione. Anal Bioanal Chem 2022; 414:2219-2233. [DOI: 10.1007/s00216-021-03859-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
|
21
|
Fan P, Liu C, Hu C, Li F, Lin X, Xiao F, Liang H, Li L, Yang S. Orange-emissive N,S-co-doped carbon dots for label-free and sensitive fluorescence assay of vitamin B 12. NEW J CHEM 2022. [DOI: 10.1039/d1nj04706j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N,S-CDs with orange fluorescent emission were synthesized via a hydrothermal method using o-phenylenediamine and thiourea. A novel fluorometric method for the determination of VB12 based on the IFE was established.
Collapse
Affiliation(s)
- Pengfei Fan
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Can Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Congcong Hu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Feifei Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xi Lin
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Fubing Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Hao Liang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Le Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Shengyuan Yang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
22
|
Zhang XY, Li Y, Wang YY, Liu XY, Jiang FL, Liu Y, Jiang P. Nitrogen and sulfur co-doped carbon dots with bright fluorescence for intracellular detection of iron ion and thiol. J Colloid Interface Sci 2021; 611:255-264. [PMID: 34953458 DOI: 10.1016/j.jcis.2021.12.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
Carbon dots (CDs) have been widely used in recent years because of their excellent water solubility and abundant surface functional groups. However, compared with quantum dots or biological probes, the quantum yield of CDs is lower, and the fluorescence mainly concentrated in the blue-green range, which significantly limits the biological applications of CDs. Heteroatoms doping is the most common method to improve the luminescence of CDs. In this work, nitrogen and sulfur co-doped luminescent CDs were successfully synthesized by microwave assisted method using glutathione (GSH) and p-phenylenediamine (PPD) as raw materials. It can emit bright green fluorescence in ethanol solution, and the maximum emission wavelength is 535 nm when excited at 374 nm, and the absolute quantum yield is as high as 63%. Iron ion (Fe3+) can interact with the functional groups on the surface of the CDs to form CDs/Fe3+, which is a non-fluorescence complex, and Fe3+ can be reduced to ferrous ion (Fe2+). In other words, the reaction mechanism of CDs and Fe3+ is a combination of dynamic quenching and static quenching. The fluorescence of CDs quenched by Fe3+ can be restored by thiol, because there is a stronger binding force between sulfhydryl (-SH) on the surface of thiol and Fe3+, which enables CDs to be released. In addition, the CDs has good biocompatibility and stability, indicating that it has excellent potential in bioimaging. This discovery will expand the application of CDs in the fields of biosensing and imaging.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu Li
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Ying Wang
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xing-Yu Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China; State Key Laboratory of Membrane Separation and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Peng Jiang
- Department of Chemistry, College of Chemistry and Molecular Sciences & Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|