1
|
Trejos-Soto L, Rivas-Hernández GO, Mora-Bolaños R, Vargas-Valverde N, Valerio A, Ulloa-Fernández A, Oviedo-Quirós J, García-Piñeres A, Paniagua SA, Centeno-Cerdas C, Lesser-Rojas L. Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties. Bioengineering (Basel) 2024; 11:1059. [PMID: 39593719 PMCID: PMC11591056 DOI: 10.3390/bioengineering11111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the development of biocompatible scaffolds for bone regeneration, utilizing polylactic acid (PLA) combined with calcium phosphate as a pH buffer and diatomaceous earth as a biocompatibilizer. These materials were extruded and 3D-printed to enhance cell adhesion and biodegradability after enough cell growth. The biocompatibility of the resulting composites, with different proportions of the components and sterilization methods, was tested according to the ISO 10993 protocol. The optimal performance, with nearly zero cytotoxicity, was observed with 20 PLA/1 CP/1 DE mass ratios and gamma sterilization. Tension analysis and scanning electron microscopy (SEM) were applied to the 3D-printed composites, which were also analyzed by differential scanning calorimetry (DSC) to understand the origin of the tension properties better, which were comparable to those of cancellous bone. Degradation tests under physiological conditions for 13 weeks showed no significant mass loss. Furthermore, it was observed that cell adhesion, viability, proliferation, and osteoconduction are possible in the scaffolds studied, opening opportunities for future studies to substantiate the use of 3D-printed silica-filled composites as an alternative to homologous implants for various bone regeneration applications.
Collapse
Affiliation(s)
- Lilliam Trejos-Soto
- Master Program of Engineering in Medical Devices, School of Materials Science and Engineering, Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
| | - Gabriel O. Rivas-Hernández
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
- Bioengineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| | - Rodrigo Mora-Bolaños
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), San José 1174, Costa Rica (S.A.P.)
- Advanced Materials Science and Engineering Master Programme (AMASE), Université de Lorraine, 54000 Nancy, France
| | - Nathalia Vargas-Valverde
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), San José 1174, Costa Rica (S.A.P.)
- Faculty of Chemistry and Biology, Université Grenoble Alpes, 38400 Saint Martin d’Hères, France
| | - Abraham Valerio
- School of Physics, Universidad de Costa Rica, San José 11501, Costa Rica
- Advanced Materials and Liquid Crystal Institute & Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Andrea Ulloa-Fernández
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
| | - Jorge Oviedo-Quirós
- Craniomaxillofacial Cleft Palate Unit, National Children’s Hospital “Dr. Carlos Sáenz Herrera”, San José 10103, Costa Rica
- Faculty of Dentistry, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Alfonso García-Piñeres
- Cellular and Molecular Biology Research Center (CIBCM), Universidad de Costa Rica, San José 11501, Costa Rica
| | - Sergio A. Paniagua
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), San José 1174, Costa Rica (S.A.P.)
| | - Carolina Centeno-Cerdas
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
- Department of Biochemistry, School of Medicine, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Leonardo Lesser-Rojas
- School of Physics, Universidad de Costa Rica, San José 11501, Costa Rica
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
2
|
Kim Y, Hamada K, Sekine K. The effect of supplementing the calcium phosphate cement containing poloxamer 407 on cellular activities. J Biomed Mater Res B Appl Biomater 2024; 112:e35335. [PMID: 37772460 DOI: 10.1002/jbm.b.35335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mβ-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (β-TCP). The mβ-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mβ-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mβ-TCP containing poloxamer 407 was similar to that of mβ-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mβ-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mβ-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
3
|
Evaluation of the effects of halloysite nanotube on polyhydroxybutyrate - chitosan electrospun scaffolds for cartilage tissue engineering applications. Int J Biol Macromol 2023; 233:123651. [PMID: 36775228 DOI: 10.1016/j.ijbiomac.2023.123651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Scaffolding method and material that mimic the extracellular matrix (ECM) of host tissue is an integral part of cartilage tissue engineering. This study aims to enhance the properties of electrospun scaffolds made of polyhydroxybutyrate (PHB) - Chitosan (Cs) by adding 1, 3, and 5 wt% halloysite nanotubes (HNT). The morphological, mechanical, and hydrophilicity evaluations expressed that the scaffold containing 3 wt% HNT exhibits the most appropriate features. The FTIR and Raman analysis confirmed hydrogen bond formation between the HNT and PHB-Cs blend. 3 wt% of HNT incorporation decreased the mean fibers' diameter from 965.189 to 745.16 nm and enhanced tensile strength by 169.4 %. By the addition of 3 wt% HNT, surface contact angle decreased from 61.45° ± 3.3 to 46.65 ± 1.8° and surface roughness increased from 684.69 to 747.62 nm. Our findings indicated that biodegradation had been slowed by incorporating HNT into the PHB-Cs matrix. Also, MTT test results demonstrated a significant increase in cell viability of chondrocytes on the PHB-Cs/3 wt% HNT (PC-3H) scaffold after 7 days of cell culture. Accordingly, the PC-3H scaffold can be considered a potential candidate for cartilage tissue engineering.
Collapse
|
4
|
The Influence of the Matrix on the Apatite-Forming Ability of Calcium Containing Polydimethylsiloxane-Based Cements for Endodontics. Molecules 2022; 27:molecules27185750. [PMID: 36144487 PMCID: PMC9504520 DOI: 10.3390/molecules27185750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to characterize the chemical properties and bioactivity of an endodontic sealer (GuttaFlow Bioseal) based on polydimethylsiloxane (PDMS) and containing a calcium bioglass as a doping agent. Commercial PDMS-based cement free from calcium bioglass (GuttaFlow 2 and RoekoSeal) were characterized for comparison as well as GuttaFlow 2 doped with dicalcium phosphate dihydrate, hydroxyapatite, or a tricalcium silicate-based cement. IR and Raman analyses were performed on fresh materials as well as after aging tests in Hank’s Balanced Salt Solution (28 d, 37 °C). Under these conditions, the strengthening of the 970 cm−1 Raman band and the appearance of the IR components at 1455−1414, 1015, 868, and 600−559 cm−1 revealed the deposition of B-type carbonated apatite. The Raman I970/I638 and IR A1010/A1258 ratios (markers of apatite-forming ability) showed that bioactivity decreased along with the series: GuttaFlow Bioseal > GuttaFlow 2 > RoekoSeal. The PDMS matrix played a relevant role in bioactivity; in GuttaFlow 2, the crosslinking degree was favorable for Ca2+ adsorption/complexation and the formation of a thin calcium phosphate layer. In the less crosslinked RoekoSeal, such processes did not occur. The doped cements showed bioactivity higher than GuttaFlow 2, suggesting that the particles of the mineralizing agents are spontaneously exposed on the cement surface, although the hydrophobicity of the PDMS matrix slowed down apatite deposition. Relevant properties in the endodontic practice (i.e., setting time, radiopacity, apatite-forming ability) were related to material composition and the crosslinking degree.
Collapse
|
5
|
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A. Functional role of inorganic trace elements in dentin apatite-Part II: Copper, manganese, silicon, and lithium. J Trace Elem Med Biol 2022; 72:126995. [PMID: 35605438 DOI: 10.1016/j.jtemb.2022.126995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Trace elements are recognized as being essential in dentin and bone apatite. The effects of zinc, strontium, magnesium, and iron were discussed in part I. In part II, we evaluated the functional role of copper, manganese, silicon, and lithium on dentin apatite, with critical effects on morphology, crystallinity, and solubility. An electronic search was performed on the role of these trace elements in dentin apatite from January 2000 to January 2022. The recent aspects of the relationship between four different trace elements and their critical role in the structure and mechanics of dentin were assessed. These findings show that elements play a vital role in the human body, especially in the crystalline structure of dentin apatite. Copper presents immense benefits in dental restorative biomaterials because of its importance in enhancing odontogenesis. The biological role of manganese in dentin apatite is still largely unknown, but it has gained attention for many of its broad physiological functions such as modulating osteoblast proliferation, differentiation, and metabolism in bones. The functional role of silicon in dentin apatite is similarly lacking, but findings reveal its importance in mineralization and collagen formation, making it useful for the field of restorative dentistry. Likewise, lithium was found to have important roles in dentin mineralization as well as in the formation of dentin bridges and tissues. Therefore, there is growing importance in studying the aforementioned elements in the context of dentin apatite.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Director, Biomaterial and Prosthodontics Laboratory and Assistant Professor, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States; Adjunct Assistant Professor, Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States.
| | - Julia Vakhnovetsky
- Visiting Researcher, Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, United States; Pre-Dental Student, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Anna Vakhnovetsky
- Pre-Medical Student, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Karr JC. Improving Outcomes for Osteomyelitis After Partial Bone Resection: A Preliminary Report. J Am Podiatr Med Assoc 2021; 111:466707. [PMID: 34144585 DOI: 10.7547/19-157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Following partial bone resection for osteomyelitis, continued osteomyelitis in the remaining bone is common and problematic. Shortcomings in available surgical techniques to combat this also contribute to this problem. Presented are two case studies using a solution to this problem with a different type of bone void filler as a carrier vehicle for delivering antibiotics into the remaining infected bone to eradicate any residual bacteria in the remaining bone.
Collapse
|
7
|
Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02053-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Silicon-Substituted Hydroxyapatite Particles and Response of Adipose Stem Cells In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00108-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
In situ preparation of multicomponent polymer composite nanofibrous scaffolds with enhanced osteogenic and angiogenic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:565-579. [DOI: 10.1016/j.msec.2018.09.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/07/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
|
10
|
Asadipour K, Nezafati N, Nourbakhsh MS, Hafezi-Ardakani M, Bohlooli S. Characterization and biological properties of a novel synthesized silicon-substituted hydroxyapatite derived from eggshell. Int J Artif Organs 2018; 42:95-108. [PMID: 30345843 DOI: 10.1177/0391398818806159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the effect of adding different concentrations of silicon on physical, mechanical and biological properties of a synthesized aqueous precipitated eggshell-derived hydroxyapatite (e-HA) was evaluated. No secondary phases were detected by X-ray diffraction for the specimens e-HA and e-HA containing silicon (Si-e-HAs) before and after heating at 1200°C. A reduction in the crystallite size and a-axis as well as an increase in c-axis was occurred when silicon replacement was happened in the structure of e-HA. The presence of Si-O vibrations and carbonate modes for Si-e-HAs was confirmed by Fourier transform infrared spectroscopy analysis. The range of porosity and density was varied from 25% and 2.4 g cm-3 to 7% and 2.8 g cm-3 for e-HA and Si-e-HAs. The values of Young's modulus ( E) and compressive strength were varied for e-HA and Si-e-HAs. The porous structure of the samples was reduced when they were heated as e-HA kept the porous microstructure containing some dense areas and Si-e-HAs possessed a rough surface including slight levels of microporosity. The acellular in vitro bioactivity represented different apatite morphologies for e-HA and Si-e-HAs. The G-292 osteoblastic cells were stretched well on the surface with polygon-shaped morphology for 0.8Si-e-HA after 7 days of culture. According to MTT assay and alkaline phosphatase test, the maximum cell activity was related to 0.8Si-e-HA. The minimum inhibitory concentration for 0.8Si-e-HA and e-HA was estimated to be about 3.2 and 4.4 mg/mL, respectively. In overall, the sample 0.8Si-e-HA exhibited a higher bacteriostatic effect than e-HA against gram-negative bacterial strain Escherichia coli.
Collapse
Affiliation(s)
- Kamal Asadipour
- 1 Faculty of New Science and Technology, Semnan University, Semnan, Iran
| | - Nader Nezafati
- 2 Department of Nano-Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Masoud Hafezi-Ardakani
- 4 Pardis Pajoohesh Fanavaran Yazd, BT Center, Yazd Science and Technology Park, Yazd, Iran
| | - Saleh Bohlooli
- 1 Faculty of New Science and Technology, Semnan University, Semnan, Iran
| |
Collapse
|
11
|
Meka SRK, Kumar Verma S, Agarwal V, Chatterjee K. In Situ Silication of Polymer Nanofibers to Engineer Multi-Biofunctional Composites. ChemistrySelect 2018. [DOI: 10.1002/slct.201703124] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sai Rama Krishna Meka
- Department of Materials Engineering; Indian Institute of Science; Bangalore 560012 India, Tel: +91-80-22933408
| | - Shailendra Kumar Verma
- Department of Materials Engineering; Indian Institute of Science; Bangalore 560012 India, Tel: +91-80-22933408
| | - Vipul Agarwal
- Department of Materials Engineering; Indian Institute of Science; Bangalore 560012 India, Tel: +91-80-22933408
| | - Kaushik Chatterjee
- Department of Materials Engineering; Indian Institute of Science; Bangalore 560012 India, Tel: +91-80-22933408
| |
Collapse
|
12
|
Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells. ScientificWorldJournal 2017; 2017:5260106. [PMID: 28913412 PMCID: PMC5585630 DOI: 10.1155/2017/5260106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
Calcium phosphate cement (CPC) that is based on α-tricalcium phosphate (α-TCP) is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF) have been used to improve the mechanical strength of biomaterials. However, the biological properties of WF remain poorly understood. Here, we tested the response of osteoblast-like cells to being cultured on CPC reinforced with 5% of WF (CPC-WF). We found that both types of cement studied achieved an ion balance for calcium and phosphate after 3 days of immersion in culture medium and this allowed subsequent long-term cell culture. CPC-WF increased cell viability and stimulated cell differentiation, compared to nonreinforced CPC. We hypothesize that late silicon release by CPC-WF induces increased cell proliferation and differentiation. Based on our findings, we propose that CPC-WF is a promising material for bone tissue engineering applications.
Collapse
|
13
|
Hamzawy EMA, El-Kady AM, El Gohary MI, El Saied AA, Zayed HS. In vivo
bioactivity evaluation for an inexpensive biocompatible composite based on wollastonite ceramic/soda-lime-silica glass. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7c79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Fuh LJ, Huang YJ, Chen WC, Lin DJ. Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:798-806. [DOI: 10.1016/j.msec.2017.02.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
15
|
Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles — Efficient calcium phosphate based non-viral gene delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:486-95. [DOI: 10.1016/j.msec.2016.06.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
|
16
|
Silva DF, Friis TE, Camargo NHA, Xiao Y. Characterization of mesoporous calcium phosphates from calcareous marine sediments containing Si, Sr and Zn for bone tissue engineering. J Mater Chem B 2016; 4:6842-6855. [PMID: 32263578 DOI: 10.1039/c6tb02255c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calcium phosphates (CAPs) can be produced from either biologically sourced materials or mineral deposits. The raw materials impart unique properties to the CAPs due to innate trace amounts of elements that affect the crystal structure, morphology and stoichiometry. Using calcium carbonate (CaCO3) precursors derived from fossilized calcareous marine sediments (FCMSs), we have synthesized a novel class of CAP biomaterials, termed fm-CaPs, with defined Ca/P molar ratios of 1.4 and 1.7 using a wet synthesis method. Compared with commercially available CAP biomaterials, such as hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), fm-CaP1.7 had a biphasic composition consisting of an HA phase (in a hexagonal system) and a β-TCP phase (in a rhombohedral crystalline system), which is desirable for the current design of bone substitutes, whereas fm-CaP1.4 consisted of an HA phase and a beta-dicalcium pyrophosphate phase (in a tetragonal system). These bioceramics exhibited a fringe structure of regular crystallographic orientation with well-ordered mesoporous channels. The FCMS raw material imparted trace amounts of silicon (Si), strontium (Sr) and zinc (Zn) to fm-CaPs; these are elements that are important for bone formation. The cyto-compatibility of these biomaterials and their effects on cellular activity were evaluated using osteoblast cells. Cell proliferation assays revealed no signs of cytotoxicity, whereas cells growth was equal to or better than HA and β-TCP controls. The SEM analysis of the cell and material interactions showed good cell spreading on the fm-CaP materials that was comparable to β-TCP and in vitro assays suggested robust osteogenic differentiation, as seen by increased mineralization (alizarin red) and upregulation of osteogenic gene expression. Our results indicate that fm-CaP1.7, in particular, has chemical, physical and morphological properties that make this material suitable for applications that promote bone tissue regeneration.
Collapse
Affiliation(s)
- D F Silva
- Programa de Pós Graduação em Ciência e Engenharia de Materiais, Universidade do Estado de Santa Catarina, 89.223-100, Joinville, SC, Brazil.
| | | | | | | |
Collapse
|
17
|
Aparicio JL, Rueda C, Manchón Á, Ewald A, Gbureck U, Alkhraisat MH, Jerez LB, Cabarcos EL. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation. ACTA ACUST UNITED AC 2016; 11:045005. [PMID: 27481549 DOI: 10.1088/1748-6041/11/4/045005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate. The cement porosity was about 40% with a shift of the average pore diameter to the nanometric range with increasing Si content. Interestingly, this new cement system provides a matrix with a high specific surface area of up to 29 m(2) g(-1). The cytocompatibility of the new Si-doped cements was tested with a human osteoblast-like cell line (MG-63) showing an enhancement of cell proliferation (up to threefold) when compared with unsubstituted material. Cements with a high silica content also improved the cell attachment. The in vivo results indicated that Si-CPCs induce the formation of new bone tissue, and modify cement resorption. We conclude that this cement provides an optimal environment to enhance osteoblast growth and proliferation that could be of interest in bone engineering.
Collapse
Affiliation(s)
- Julia Lucas Aparicio
- Faculty of Pharmacy, Department of Physical-Chemistry II, Complutense University of Madrid, Madrid 28040, Spain. Faculty of Odontology, Department of Stomatology III, UCM, Madrid 28040, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bellucci D, Sola A, Cannillo V. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. J Biomed Mater Res A 2015; 104:1030-56. [DOI: 10.1002/jbm.a.35619] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Devis Bellucci
- Department of Engineering “E. Ferrari,”; University of Modena and Reggio Emilia; via P. Vivarelli 10 Modena 41125 Italy
| | - Antonella Sola
- Department of Engineering “E. Ferrari,”; University of Modena and Reggio Emilia; via P. Vivarelli 10 Modena 41125 Italy
| | - Valeria Cannillo
- Department of Engineering “E. Ferrari,”; University of Modena and Reggio Emilia; via P. Vivarelli 10 Modena 41125 Italy
| |
Collapse
|
19
|
Lasgorceix M, Costa AM, Mavropoulos E, Sader M, Calasans M, Tanaka MN, Rossi A, Damia C, Chotard-Ghodsnia R, Champion E. In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2383-2393. [PMID: 24859368 DOI: 10.1007/s10856-014-5237-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.
Collapse
Affiliation(s)
- M Lasgorceix
- Université de Limoges, CNRS, SPCTS UMR 7315 Centre Européen de la Céramique, 12 rue Atlantis, 87068, Limoges, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Manchón A, Alkhraisat M, Rueda-Rodriguez C, Torres J, Prados-Frutos JC, Ewald A, Gbureck U, Cabrejos-Azama J, Rodriguez-González A, López-Cabarcos E. Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. J Biomed Mater Res A 2014; 103:479-88. [DOI: 10.1002/jbm.a.35196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/22/2014] [Accepted: 03/31/2014] [Indexed: 11/08/2022]
Affiliation(s)
- A. Manchón
- Department of Physical-Chemistry II, Faculty of Pharmacy; Complutense University of Madrid; 28040 Madrid Spain
| | - M. Alkhraisat
- Department of Stomatology, Faculty of Health Sciences; URJC; 28922 Alcorcon-Madrid Spain
| | - C. Rueda-Rodriguez
- Department of Stomatology, Faculty of Health Sciences; URJC; 28922 Alcorcon-Madrid Spain
| | - J. Torres
- Department of Physical-Chemistry II, Faculty of Pharmacy; Complutense University of Madrid; 28040 Madrid Spain
| | - J. C. Prados-Frutos
- Department of Physical-Chemistry II, Faculty of Pharmacy; Complutense University of Madrid; 28040 Madrid Spain
| | - A. Ewald
- Functional Materials for Medicine and Dentistry; Würzburg University; 97070 Würzburg Germany
| | - U. Gbureck
- Functional Materials for Medicine and Dentistry; Würzburg University; 97070 Würzburg Germany
| | - J. Cabrejos-Azama
- Department of Stomatology, Faculty of Health Sciences; URJC; 28922 Alcorcon-Madrid Spain
| | - A. Rodriguez-González
- Department of Physical-Chemistry II, Faculty of Pharmacy; Complutense University of Madrid; 28040 Madrid Spain
| | - E. López-Cabarcos
- Department of Stomatology, Faculty of Health Sciences; URJC; 28922 Alcorcon-Madrid Spain
| |
Collapse
|
21
|
Grandfield K, Palmquist A, Engqvist H, Thomsen P. Resolving the CaP-bone interface: a review of discoveries with light and electron microscopy. BIOMATTER 2014; 2:15-23. [PMID: 23507782 DOI: 10.4161/biom.20062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has long been known that the interfacial relationship between synthetic materials and tissue is influential in the success of implant materials. Instability at the implant interface has been shown, in some cases, to lead to complete implant failure. Bioceramics, and in particular calcium phosphates, form a large fraction of the implantable devices on the market today due to the biocompatibility they exhibit in contact with bone and tooth-like tissues. The characterization of such bioceramic-tissue interfaces has played a crucial role in understanding the behavior of bioceramics in vivo. In this review, we shed light on the preparation methods, technological approaches and key advances in resolving the interface between calcium phosphate bioceramics and bone, and share a future outlook on this field.
Collapse
Affiliation(s)
- Kathryn Grandfield
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
22
|
Khan AF, Saleem M, Afzal A, Ali A, Khan A, Khan AR. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:245-52. [DOI: 10.1016/j.msec.2013.11.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/30/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022]
|
23
|
A novel silicon-based electrochemical treatment to improve osteointegration of titanium implants. J Appl Biomater Funct Mater 2013; 11:e106-16. [PMID: 22865574 DOI: 10.5301/jabfm.2012.9419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Titanium and its alloy represent the most commonly used biomaterials worldwide designed for bone-contact under-load applications, which often require specific mechanical properties. In particular, a large number of different biomimetic surface treatments have been developed to speed up the osteointegration process, which facilitates a reduction in recovery time. PURPOSE The aim of this work is to investigate the physical-chemical, mechanical and bioactivity properties of an innovative biomimetic treatment on titanium performed using Anodic Spark Deposition (ASD) electrochemical treatment. METHODS The proposed ASD treatment was obtained in an electrochemical solution containing silicon, calcium, phosphorous and sodium followed by an alkali etching. Surface morphology was characterized using SEM and laser profilometry. Chemical and structural composition was assessed by EDS, ICP/OES and XRD analysis. Vickers micro hardness and static contact angle measurements were performed to assess the surface mechanical properties and wettability. RESULTS The proposed anodization treatment was capable of providing a chemical and morphologic modified titanium oxide layer, adherent and characterized by superhydrophilic properties. The microporous morphology was enriched by calcium, silicon, sodium and phosphorous.After incubation in Kokubo's Simulated Body Fluid (SBF) the treatment showed very high mineralization potential compared to the reference surfaces, accounting for a deposited hydroxyapatite layer as thick as 12 μm after 14 days of SBF incubation. CONCLUSIONS On the basis of the results obtained in this study, we believe that the novel silicon-based ASD biomimetic treatment represents a promising treatment capable of enhancing the osteointegration of titanium for dental and orthopedic applications.
Collapse
|
24
|
A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int J Artif Organs 2013; 35:864-75. [PMID: 23138702 DOI: 10.5301/ijao.5000161] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Among the different causes of orthopedic and dental implant failure, infection remains the most serious and devastating complication associated with biomaterial devices. PURPOSE The aim of this study was to develop an innovative osteointegrative and antibacterial biomimetic coating on titanium and to perform a chemical-physical and in vitro biological characterization of the coating using the SAOS-2 cell line. We also studied the antibacterial properties of the coating against both Gram-positive and Gram-negative bacteria strains. METHODS An electrochemical solution containing silicon, calcium, phosphorous, sodium, and silver nanoparticles was used to obtain the antibacterial by Anodic Spark Deposition (ASD) treatment. Surface morphology was characterized using SEM and laser profilometry. A qualitative analysis of the chemical composition of the coating was assessed by EDS. The adhesion properties of the coating to the titanium bulk were performed with a 3-point bending test. SAOS-2 osteoblastic cell line spreading and morphology and viability were investigated. The bacterial adhesion and the antibacterial properties were investigated after 3 h and 24 h of incubation with Streptococcus mutans, Streptococcus epidermidis, and Escherichia coli bacterial strains. RESULTS The proposed anodization treatment created a chemically and morphologically modified, adherent titanium oxide layer, characterized by a microporous morphology enriched by calcium, silicon, phosphorous, and silver. The preliminary biological characterization showed optimal SAOS-2 cell adhesion and proliferation as well as a strong antibacterial effect. CONCLUSIONS Based on the results of this study, we believe that this novel biomimetic and antibacterial treatment hold promise for enhancing osteointegration while conferring strong antibacterial properties to titanium.
Collapse
|
25
|
A silicon cell cycle in a bacterial model of calcium phosphate mineralogenesis. Micron 2012; 44:419-32. [PMID: 23098642 DOI: 10.1016/j.micron.2012.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/27/2012] [Accepted: 09/07/2012] [Indexed: 11/22/2022]
Abstract
The prokaryote Corynebacterium matruchotii produces calcium phosphate (bone salt) and may serve as a convenient model for examining individual factors relevant to vertebrate calcification. A factor of current clinical uncertainty is silicon. To investigate its possible role in biomineralisation advanced optical (digital deconvolution and 3D fluorescent image rendering) and electron microscopy (EDX microanalysis and elemental mapping) were applied to calcifying microbial colonies grown in graded Si concentrations (0-60mM). Cell viability was confirmed throughout by TO-PRO-3-iodide and SYTO-9 nucleic acid staining. It was observed that calcium accumulated in dense intracellular microspherical objects (types i-iii) as nanoparticles (5 nm, type i), nanospheres (30-50 nm, type ii) and filamentous clusters (0.1-0.5 μm, type iii), with a regular transitory Si content evident. With bacterial colony development (7-28 days) the P content increased from 5 to 60%, while Si was displaced from 60 to 5%, distinguishing the phenomenon from random contamination, and with a significant relationship (p<0.001) found between calcified object number and Si supplementation (optimum 0.01mM). The Si-containing, intracellular calcified objects (also positive for Mg and negative with Lysensor blue DND-167 for acidocalcisomes) were extruded naturally in bubble-like chains to complete the cycle by coating the cell surface with discrete mineral particles. These could be harvested by lysis, French press and density fractionation when Si was confirmed in a proportion. It was concluded that the unexplained orthopaedic activity of Si may derive from its special property to facilitate calcium phosphorylation in biological systems, thereby recapitulating an ancient and conserved bacterial cycle of calcification via silicification.
Collapse
|
26
|
Chaudhry AA, Knowles JC, Rehman I, Darr JA. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates. J Biomater Appl 2012; 28:448-61. [PMID: 22983020 PMCID: PMC4112750 DOI: 10.1177/0885328212460289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO₃-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO₃-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO₃-HA. For silicate-substituted hydroxyapatite (SiO₄-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO₄-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Aqif A Chaudhry
- Clean Materials Technology Group, Department of Chemistry, University College London, Christopher Ingold Laboratories, London, UK.
| | | | | | | |
Collapse
|
27
|
Guo H, Wei J, Song W, Zhang S, Yan Y, Liu C, Xiao T. Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. Int J Nanomedicine 2012; 7:3613-24. [PMID: 22848181 PMCID: PMC3405877 DOI: 10.2147/ijn.s32061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs) into calcium phosphate cement (CPC). The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC) were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that incorporation of WNFs into CPC improved the biological properties for wnf-CPC. Following the implantation of wnf-CPC into bone defects of rabbits, histological evaluation showed that wnf-CPC enhanced the efficiency of new bone formation in comparison with CPC, indicating excellent biocompatibility and osteogenesis of wnf-CPC. In conclusion, wnf-CPC exhibited promising prospects in bone regeneration.
Collapse
Affiliation(s)
- Han Guo
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Lehmann G, Cacciotti I, Palmero P, Montanaro L, Bianco A, Campagnolo L, Camaioni A. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites. Biomed Mater 2012; 7:055001. [DOI: 10.1088/1748-6041/7/5/055001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Grandfield K, Palmquist A, Engqvist H. High-resolution three-dimensional probes of biomaterials and their interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1337-1351. [PMID: 22349245 DOI: 10.1098/rsta.2011.0253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Interfacial relationships between biomaterials and tissues strongly influence the success of implant materials and their long-term functionality. Owing to the inhomogeneity of biological tissues at an interface, in particular bone tissue, two-dimensional images often lack detail on the interfacial morphological complexity. Furthermore, the increasing use of nanotechnology in the design and production of biomaterials demands characterization techniques on a similar length scale. Electron tomography (ET) can meet these challenges by enabling high-resolution three-dimensional imaging of biomaterial interfaces. In this article, we review the fundamentals of ET and highlight its recent applications in probing the three-dimensional structure of bioceramics and their interfaces, with particular focus on the hydroxyapatite-bone interface, titanium dioxide-bone interface and a mesoporous titania coating for controlled drug release.
Collapse
Affiliation(s)
- Kathryn Grandfield
- Applied Materials Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Coathup MJ, Hing KA, Samizadeh S, Chan O, Fang YS, Campion C, Buckland T, Blunn GW. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. J Biomed Mater Res A 2012; 100:1550-5. [DOI: 10.1002/jbm.a.34094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 11/12/2022]
|
31
|
Nikolić R, Kaličanin B, Krstić N. The release of zinc, copper, lead, and cadmium from the mineral tissue of teeth under the influence of soft drinks and sour-tasting food. Connect Tissue Res 2011; 53:229-35. [PMID: 22141735 DOI: 10.3109/03008207.2011.629765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study was carried out with the aim of identifying the effects of consuming sour-tasting food and refreshing drinks on the bone tissue of teeth among teenagers. The cumulative effect of a year-long exposure of teeth to the erosive effects of a model system of acidic media (citric acid, lactic acid, acetic acid, apple vinegar, lemonade, the soft drink Sprite, mineral water) was studied. The effects were registered based on the amount of released biometal ions, of zinc and copper, and toxic lead, during a period of 24 hr at room temperature, using the potentiometric stripping analysis. In the given time span, amounts ranging from 75 to 750 ppm of zinc, from 0.1 to 1.0 ppm of copper, and up to 1.5 ppm of lead were released from the dental matrix, while the release of cadmium was below the level of detection. The changes to the mineral structure of the bone tissue were monitored by the Fourier's transformation infrared spectroscopy and scanning electron microscopy technique. These studies have shown that under the influence of an acidic medium significant erosion to the tooth enamel ensues and that the eroded surfaces had a radius of 1-5 μm.
Collapse
Affiliation(s)
- Ružica Nikolić
- Department of Chemistry, Faculty of Sciences, University of Niš, Serbia
| | | | | |
Collapse
|
32
|
Yang F, Xie Y, Li H, Tang T, Zhang X, Gan Y, Zheng X, Dai K. Human bone marrow-derived stromal cells cultured with a plasma sprayed CaO-ZrO2-SiO2 coating. J Biomed Mater Res B Appl Biomater 2010; 95:192-201. [DOI: 10.1002/jbm.b.31702] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Byun IS, Sarkar SK, Anirban Jyoti M, Min YK, Seo HS, Lee BT, Song HY. Initial biocompatibility and enhanced osteoblast response of Si doping in a porous BCP bone graft substitute. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1937-1947. [PMID: 20361241 DOI: 10.1007/s10856-010-4061-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
Granular shape biphasic calcium phosphate (BCP) bone grafts with and without doping of silicon cations were evaluated in regards to biocompatibility and MG-63 cellular response. To do this we studied Cellular cytotoxicity, cellular adhesion and spreading behavior and cellular differentiation with alizarin red S staining. Gene expression in MG-63 cells on the implanted bone substitutes was also examined at different time points using RT-PCR. In comparison, the Si-doped BCP granule showed more cellular viability than the BCP granule without doping in MTT assay. Moreover, cell proliferation was much higher when Si doping was employed. The cells grown on the silicon-doped BCP substitutes had more active filopodial growth with cytoplasmic webbing that proceeded to the flattening stage, which was indicative of well cellular adhesion. When these cells were exposed to Si-doped BCP granules for 14 days, well differentiated MG-63 cells were observed. Osteonectin and osteopontin genes were highly expressed in the late stage of differentiation (14 days), whereas collagen type I mRNA were found to be highly expressed during the early stage (day 3). These combined results of this study demonstrate that silicon-doped BCP enhanced osteoblast attachment/spreading, proliferation, differentiation and gene expression.
Collapse
Affiliation(s)
- In-Seon Byun
- Department of Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnum 330-090, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Landi E, Uggeri J, Sprio S, Tampieri A, Guizzardi S. Human osteoblast behavior on as-synthesized SiO4 and B-CO3 co-substituted apatite. J Biomed Mater Res A 2010; 94:59-70. [DOI: 10.1002/jbm.a.32671] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Huan Z, Chang J. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009; 5:1253-64. [PMID: 18996779 DOI: 10.1016/j.actbio.2008.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/10/2008] [Accepted: 10/08/2008] [Indexed: 11/15/2022]
Abstract
Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement.
Collapse
Affiliation(s)
- Zhiguang Huan
- Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | | |
Collapse
|
36
|
Lu YP, Chen YM, Li ST, Wang JH. Surface nanocrystallization of hydroxyapatite coating. Acta Biomater 2008; 4:1865-72. [PMID: 18567551 DOI: 10.1016/j.actbio.2008.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
Abstract
Nanocharactered biomaterials, such as nanopowders, nanocrystalline compacts and nanostructured films, as well as materials with nanoscale roughness, have attracted much attention recently, due to their clear effects on cell response. Surface nanocrystallization of plasma-sprayed hydroxyapatite (HA) coating can be realized by conventional post-heat treatment. This study reveals that 20-30nm nanocrystals formed on HA coatings post-heat treated at 650 degrees C, and the increase in holding time increased the number of surface nanocrystals and intensified their aggregation. Hard aggregation occurred when HA coatings were repetitively post-heat treated. This indicates that the surface nanocrystallization is controllable. Cell experiments were carried out with rat calvarial osteoblasts. The post-heat treated HA coatings exhibit an obviously better osteoblast response than the as-sprayed coatings. Well-flattened cells attached themselves to the coating surfaces, with a good interaction between their filopodia and the nanocrystallized region. It is proposed that the surface nanocrystallization should be taken into account when the post-heat treatment process is introduced for the fabrication of HA coatings.
Collapse
Affiliation(s)
- Yu-Peng Lu
- School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
| | | | | | | |
Collapse
|
37
|
|
38
|
Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface. Biomaterials 2008; 29:2423-32. [DOI: 10.1016/j.biomaterials.2008.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/03/2008] [Indexed: 11/21/2022]
|
39
|
Abstract
The research on ceramic scaffolds for bone tissue engineering is, nowadays, one of the newest and most attractive topics in the field of materials for biomedical applications. These scaffolds are aimed to provide supporting or even enhance the reparative capacity of body. Biphasic calcium phosphates (BCPs) and silicon doped BCP are very interesting candidates to be used as materials for scaffolds fabrication in bone tissue engineering. BCPs and silicon doped BCP consist of a mixture of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) or HA and α-tricalcium phosphate (α-TCP), respectively. For the regenerative purposes BCPs show better performance than HA because of the higher solubility of β-TCP compound, which facilitate the subsequent bone ingrowth in the implant. On the other, silicon doped BCP involve silicon that substituted into the apaptite crystal lattice for phosphorous with the subsequent charge imbalance. HA/α-TCP based bioceramics exhibits an important improvement of the bioactive behaviour with respect to non-substituted apatites. This work reviews the procedures to synthesise and fabricate scaffolds based on HA/β-TCP and silicon stabilised HA/α-TCP. Special attraction has been paid in the different synthesis methods and to the shaping of final scaffolds. By knowing the scaffold features at the crystallinity and macrostuctural level, the biocompatibility and clinical performance can be better understood, which will be also considered in this review.
Collapse
|
40
|
Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007; 28:4023-32. [PMID: 17544500 DOI: 10.1016/j.biomaterials.2007.05.003] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/03/2007] [Indexed: 11/16/2022]
Abstract
Silicon (Si) substitution in the crystal structures of calcium phosphate (CaP) ceramics such as hydroxyapatite (HA) and tricalcium phosphate (TCP) generates materials with superior biological performance to stoichiometric counterparts. Si, an essential trace element required for healthy bone and connective tissues, influences the biological activity of CaP materials by modifying material properties and by direct effects on the physiological processes in skeletal tissue. The synthesis of Si substituted HA (Si-HA), Si substituted alpha-TCP (Si-alpha-TCP), and multiphase systems are reviewed. The biological performance of these Si substituted CaP materials in comparison to stoichiometric counterparts is discussed. Si substitution promotes biological activity by the transformation of the material surface to a biologically equivalent apatite by increasing the solubility of the material, by generating a more electronegative surface and by creating a finer microstructure. When Si is included in the TCP structure, recrystallization to a carbonated HA is mediated by serum proteins and osteoblast-like cells. Release of Si complexes to the extracellular media and the presence of Si at the material surface may induce additional dose-dependent stimulatory effects on cells of the bone and cartilage tissue systems.
Collapse
Affiliation(s)
- Alexis M Pietak
- Department of Physics, Queen's University, Kingston, Ont., Canada K7L 4V3.
| | | | | | | |
Collapse
|