1
|
Meyer NR, Morono Y, Dekas AE. Single-cell analysis reveals an active and heterotrophic microbiome in the Guaymas Basin deep subsurface with significant inorganic carbon fixation by heterotrophs. Appl Environ Microbiol 2024; 90:e0044624. [PMID: 38709099 PMCID: PMC11334695 DOI: 10.1128/aem.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The marine subsurface is a long-term sink of atmospheric carbon dioxide with significant implications for climate on geologic timescales. Subsurface microbial cells can either enhance or reduce carbon sequestration in the subsurface, depending on their metabolic lifestyle. However, the activity of subsurface microbes is rarely measured. Here, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to quantify anabolic activity in 3,203 individual cells from the thermally altered deep subsurface in the Guaymas Basin, Mexico (3-75 m below the seafloor, 0-14°C). We observed that a large majority of cells were active (83%-100%), although the rates of biomass generation were low, suggesting cellular maintenance rather than doubling. Mean single-cell activity decreased with increasing sediment depth and temperature and was most strongly correlated with porewater sulfate concentrations. Intracommunity heterogeneity in microbial activity decreased with increasing sediment depth and age. Using a dual-isotope labeling approach, we determined that all active cells analyzed were heterotrophic, deriving the majority of their cellular carbon from organic sources. However, we also detected inorganic carbon assimilation in these heterotrophic cells, likely via processes such as anaplerosis, and determined that inorganic carbon contributes at least 5% of the total biomass carbon in heterotrophs in this community. Our results demonstrate that the deep marine biosphere at Guaymas Basin is largely active and contributes to subsurface carbon cycling primarily by not only assimilating organic carbon but also fixing inorganic carbon. Heterotrophic assimilation of inorganic carbon may be a small yet significant and widespread underappreciated source of labile carbon in the global subsurface. IMPORTANCE The global subsurface is the largest reservoir of microbial life on the planet yet remains poorly characterized. The activity of life in this realm has implications for long-term elemental cycling, particularly of carbon, as well as how life survives in extreme environments. Here, we recovered cells from the deep subsurface of the Guaymas Basin and investigated the level and distribution of microbial activity, the physicochemical drivers of activity, and the relative significance of organic versus inorganic carbon to subsurface biomass. Using a sensitive single-cell assay, we found that the majority of cells are active, that activity is likely driven by the availability of energy, and that although heterotrophy is the dominant metabolism, both organic and inorganic carbon are used to generate biomass. Using a new approach, we quantified inorganic carbon assimilation by heterotrophs and highlighted the importance of this often-overlooked mode of carbon assimilation in the subsurface and beyond.
Collapse
Affiliation(s)
- Nicolette R. Meyer
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Jabinski S, d. M. Rangel W, Kopáček M, Jílková V, Jansa J, Meador TB. Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers. Appl Environ Microbiol 2024; 90:e0206523. [PMID: 38527003 PMCID: PMC11022577 DOI: 10.1128/aem.02065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.
Collapse
Affiliation(s)
- Stanislav Jabinski
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Wesley d. M. Rangel
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Marek Kopáček
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Veronika Jílková
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Jan Jansa
- Institute of Microbiology CAS, Praha, Czechia
| | - Travis B. Meador
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
3
|
Srivastava A, De Corte D, Garcia JAL, Swan BK, Stepanauskas R, Herndl GJ, Sintes E. Interplay between autotrophic and heterotrophic prokaryotic metabolism in the bathypelagic realm revealed by metatranscriptomic analyses. MICROBIOME 2023; 11:239. [PMID: 37925458 PMCID: PMC10625248 DOI: 10.1186/s40168-023-01688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic matter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. METHODS Seawater samples were collected from Labrador Sea Water (LSW, ~ 2000 m depth) in the North Atlantic and incubated in the dark at in situ temperature unamended, amended with 1 µM thiosulfate, or with 1 µM thiosulfate plus 10 µM glucose and 10 µM acetate (thiosulfate plus dissolved organic matter, DOM). Inorganic carbon fixation was measured in the different treatments and samples for metatranscriptomic analyses were collected after 1 h and 72 h of incubation. RESULTS Amendment of LSW with thiosulfate and thiosulfate plus DOM enhanced prokaryotic inorganic carbon fixation. The energy generated via chemoautotrophy and heterotrophy in the amended prokaryotic communities was used for the biosynthesis of glycogen and phospholipids as storage molecules. The addition of thiosulfate stimulated unclassified bacteria, sulfur-oxidizing Deltaproteobacteria (SAR324 cluster bacteria), Epsilonproteobacteria (Sulfurimonas sp.), and Gammaproteobacteria (SUP05 cluster bacteria), whereas, the amendment with thiosulfate plus DOM stimulated typically copiotrophic Gammaproteobacteria (closely related to Vibrio sp. and Pseudoalteromonas sp.). CONCLUSIONS The gene expression pattern of thiosulfate utilizing microbes specifically of genes involved in energy production via sulfur oxidation and coupled to CO2 fixation pathways coincided with the change in the transcriptional profile of the heterotrophic prokaryotic community (genes involved in promoting energy storage), suggesting a fine-tuned metabolic interplay between chemoautotrophic and heterotrophic microbes in the dark ocean. Video Abstract.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria.
| | - Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University, Oldenburg, Germany
- Currently at Ocean Technology and Engineering Department, National Oceanography Centre, Southampton, UK
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Informatics, INS La Ferreria, 08110, Montcada i Reixach, Spain
| | - Brandon K Swan
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, 21702, USA
| | | | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Eva Sintes
- Ecosystem Oceanography Group (GRECO), Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Baleares, Palma, Spain.
| |
Collapse
|
4
|
Herndl GJ, Bayer B, Baltar F, Reinthaler T. Prokaryotic Life in the Deep Ocean's Water Column. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:461-483. [PMID: 35834811 DOI: 10.1146/annurev-marine-032122-115655] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oceanic waters below a depth of 200 m represent, in terms of volume, the largest habitat of the biosphere, harboring approximately 70% of the prokaryotic biomass in the oceanic water column. These waters are characterized by low temperature, increasing hydrostatic pressure, and decreasing organic matter supply with depth. Recent methodological advances in microbial oceanography have refined our view of the ecology of prokaryotes in the dark ocean. Here, we review the ecology of prokaryotes of the dark ocean, present data on the biomass distribution and heterotrophic and chemolithoautotrophic prokaryotic production in the major oceanic basins, and highlight the phylogenetic and functional diversity of this part of the ocean. We describe the connectivity of surface and deep-water prokaryotes and the molecular adaptations of piezophilic prokaryotes to high hydrostatic pressure. We also highlight knowledge gaps in the ecology of the dark ocean's prokaryotes and their role in the biogeochemical cycles in the largest habitat of the biosphere.
Collapse
Affiliation(s)
- Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, The Netherlands
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| |
Collapse
|
5
|
Polozsányi Z, Kaliňák M, Babjak M, Šimkovič M, Varečka Ľ. How to enter the state of dormancy? A suggestion by Trichoderma atroviride conidia. Fungal Biol 2021; 125:934-949. [PMID: 34649680 DOI: 10.1016/j.funbio.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
It is generally accepted that conidia, propagules of filamentous fungi, exist in the state of dormancy. This state is defined mostly phenomenologically, e.g., by germination requirements. Its molecular characteristics are scarce and are concentrated on the water or osmolyte content, and/or respiration. However, a question of whether conidia are metabolic or ametabolic forms of life cannot be answered on the basis of available experimental data. In other words, are mature conidia open thermodynamic systems as are mycelia, or do they become closed upon the transition to the dormant state? In this article, we present observations which may help to define the transition of freshly formed conidia to the putative dormant forms using measurements of selected enzyme activities, 1H- and 13C-NMR and LC-MS-metabolomes, and 14C-bicarbonate or 45Ca2+ inward transport. We have found that Trichoderma atroviride and Aspergillus niger conidia arrest the 45Ca2+ uptake during the development stopping thereby the cyclic (i.e., bidirectional) Ca2+ flow existing in vegetative mycelia and conidia of T. atroviride across the cytoplasmic membrane. Furthermore, we have found that the activity of α-ketoglutarate dehydrogenase was rendered completely inactive after 3 weeks from the conidia formation unlike of other central carbon metabolism enzymes. This may explain the loss of conidial respiration. Finally, we found that conidia take up the H14CO3- and convert it into few stable compounds within 80 d of maturation, with minor quantitative differences in the extent of this process. The uptake of H13CO3- confirmed these observation and demonstrated the incorporation of H13CO3- even in the absence of exogenous substrates. These results suggest that T. atroviride conidia remain metabolically active during first ten weeks of maturation. Under these circumstances, their metabolism displays features similar to those of chemoautotrophic microorganisms. However, the Ca2+ homeostasis changed from the open to the closed thermodynamic state during the early period of conidial maturation. These results may be helpful for studying the conidial ageing and/or maturation, and for defining the conidial dormant state in biochemical terms.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Matej Babjak
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Ľudovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
6
|
Sogin EM, Kleiner M, Borowski C, Gruber-Vodicka HR, Dubilier N. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses. Annu Rev Microbiol 2021; 75:695-718. [PMID: 34351792 DOI: 10.1146/annurev-micro-051021-123130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Maggie Sogin
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; ,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
7
|
Coskun ÖK, Vuillemin A, Schubotz F, Klein F, Sichel SE, Eisenreich W, Orsi WD. Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks. ISME JOURNAL 2021; 16:257-271. [PMID: 34312482 PMCID: PMC8692406 DOI: 10.1038/s41396-021-01066-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022]
Abstract
Thermodynamic models predict that H2 is energetically favorable for seafloor microbial life, but how H2 affects anabolic processes in seafloor-associated communities is poorly understood. Here, we used quantitative 13C DNA stable isotope probing (qSIP) to quantify the effect of H2 on carbon assimilation by microbial taxa synthesizing 13C-labeled DNA that are associated with partially serpentinized peridotite rocks from the equatorial Mid-Atlantic Ridge. The rock-hosted seafloor community was an order of magnitude more diverse compared to the seawater community directly above the rocks. With added H2, peridotite-associated taxa increased assimilation of 13C-bicarbonate and 13C-acetate into 16S rRNA genes of operational taxonomic units by 146% (±29%) and 55% (±34%), respectively, which correlated with enrichment of H2-oxidizing NiFe-hydrogenases encoded in peridotite-associated metagenomes. The effect of H2 on anabolism was phylogenetically organized, with taxa affiliated with Atribacteria, Nitrospira, and Thaumarchaeota exhibiting the most significant increases in 13C-substrate assimilation in the presence of H2. In SIP incubations with added H2, an order of magnitude higher number of peridotite rock-associated taxa assimilated 13C-bicarbonate, 13C-acetate, and 13C-formate compared to taxa that were not associated with peridotites. Collectively, these findings indicate that the unique geochemical nature of the peridotite-hosted ecosystem has selected for H2-metabolizing, rock-associated taxa that can increase anabolism under high H2 concentrations. Because ultramafic rocks are widespread in slow-, and ultraslow-spreading oceanic lithosphere, continental margins, and subduction zones where H2 is formed in copious amounts, the link between H2 and carbon assimilation demonstrated here may be widespread within these geological settings.
Collapse
Affiliation(s)
- Ömer K Coskun
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aurèle Vuillemin
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Frieder Klein
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Susanna E Sichel
- Departamento de Geologia e Geofísica/LAGEMAR-Universidade Federal Fluminense-Brazil, Niterói, RJ, Brazil
| | - Wolfgang Eisenreich
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany. .,GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS One 2021; 16:e0251643. [PMID: 34014955 PMCID: PMC8136852 DOI: 10.1371/journal.pone.0251643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.
Collapse
|
9
|
Yin X, Cai M, Liu Y, Zhou G, Richter-Heitmann T, Aromokeye DA, Kulkarni AC, Nimzyk R, Cullhed H, Zhou Z, Pan J, Yang Y, Gu JD, Elvert M, Li M, Friedrich MW. Subgroup level differences of physiological activities in marine Lokiarchaeota. THE ISME JOURNAL 2021; 15:848-861. [PMID: 33149207 PMCID: PMC8027215 DOI: 10.1038/s41396-020-00818-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022]
Abstract
Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for Candidatus 'Prometheoarchaeum syntrophicum'. Here, we tracked the activity of Lokiarchaeota in incubations with Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2, or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2 instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Guowei Zhou
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | | | - David A Aromokeye
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Ajinkya C Kulkarni
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Rolf Nimzyk
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Henrik Cullhed
- International Max-Planck Research School for Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhichao Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Michael W Friedrich
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
10
|
Mooshammer M, Kitzinger K, Schintlmeister A, Ahmerkamp S, Nielsen JL, Nielsen PH, Wagner M. Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. THE ISME JOURNAL 2021; 15:348-353. [PMID: 32879458 PMCID: PMC7852690 DOI: 10.1038/s41396-020-00761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022]
Abstract
Stable isotope probing (SIP) is a key tool for identifying the microorganisms catalyzing the turnover of specific substrates in the environment and to quantify their relative contributions to biogeochemical processes. However, SIP-based studies are subject to the uncertainties posed by cross-feeding, where microorganisms release isotopically labeled products, which are then used by other microorganisms, instead of incorporating the added tracer directly. Here, we introduce a SIP approach that has the potential to strongly reduce cross-feeding in complex microbial communities. In this approach, the microbial cells are exposed on a membrane filter to a continuous flow of medium containing isotopically labeled substrate. Thereby, metabolites and degradation products are constantly removed, preventing consumption of these secondary substrates. A nanoSIMS-based proof-of-concept experiment using nitrifiers in activated sludge and 13C-bicarbonate as an activity tracer showed that Flow-SIP significantly reduces cross-feeding and thus allows distinguishing primary consumers from other members of microbial food webs.
Collapse
Affiliation(s)
- Maria Mooshammer
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Arno Schintlmeister
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Soeren Ahmerkamp
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM-Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
11
|
Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, Elsner M. Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 2020; 96:5828077. [DOI: 10.1093/femsec/fiaa080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTVirtually all heterotrophs incorporate carbon dioxide by anaplerotic fixation. Little explored, however, is the interdependency of pathways and rates of CO2fixation on the concurrent usage of organic substrate(s). Potentially, this could reveal which substrates out of a pool of dissolved organic carbon are utilised by environmental microorganisms. To explore this possibility, Bacillus subtilis W23 was grown in a minimal medium with normalised amounts of either glucose, lactate or malate as only organic substrates, each together with 1 g/L NaH13CO3. Incorporation of H13CO3− was traced by elemental analysis-isotope ratio mass spectrometry of biomass and gas chromatography-mass spectrometry of protein-derived amino acids. Until the late logarithmic phase, 13C incorporation into the tricarboxylic acid cycle increased with time and occurred via [4–13C]oxaloacetate formed by carboxylation of pyruvate. The levels of 13C incorporation were highest for growth on glucose and lowest on malate. Incorporation of 13C into gluconeogenesis products was mainly detected in the lactate and malate experiment, whereas glucose down-regulated this path. A proof-of-principle study with a natural groundwater community confirmed the ability to determine incorporation from H13CO3− by natural communities leading to specific labelling patterns. This underlines the potential of the labelling approach to characterise carbon sources of heterotrophic microorganisms in their natural environments.
Collapse
Affiliation(s)
- Marina Spona-Friedl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Alexander Braun
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Huber
- Chair of Biochemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Chair of Biochemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Functional and Evolutionary Ecology, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
| | - Andreas Kappler
- Geomicrobiology, Eberhard-Karls-University Tuebingen, Sigwartstr. 10, 72076 Tuebingen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistr. 17, 81377 München, Germany
| |
Collapse
|
12
|
Arandia-Gorostidi N, Alonso-Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ Microbiol 2020; 22:1381-1396. [PMID: 32090403 DOI: 10.1111/1462-2920.14954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/25/2020] [Indexed: 11/28/2022]
Abstract
Heterotrophic bacteria associated with microphytoplankton, particularly those colonizing the phycosphere, are major players in the remineralization of algal-derived carbon. Ocean warming might impact dissolved organic carbon (DOC) uptake by microphytoplankton-associated bacteria with unknown biogeochemical implications. Here, by incubating natural seawater samples at three different temperatures, we analysed the effect of experimental warming on the abundance and C and N uptake activity of Rhodobacteraceae and Flavobacteria, two bacterial groups typically associated with microphytoplankton. Using a nano-scale secondary ion mass spectrometry (nanoSIMS) single-cell analysis, we quantified the temperature sensitivity of these two taxonomic groups to the uptake of algal-derived DOC in the microphytoplankton associated fraction with 13 C-bicarbonate and 15 N-leucine as tracers. We found that cell-specific 13 C uptake was similar for both groups (~0.42 fg C h-1 μm-3 ), but Rhodobacteraceae were more active in 15 N-leucine uptake. Due to the higher abundance of Flavobacteria associated with microphytoplankton, this group incorporated fourfold more carbon than Rhodobacteraceae. Cell-specific 13 C uptake was influenced by temperature, but no significant differences were found for 15 N-leucine uptake. Our results show that the contribution of Flavobacteria and Rhodobacteraceae to C assimilation increased up to sixfold and twofold, respectively, with an increase of 3°C above ambient temperature, suggesting that warming may differently affect the contribution of distinct copiotrophic bacterial taxa to carbon cycling.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Department of Earth System Science, Stanford University, Green Earth Sciences Building, 367 Panama St., Room 129, Stanford, CA, 94305-4216, USA.,Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Av. Príncipe de Asturias, 70 bis 33212, Gijón, Asturias, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research Unit, Txatxarramendi Irla s/n, 48395, Sukarrieta, Bizkaia, Spain
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Xosé Anxelu G Morán
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, 23955, Thuwal, Saudi Arabia
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
13
|
DNA- and RNA-SIP Reveal Nitrospira spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilters. mBio 2019; 10:mBio.01870-19. [PMID: 31690672 PMCID: PMC6831773 DOI: 10.1128/mbio.01870-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrification, the oxidative process converting ammonia to nitrite and nitrate, is driven by microbes and plays a central role in the global nitrogen cycle. Our earlier investigations based on 16S rRNA and amoA amplicon analysis, amoA quantitative PCR and metagenomics of groundwater-fed biofilters indicated a consistently high abundance of comammox Nitrospira Here, we hypothesized that these nonclassical nitrifiers drive ammonia-N oxidation. Hence, we used DNA and RNA stable isotope probing (SIP) coupled with 16S rRNA amplicon sequencing to identify the active members in the biofilter community when subjected to a continuous supply of NH4 + or NO2 - in the presence of 13C-HCO3 - (labeled) or 12C-HCO3 - (unlabeled). Allylthiourea (ATU) and sodium chlorate were added to inhibit autotrophic ammonia- and nitrite-oxidizing bacteria, respectively. Our results confirmed that lineage II Nitrospira dominated ammonia oxidation in the biofilter community. A total of 78 (8 by RNA-SIP and 70 by DNA-SIP) and 96 (25 by RNA-SIP and 71 by DNA-SIP) Nitrospira phylotypes (at 99% 16S rRNA sequence similarity) were identified as complete ammonia- and nitrite-oxidizing, respectively. We also detected significant HCO3 - uptake by Acidobacteria subgroup10, Pedomicrobium, Rhizobacter, and Acidovorax under conditions that favored ammonia oxidation. Canonical Nitrospira alone drove nitrite oxidation in the biofilter community, and activity of archaeal ammonia-oxidizing taxa was not detected in the SIP fractions. This study provides the first in situ evidence of ammonia oxidation by comammox Nitrospira in an ecologically relevant complex microbiome.IMPORTANCE With this study we provide the first in situ evidence of ecologically relevant ammonia oxidation by comammox Nitrospira in a complex microbiome and document an unexpectedly high H13CO3 - uptake and growth of proteobacterial and acidobacterial taxa under ammonia selectivity. This finding raises the question of whether comammox Nitrospira is an equally important ammonia oxidizer in other environments.
Collapse
|
14
|
Seah BKB, Antony CP, Huettel B, Zarzycki J, Schada von Borzyskowski L, Erb TJ, Kouris A, Kleiner M, Liebeke M, Dubilier N, Gruber-Vodicka HR. Sulfur-Oxidizing Symbionts without Canonical Genes for Autotrophic CO 2 Fixation. mBio 2019; 10:e01112-19. [PMID: 31239380 PMCID: PMC6593406 DOI: 10.1128/mbio.01112-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023] Open
Abstract
Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2 by the symbionts drives these nutritional associations. In this study, we investigated "Candidatus Kentron," the clade of symbionts hosted by Kentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy.IMPORTANCE Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, "Candidatus Kentron," associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.
Collapse
Affiliation(s)
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Angela Kouris
- Energy Bioengineering and Geomicrobiology Group, University of Calgary, Calgary, Alberta, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
15
|
Xavier JC, Preiner M, Martin WF. Something special about CO-dependent CO 2 fixation. FEBS J 2018; 285:4181-4195. [PMID: 30240136 PMCID: PMC6282760 DOI: 10.1111/febs.14664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
Carbon dioxide enters metabolism via six known CO2 fixation pathways, of which only one is linear, exergonic in the direction of CO2‐assimilation, and present in both bacterial and archaeal anaerobes – the Wood‐Ljungdahl (WL) or reductive acetyl‐CoA pathway. Carbon monoxide (CO) plays a central role in the WL pathway as an energy rich intermediate. Here, we scan the major biochemical reaction databases for reactions involving CO and CO2. We identified 415 reactions corresponding to enzyme commission (EC) numbers involving CO2, which are non‐randomly distributed across different biochemical pathways. Their taxonomic distribution, reversibility under physiological conditions, cofactors and prosthetic groups are summarized. In contrast to CO2, only 15 reaction classes involving CO were detected. Closer inspection reveals that CO interfaces with metabolism and the carbon cycle at only two enzymes: anaerobic carbon monoxide dehydrogenase (CODH), a Ni‐ and Fe‐containing enzyme that generates CO for CO2 fixation in the WL pathway, and aerobic CODH, a Mo‐ and Cu‐containing enzyme that oxidizes environmental CO as an electron source. The CO‐dependent reaction of the WL pathway involves carbonyl insertion into a methyl carbon‐nickel at the Ni‐Fe‐S A‐cluster of acetyl‐CoA synthase (ACS). It appears that no alternative mechanisms to the CO‐dependent reaction of ACS have evolved in nearly 4 billion years, indicating an ancient and mechanistically essential role for CO at the onset of metabolism.
Collapse
Affiliation(s)
- Joana C Xavier
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany
| | - Martina Preiner
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany
| | - William F Martin
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Moens F, De Vuyst L. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Benef Microbes 2018; 8:473-490. [PMID: 28548573 DOI: 10.3920/bm2016.0142] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four selected butyrate-producing colon bacterial strains belonging to Clostridium cluster IV (Butyricicoccus pullicaecorum DSM 23266T and Faecalibacterium prausnitzii DSM 17677T) and XIVa (Eubacterium hallii DSM 17630 and Eubacterium rectale CIP 105953T) were studied as to their capacity to degrade inulin-type fructans and concomitant metabolite production. Cultivation of these strains was performed in bottles and fermentors containing a modified medium for colon bacteria, including acetate, supplemented with either fructose, oligofructose, or inulin as the sole energy source. Inulin-type fructan degradation was not a general characteristic among these strains. B. pullicaecorum DSM 23266T and E. hallii DSM 17630 could only ferment fructose and did not degrade oligofructose or inulin. E. rectale CIP 105953T and F. prausnitzii DSM 17677T fermented fructose and could degrade both oligofructose and inulin. All chain length fractions of oligofructose were degraded simultaneously (both strains) and both long and short chain length fractions of inulin were degraded either simultaneously (E. rectale CIP 105953T) or consecutively (F. prausnitzii DSM 17677T), indicating an extracellular polymer degradation mechanism. B. pullicaecorum DSM 23266T and E. hallii DSM 17630 produced high concentrations of butyrate, CO2, and H2 from fructose. E. rectale CIP 105953T produced lactate, butyrate, CO2, and H2, from fructose, oligofructose, and inulin, whereas F. prausnitzii DSM 17677T produced butyrate, formate, CO2, and traces of lactate from fructose, oligofructose, and inulin. Based on carbon recovery and theoretical metabolite production calculations, an adapted stoichiometrically balanced metabolic pathway for butyrate, formate, lactate, CO2, and H2 production by members of both Clostridium cluster IV and XIVa butyrate-producing bacteria was constructed.
Collapse
Affiliation(s)
- F Moens
- 1 Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - L De Vuyst
- 1 Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Rahlff J, Stolle C, Giebel HA, Brinkhoff T, Ribas-Ribas M, Hodapp D, Wurl O. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer. FEMS Microbiol Ecol 2017; 93:3078549. [PMID: 28369320 PMCID: PMC5812515 DOI: 10.1093/femsec/fix041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes.
Collapse
Affiliation(s)
- Janina Rahlff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Schleusenstraße 1, 26382, Wilhelmshaven, Germany
| | - Christian Stolle
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Schleusenstraße 1, 26382, Wilhelmshaven, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, PO Box 2503, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, PO Box 2503, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Mariana Ribas-Ribas
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Schleusenstraße 1, 26382, Wilhelmshaven, Germany
| | - Dorothee Hodapp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Schleusenstraße 1, 26382, Wilhelmshaven, Germany
| | - Oliver Wurl
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Schleusenstraße 1, 26382, Wilhelmshaven, Germany
| |
Collapse
|
18
|
Bhowmik A, Cloutier M, Ball E, Bruns MA. Underexplored microbial metabolisms for enhanced nutrient recycling in agricultural soils. AIMS Microbiol 2017; 3:826-845. [PMID: 31294192 PMCID: PMC6604955 DOI: 10.3934/microbiol.2017.4.826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023] Open
Abstract
Worldwide, arable soils have been degraded through erosion and exhaustive cultivation, and substantial proportions of fertilizer nutrients are not taken up by crops. A central challenge in agriculture is to understand how soils and resident microbial communities can be managed to deliver nutrients to crops more efficiently with minimal losses to the environment. Throughout much of the twentieth century, intensive farming has caused substantial loss of organic matter and soil biological function. Today, more farmers recognize the importance of protecting soils and restoring organic matter through reduced tillage, diversified crop rotation, cover cropping, and increased organic amendments. Such management practices are expected to foster soil conditions more similar to those of undisturbed, native plant-soil systems by restoring soil biophysical integrity and re-establishing plant-microbe interactions that retain and recycle nutrients. Soil conditions which could contribute to desirable shifts in microbial metabolic processes include lower redox potentials, more diverse biogeochemical gradients, higher concentrations of labile carbon, and enrichment of carbon dioxide (CO2) and hydrogen gas (H2) in soil pores. This paper reviews recent literature on generalized and specific microbial processes that could become more operational once soils are no longer subjected to intensive tillage and organic matter depletion. These processes include heterotrophic assimilation of CO2; utilization of H2 as electron donor or reactant; and more diversified nitrogen uptake and dissimilation pathways. Despite knowledge of these processes occurring in laboratory studies, they have received little attention for their potential to affect nutrient and energy flows in soils. This paper explores how soil microbial processes could contribute to in situ nutrient retention, recycling, and crop uptake in agricultural soils managed for improved biological function.
Collapse
Affiliation(s)
- Arnab Bhowmik
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mara Cloutier
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
- Dual-Title Graduate Program in Biogeochemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Ball
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mary Ann Bruns
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
- Dual-Title Graduate Program in Biogeochemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Rastelli E, Corinaldesi C, Dell'Anno A, Tangherlini M, Martorelli E, Ingrassia M, Chiocci FL, Lo Martire M, Danovaro R. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Environ Microbiol 2017; 19:4432-4446. [DOI: 10.1111/1462-2920.13890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Eugenio Rastelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Michael Tangherlini
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Eleonora Martorelli
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
| | - Michela Ingrassia
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Francesco L. Chiocci
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| |
Collapse
|
20
|
Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r-strategists. Environ Microbiol 2017; 19:2495-2506. [PMID: 28464419 DOI: 10.1111/1462-2920.13783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/27/2022]
Abstract
Chemolithoautotrophic sulfur-oxidizing and denitrifying Gamma- (particularly the SUP05 cluster) and Epsilonproteobacteria (predominantly Sulfurimonas subgroup GD17) are assumed to compete for substrates (electron donors and acceptors) in marine pelagic redox gradients. To elucidate their ecological niche separation we performed 34 S0 , 15 NO3- and H13 CO3- stable-isotope incubations with water samples from Baltic Sea suboxic, chemocline and sulfidic zones followed by combined phylogenetic staining and high-resolution secondary ion mass spectrometry of single cells. SUP05 cells were small-sized (0.06-0.09 µm3 ) and most abundant in low-sulfidic to suboxic zones, whereas Sulfurimonas GD17 cells were significantly larger (0.26-0.61 µm3 ) and most abundant at the chemocline and below. Together, SUP05 and GD17 cells accumulated up to 48% of the labelled substrates but calculation of cell volume-specific rates revealed that GD17 cells incorporated labelled substrates significantly faster throughout the redox zone, thereby potentially outcompeting SUP05 especially at high substrate concentrations. Thus, in synopsis with earlier described features of SUP05/GD17 we conclude that their spatially overlapping association in stratified sulfidic zones is facilitated by their different lifestyles: whereas SUP05 cells are streamlined, non-motile K-strategists adapted to low substrate concentrations, GD17 cells are motile r-strategists well adapted to fluctuating substrate and redox conditions.
Collapse
Affiliation(s)
- Andreas Rogge
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Maren Voss
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Günter Jost
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Matthias Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| |
Collapse
|
21
|
Gomez-Saez GV, Pop Ristova P, Sievert SM, Elvert M, Hinrichs KU, Bühring SI. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System. Front Microbiol 2017; 8:702. [PMID: 28484442 PMCID: PMC5399606 DOI: 10.3389/fmicb.2017.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism.
Collapse
Affiliation(s)
- Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods HoleMA, USA
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| |
Collapse
|
22
|
Bell C, McDonough J, Houston KS, Gerber K. Stable Isotope Probing to Confirm Field-Scale Co-Metabolic Biodegradation of 1,4-Dioxane. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Caitlin Bell
- P.E., Arcadis U.S., Inc., San Francisco, California
| | | | | | | |
Collapse
|
23
|
Rastelli E, Corinaldesi C, Petani B, Dell'Anno A, Ciglenečki I, Danovaro R. Enhanced viral activity and dark CO2
fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica. Environ Microbiol 2016; 18:4511-4522. [DOI: 10.1111/1462-2920.13484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Eugenio Rastelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Bruna Petani
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Irena Ciglenečki
- Division for Marine and Environmental Research, Bijenicka 54; Rudjer Bošković Institute; Zagreb 10001 Croatia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| |
Collapse
|
24
|
Wegener G, Kellermann MY, Elvert M. Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Curr Opin Biotechnol 2016; 41:43-52. [PMID: 27179643 DOI: 10.1016/j.copbio.2016.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/17/2022]
Abstract
Microorganisms in soils and sediments are highly abundant and phylogenetically diverse, but their specific metabolic activity and function in the environment is often not well constrained. To address this critical aspect in environmental biogeochemistry, different methods involving stable isotope probing (SIP) and detection of the isotope label in a variety of molecular compounds have been developed. Here we review recent progress in lipid-SIP, a technique that combines the assimilation of specific 13C-labeled metabolic substrates such as inorganic carbon, methane, glucose and amino acids into diagnostic membrane lipid compounds. Using the structural characteristics of certain lipid types in combination with genetic molecular techniques, the SIP approach reveals the activity and function of distinct microbial groups in the environment. More recently, deuterium labeling in the form of deuterated water (D2O) extended the lipid-SIP portfolio. Since lipid biosynthetic pathways involve hydrogen (H+) uptake from water, lipid production can be inferred from the detection of D-assimilation into these compounds. Furthermore, by combining D2O and 13C-inorganic carbon (IC) labeling in a dual-SIP approach, rates of auto- and heterotrophic carbon fixation can be estimated. We discuss the design, analytical prerequisites, data processing and interpretation of single and dual-SIP experiments and highlight a case study on anaerobic methanotrophic communities inhabiting hydrothermally heated marine sediments.
Collapse
Affiliation(s)
- Gunter Wegener
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; MARUM Center for Marine Environmental Sciences, Leobener Straße, 28359 Bremen, Germany.
| | - Matthias Y Kellermann
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, Leobener Straße, 28359 Bremen, Germany
| |
Collapse
|
25
|
Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME JOURNAL 2016; 10:1939-53. [PMID: 26872043 DOI: 10.1038/ismej.2015.257] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023]
Abstract
Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.
Collapse
|
26
|
Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME JOURNAL 2015; 9:1966-78. [PMID: 25679534 PMCID: PMC4542026 DOI: 10.1038/ismej.2015.10] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 01/30/2023]
Abstract
Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following 13C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas 13C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and needs further study.
Collapse
|
27
|
A simple separation method for downstream biochemical analysis of aquatic microbes. J Microbiol Methods 2015; 111:78-86. [PMID: 25655777 DOI: 10.1016/j.mimet.2015.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 02/02/2023]
Abstract
In order to study the chemical composition of aquatic microbes it is necessary to obtain completely separated fractions of subpopulations. Size separation by filtration is usually unsuccessful because the smaller group of organisms contaminates the larger fractions due to being trapped on filter surfaces of nominally much larger pore sizes. Here we demonstrate that a simple sucrose density separation method allowed us to separate microorganisms of even subtle size differences and to determine their bulk biochemical composition (proteins, polysaccharides+nucleic acids, and lipids). Both autotrophs and heterotrophs (through anaplerotic pathways) were labeled with (14)C-bicarbonate for biochemical fractionation. We provided proof of concept that eukaryotic microbes could be cleanly separated from prokaryotes in cultures and in field samples, enabling detection of differences in their biochemical makeup. We explored methodological issues regarding separation mechanisms, fixation, and pre-concentration via tangential flow filtration of oligotrophic marine waters where abundances of microorganisms are comparably low. By selecting an appropriate centrifugal force, two processes (i.e., isopycnal and rate-zonal separation) can be exploited simultaneously resulting in finely-separated density fractions, which also resulted in size separation. Future applications of this method include exploration of the stoichiometric, biochemical and genetic differences among subpopulations of microbes in a wide variety of aquatic environments.
Collapse
|
28
|
Roslev P, Lentz T, Hesselsoe M. Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays. CHEMOSPHERE 2015; 120:284-291. [PMID: 25128634 DOI: 10.1016/j.chemosphere.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 06/03/2023]
Abstract
The inhibitory effects of the fuel additive methyl tert-butyl ether (MTBE) and potential degradation products tert-butanol (TBA) and formaldehyde was examined using mixed microbial biomass, and six strains of bioluminescent bacteria and yeast. The purpose was to assess microbial toxicity with quantitative bioluminescent and fluorescent endpoints, and to identify sensitive proxies suitable for monitoring MTBE contamination. Bioluminescent Aliivibrio fischeri DSM 7151 (formerly Vibrio fischeri) appeared highly sensitive to MTBE exposure, and was a superior test organisms compared to lux-tagged Escherichia coli DH5α, Pseudomonas fluorescens DF57-40E7 and Saccharomyces cerevisiae BLYR. EC10 and EC50 for acute MTBE toxicity in A. fischeri were 1.1 and 10.9 mg L(-1), respectively. Long term (24h) MTBE exposure resulted in EC10 values of 0.01 mg L(-1). TBA was significantly less toxic with EC10 and EC50 for acute and chronic toxicity >1000 mg L(-1). Inhibition of bioluminescence was generally a more sensitive endpoint for MTBE toxicity than measuring intracellular ATP levels and heterotrophic CO2 assimilation. A weak estrogenic response was detected for MTBE at concentrations ⩾ 3.7 g L(-1) using an estrogen inducible bioluminescent yeast strain (S. cerevisiae BLYES). Microbial hydrolytic enzyme activity in groundwater was affected by MTBE with EC10 values of 0.5-787 mg L(-1), and EC50 values of 59-3073 for alkaline phosphatase, arylsulfatase, beta-1,4-glucanase, N-acetyl-beta-d-glucosaminidase, and leucine-aminopeptidase. Microbial alkaline phosphatase and beta-1,4-glucanase activity were most sensitive to MTBE exposure with EC50 ⩽ 64.8 mg L(-1). The study suggests that bioassays with luminescent A. fischeri, and fluorescent assays targeting hydrolytic enzyme activity are good candidates for monitoring microbial MTBE toxicity in contaminated water.
Collapse
Affiliation(s)
- Peter Roslev
- Section of Biology and Environmental Science, Aalborg University, DK-9000 Aalborg, Denmark.
| | - Trine Lentz
- Section of Biology and Environmental Science, Aalborg University, DK-9000 Aalborg, Denmark
| | - Martin Hesselsoe
- Amphi Consult ApS, Niels Jernes Vej 10, DK-9220 Aalborg, Denmark.
| |
Collapse
|
29
|
Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Itävaara M. Heterotrophic communities supplied by ancient organic carbon predominate in deep fennoscandian bedrock fluids. MICROBIAL ECOLOGY 2015; 69:319-332. [PMID: 25260922 DOI: 10.1007/s00248-014-0490-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
The deep subsurface hosts diverse life, but the mechanisms that sustain this diversity remain elusive. Here, we studied microbial communities involved in carbon cycling in deep, dark biosphere and identified anaerobic microbial energy production mechanisms from groundwater of Fennoscandian crystalline bedrock sampled from a deep drill hole in Outokumpu, Finland, by using molecular biological analyses. Carbon cycling pathways, such as carbon assimilation, methane production and methane consumption, were studied with cbbM, rbcL, acsB, accC, mcrA and pmoA marker genes, respectively. Energy sources, i.e. the terminal electron accepting processes of sulphate-reducing and nitrate-reducing communities, were assessed with detection of marker genes dsrB and narG, respectively. While organic carbon is scarce in deep subsurface, the main carbon source for microbes has been hypothesized to be inorganic carbon dioxide. However, our results demonstrate that carbon assimilation is performed throughout the Outokumpu deep scientific drill hole water column by mainly heterotrophic microorganisms such as Clostridia. The source of carbon for the heterotrophic microbial metabolism is likely the Outokumpu bedrock, mainly composed of serpentinites and metasediments with black schist interlayers. In addition to organotrophic metabolism, nitrate and sulphate are other possible energy sources. Methanogenic and methanotrophic microorganisms are scarce, but our analyses suggest that the Outokumpu deep biosphere provides niches for these organisms; however, they are not very abundant.
Collapse
Affiliation(s)
- Lotta Purkamo
- VTT Technical Research Centre of Finland, PL1000, 02044, Espoo, Finland,
| | | | | | | | | | | |
Collapse
|
30
|
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 2014; 112:E194-203. [PMID: 25550518 DOI: 10.1073/pnas.1420406112] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.
Collapse
|
31
|
Yakimov MM, La Cono V, Smedile F, Crisafi F, Arcadi E, Leonardi M, Decembrini F, Catalfamo M, Bargiela R, Ferrer M, Golyshin PN, Giuliano L. Heterotrophic bicarbonate assimilation is the main process of de novo organic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:709-722. [PMID: 25756124 DOI: 10.1111/1758-2229.12192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ammonium-oxidizing chemoautotrophic members of Thaumarchaea are proposed to be the key players in the assimilation of bicarbonate in the dark (ABD). However, this process may also involve heterotrophic metabolic pathways, such as fixation of carbon dioxide (CO2) via various anaplerotic reactions. We collected samples from the depth of 4900 m at the Matapan-Vavilov Deep (MVD) station (Hellenic Trench, Eastern Mediterranean) and used the multiphasic approach to study the ABD mediators in this deep-sea ecosystem. At this depth, our analysis indicated the occurrence of actively CO2-fixing heterotrophic microbial assemblages dominated by Gammaproteobacteria with virtually no Thaumarchaea present. [14C]-bicarbonate incorporation experiments combined with shotgun [14C]-proteomic analysis identified a series of proteins of gammaproteobacterial origin. More than quarter of them were closely related with Alteromonas macleodii ‘deep ecotype’ AltDE, the predominant organism in the microbial community of MVD. The present study demonstrated that in the aphotic/hadal zone of the Mediterranean Sea, the assimilation of bicarbonate is associated with both chemolithoauto- and heterotrophic ABD. In some deep-sea areas, the latter may predominantly contribute to the de novo synthesis of organic carbon which points at the important and yet underestimated role heterotrophic bacterial populations can play the in global carbon cycle/sink in the ocean interior.
Collapse
|
32
|
Muthusamy S, Baltar F, González JM, Pinhassi J. Dynamics of metabolic activities and gene expression in the Roseobacter clade bacterium Phaeobacter sp. strain MED193 during growth with thiosulfate. Appl Environ Microbiol 2014; 80:6933-42. [PMID: 25172867 PMCID: PMC4249017 DOI: 10.1128/aem.02038-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022] Open
Abstract
Metagenomic analyses of surface seawater reveal that genes for sulfur oxidation are widespread in bacterioplankton communities. However, little is known about the metabolic processes used to exploit the energy potentially gained from inorganic sulfur oxidation in oxic seawater. We therefore studied the sox gene system containing Roseobacter clade isolate Phaeobacter sp. strain MED193 in acetate minimal medium with and without thiosulfate. The addition of thiosulfate enhanced the bacterial growth yields up to 40% in this strain. Concomitantly, soxB and soxY gene expression increased about 8-fold with thiosulfate and remained 11-fold higher than that in controls through stationary phase. At stationary phase, thiosulfate stimulated protein synthesis and anaplerotic CO2 fixation rates up to 5- and 35-fold, respectively. Several genes involved in anaplerotic CO2 fixation (i.e., pyruvate carboxylase, propionyl coenzyme A [CoA], and crotonyl-CoA carboxylase) were highly expressed during active growth, coinciding with high CO2 fixation rates. The high expression of key genes in the ethylmalonyl-CoA pathway suggests that this is an important pathway for the utilization of two-carbon compounds in Phaeobacter sp. MED193. Overall, our findings imply that Roseobacter clade bacteria carrying sox genes can use their lithotrophic potential to gain additional energy from sulfur oxidation for both increasing their growth capacity and improving their long-term survival.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
33
|
Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc Natl Acad Sci U S A 2014; 111:E3650-8. [PMID: 25136122 DOI: 10.1073/pnas.1402617111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.
Collapse
|
34
|
Urea uptake and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and winter seasons. Appl Environ Microbiol 2014; 80:6013-22. [PMID: 25063662 DOI: 10.1128/aem.01431-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
How Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect to inorganic and organic N utilization is not well understood. This study combined 15N uptake rate measurements for ammonium, nitrate, and urea with 15N- and 13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bacteria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, during August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group I Crenarchaeota (MGIC) as well as Betaproteobacteria, Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter. Similarly, 13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and the Firmicutes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under dark conditions.
Collapse
|
35
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014; 16:2568-90. [PMID: 24571640 PMCID: PMC4122687 DOI: 10.1111/1462-2920.12436] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/01/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014. [PMID: 24571640 DOI: 10.1111/1462‐2920.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bergauer K, Sintes E, van Bleijswijk J, Witte H, Herndl GJ. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior. FEMS Microbiol Ecol 2013; 84:461-73. [PMID: 23330917 PMCID: PMC3732383 DOI: 10.1111/1574-6941.12073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 11/29/2022] Open
Abstract
Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO2 fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2) = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO2 fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO2 fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed.
Collapse
Affiliation(s)
- Kristin Bergauer
- Department of Marine Biology, Faculty Center of Ecology, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
38
|
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 2012; 109:19321-6. [PMID: 23129626 DOI: 10.1073/pnas.1208795109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope-probing experiments with and without methane. The relative incorporation of (13)C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both (13)C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs.
Collapse
|
39
|
Wegener G, Bausch M, Holler T, Thang NM, Prieto Mollar X, Kellermann MY, Hinrichs KU, Boetius A. Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environ Microbiol 2012; 14:1517-27. [DOI: 10.1111/j.1462-2920.2012.02739.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Chapelle FH, Bradley PM, McMahon PB, Kaiser K, Benner R. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater. GROUND WATER 2012; 50:230-241. [PMID: 21707614 DOI: 10.1111/j.1745-6584.2011.00835.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.
Collapse
Affiliation(s)
- Francis H Chapelle
- U.S. Geological Survey, South Carolina Water Science Center, Columbia, SC 29210, USA.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Llirós M, Alonso-Sáez L, Gich F, Plasencia A, Auguet O, Casamayor EO, Borrego CM. Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon. FEMS Microbiol Ecol 2011; 77:370-84. [DOI: 10.1111/j.1574-6941.2011.01117.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Varela MM, van Aken HM, Sintes E, Reinthaler T, Herndl GJ. Contribution of Crenarchaeota and Bacteria to autotrophy in the North Atlantic interior. Environ Microbiol 2011; 13:1524-33. [PMID: 21418496 DOI: 10.1111/j.1462-2920.2011.02457.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marine Crenarchaeota are among the most abundant groups of prokaryotes in the ocean and recent reports suggest that they oxidize ammonia as an energy source and inorganic carbon as carbon source, while other studies indicate that Crenarchaeota use organic carbon and hence, live heterotrophically. We used catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) to determine the crenarchaeal and bacterial contribution to total prokaryotic abundance in the (sub)tropical Atlantic. Bacteria contributed ~ 50% to total prokaryotes throughout the water column. Marine Crenarchaeota Group I (MCGI) accounted for ~ 5% of the prokaryotes in subsurface waters (100 m depth) and between 10 and 20% in the oxygen minimum layer (250-500 m depth) and deep waters (North East Atlantic Deep Water). The fraction of both MCGI and Bacteria fixing inorganic carbon, determined by combining microautoradiography with CARD-FISH (MICRO-CARD-FISH), decreased with depth, ranging from ~ 30% in the oxygen minimum zone to < 10% in the intermediate waters (Mediterranean Sea Outflow Water, Antarctic Intermediate Water). In the deeper water masses, however, MCGI were not taking up inorganic carbon. Using quantitative MICRO-CARD-FISH to determine autotrophy activity on a single cell level revealed that MCGI are incorporating inorganic carbon (0.002-0.1 fmol C cell⁻¹ day⁻¹) at a significantly lower rate than Bacteria (0.01-0.6 fmol C cell⁻¹ day⁻¹). Hence, it appears that MCGI contribute substantially less to autotrophy than Bacteria. Taking the stoichiometry of nitrification together with our findings suggests that MCGI might not dominate the ammonia oxidation step in the mesopelagic waters of the ocean to that extent as the reported dominance of archaeal over bacterial amoA would suggest.
Collapse
Affiliation(s)
- Marta M Varela
- Department of Biological Ocenography, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Hesselsoe M, Füreder S, Schloter M, Bodrossy L, Iversen N, Roslev P, Nielsen PH, Wagner M, Loy A. Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME JOURNAL 2009; 3:1349-64. [DOI: 10.1038/ismej.2009.78] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Bjergbaek L, Haagensen J, Molin S, Roslev P. Effect of oxygen limitation and starvation on the benzalkonium chloride susceptibility ofEscherichia coli. J Appl Microbiol 2008; 105:1310-7. [DOI: 10.1111/j.1365-2672.2008.03901.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Hesselsoe M, Bjerring ML, Henriksen K, Loll P, Nielsen JL. Method for measuring substrate preferences by individual members of microbial consortia proposed for bioaugmentation. Biodegradation 2007; 19:621-33. [PMID: 18080209 DOI: 10.1007/s10532-007-9167-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 11/22/2007] [Indexed: 11/28/2022]
Abstract
In this study we used the assimilation of isotope labeled CO(2) to measure the substrate preferences by two different bioaugmentation mixtures proposed for bioremediation of diesel oil contamination. All active microorganisms assimilate CO(2) in various carboxylation processes involved in growth. The CO(2) assimilation by the two mixtures was measured upon addition of glucose, diesel oil or specific compounds present in diesel oil (naphthalene, toluene, hexadecane, and octane). It was shown that within short term incubations with diesel oil (<5 h), one bioaugmentation mixture was superior to the other regarding the assimilation of CO(2). This observation was confirmed in a labor-intensive long term microcosm study (60 days). The applied method open various possibilities for fast pre-testing of substrate-preferences by microbial-bioaugmentation mixtures without microcosm experiments, on-site tests, and complicated chemical analysis. This study also demonstrates the possibility to obtain further information on the substrate preferences at a single cell level of phylogenetically defined microbial subgroups in bioaugmentation mixtures, based on combined analyses of microautoradiography and fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Martin Hesselsoe
- Department of biotechnology, chemistry and environmental engineering, Aalborg University Denmark, Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
48
|
Labrenz M, Jost G, Pohl C, Beckmann S, Martens-Habbena W, Jürgens K. Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines. Appl Environ Microbiol 2005; 71:6664-72. [PMID: 16269695 PMCID: PMC1287708 DOI: 10.1128/aem.71.11.6664-6672.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic or microaerophilic chemolithoautotrophic bacteria have been considered to be responsible for CO2 dark fixation in different pelagic redoxclines worldwide, but their involvement in redox processes is still not fully resolved. We investigated the impact of 17 different electron donor/acceptor combinations in water of pelagic redoxclines from the central Baltic Sea on the stimulation of bacterial CO2 dark fixation as well as on the development of chemolithoautotrophic populations. In situ, the highest CO2 dark fixation rates, ranging from 0.7 to 1.4 micromol liter(-1) day(-1), were measured directly below the redoxcline. In enrichment experiments, chemolithoautotrophic CO2 dark fixation was maximally stimulated by the addition of thiosulfate, reaching values of up to 9.7 micromol liter(-1) CO2 day(-1). Chemolithoautotrophic nitrate reduction proved to be an important process, with rates of up to 33.5 micromol liter(-1) NO3(-) day(-1). Reduction of Fe(III) or Mn(IV) was not detected; nevertheless, the presence of these potential electron acceptors influenced the development of stimulated microbial assemblages. Potential chemolithoautotrophic bacteria in the enrichment experiments were displayed on 16S ribosomal complementary DNA single-strand-conformation polymorphism fingerprints and identified by sequencing of excised bands. Sequences were closely related to chemolithoautotrophic Thiomicrospira psychrophila and Maorithyas hadalis gill symbiont (both Gammaproteobacteria) and to an uncultured nitrate-reducing Helicobacteraceae bacterium (Epsilonproteobacteria). Our data indicate that this Helicobacteraceae bacterium could be of general importance or even a key organism for autotrophic nitrate reduction in pelagic redoxclines.
Collapse
Affiliation(s)
- Matthias Labrenz
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestrasse 15, 18119 Rostock-Warnemünde, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Okabe S, Kindaichi T, Ito T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol 2005; 71:3987-94. [PMID: 16000813 PMCID: PMC1169061 DOI: 10.1128/aem.71.7.3987-3994.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 01/26/2005] [Indexed: 11/20/2022] Open
Abstract
The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C]bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying bacterial cells to heterotrophic bacteria was monitored with time by using MAR-FISH. The MAR-FISH analysis revealed that most phylogenetic groups of heterotrophic bacteria except the beta-Proteobacteria showed significant uptake of 14C-labeled microbial products. In particular, the members of the Chloroflexi were strongly MAR positive in the culture without NH4+ addition, in which nitrifying bacteria tended to decay. This indicated that the members of the Chloroflexi preferentially utilized microbial products derived from mainly biomass decay. On the other hand, the members of the Cytophaga-Flavobacterium cluster gradually utilized 14C-labeled products in the culture with NH4+ addition in which nitrifying bacteria grew. This result suggested that these bacteria preferentially utilized substrate utilization-associated products of nitrifying bacteria and/or secondary metabolites of 14C-labeled structural cell components. Our results clearly demonstrated that the coexisting heterotrophic bacteria efficiently degraded and utilized dead biomass and metabolites of nitrifying bacteria, which consequently prevented accumulation of organic waste products in the biofilm.
Collapse
Affiliation(s)
- Satoshi Okabe
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | | | | |
Collapse
|
50
|
Hesselsoe M, Nielsen JL, Roslev P, Nielsen PH. Isotope labeling and microautoradiography of active heterotrophic bacteria on the basis of assimilation of 14CO(2). Appl Environ Microbiol 2005; 71:646-55. [PMID: 15691913 PMCID: PMC546759 DOI: 10.1128/aem.71.2.646-655.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 09/16/2004] [Indexed: 11/20/2022] Open
Abstract
Most heterotrophic bacteria assimilate CO(2) in various carboxylation reactions during biosynthesis. In this study, assimilation of (14)CO(2) by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient (14)CO(2) during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of (14)C-labeled organic substrates. Experiments with E. coli showed that (14)CO(2) was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO(2)-MAR, was evaluated by targeting metabolic active filamentous bacteria, including "Candidatus Microthrix parvicella" in activated sludge. "Ca. Microthrix parvicella" was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [(14)C]oleic acid. However, the new HetCO(2)-MAR approach indicated that "Ca. Microthrix parvicella," did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO(2)(-), whereas the addition of O(2) or NO(3)(-) initiated growth, as indicated by detectable (14)CO(2) assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO(2)-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO(2)-MAR results were supported by stable isotope analysis of (13)C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of (13)CO(2). In conclusion, the novel HetCO(2)-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.
Collapse
Affiliation(s)
- Martin Hesselsoe
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|