1
|
Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150682. [PMID: 34600998 DOI: 10.1016/j.scitotenv.2021.150682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Jia Z, Dong Y, Xu H, Wang F. Optimizing the hybridization chain reaction-fluorescence in situ hybridization (HCR-FISH) protocol for detection of microbes in sediments. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:529-541. [PMID: 37073263 PMCID: PMC10077247 DOI: 10.1007/s42995-021-00098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a canonical tool commonly used in environmental microbiology research to visualize targeted cells. However, the problems of low signal intensity and false-positive signals impede its widespread application. Alternatively, the signal intensity can be amplified by incorporating Hybridization Chain Reaction (HCR) with FISH, while the specificity can be improved through protocol modification and proper counterstaining. Here we optimized the HCR-FISH protocol for studying microbes in environmental samples, particularly marine sediments. Firstly, five sets of HCR initiator/amplifier pairs were tested on the laboratory-cultured bacterium Escherichia coli and the archaeon Methanococcoides methylutens, and two sets displayed high hybridization efficiency and specificity. Secondly, we tried to find the best combination of sample pretreatment methods and HCR-FISH protocol for environmental sample analysis with the aim of producing less false positive signals. Various detachment methods, extraction methods and formulas of hybridization buffer were tested using sediment samples. Thirdly, an image processing method was developed to enhance the DAPI signal of microbial cells against that of abiotic particles, providing a reliable reference for FISH imaging. In summary, our optimized HCR-FISH protocol showed promise to serve as an addendum to traditional FISH for research on environmental microbes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00098-8.
Collapse
Affiliation(s)
- Zeyu Jia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yijing Dong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Heng Xu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
3
|
Gallego S, Barkay T, Fahrenfeld NL. Tagging the vanA gene in wastewater microbial communities for cell sorting and taxonomy of vanA carrying cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138865. [PMID: 32417556 DOI: 10.1016/j.scitotenv.2020.138865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Failure to understand the microbial ecology driving the proliferation of antibiotic resistance in the environment prevents us from developing strategies to limit the spread of antibiotic resistant infectious disease. In this study, we developed for the first time a tyramide signal amplification-fluorescence in situ hybridization-fluorescence-activated cell sorting protocol (TSA-FISH-FACS) for the characterization of all vanA carrying bacteria in wastewater samples. Firstly, we validated the TSA-FISH protocol through microscopy in pure cultures and wastewater influent. Then, samples were sorted and quantified by FACS and qPCR. Significantly higher percentage tagging of cells was detected in vanA carrying pure cultures and wastewater samples spiked with vanA carrying cells as compared to vanA negative Gram positive strains and non-spiked wastewater samples respectively. qPCR analysis targeting vanZ, a regulating gene in the vanA cluster, showed its relative abundance was significantly greater in Enterococcus faecium ATCC 700221-spiked and positively sorted samples compared to the E. faecium spiked and negatively sorted samples. Phylogenetic analysis was then performed. Although further efforts are needed to overcome technical problems, we have, for the first time, demonstrated sorting bacterial-cells carrying antibiotic resistance genes from wastewater samples through a TSA-FISH-FACS protocol and provided insight into the microbial ecology of vancomycin resistant bacteria. Future potential applications using this approach will include the separation of members of an environmental microbial community (cultured and hard-to-culture) to allow for metagenomics on single cells or, in the case of clumping, targeting a smaller portion of the community with a priori knowledge that the target gene is present.
Collapse
Affiliation(s)
- Sara Gallego
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd., Piscataway, NJ 08854, United States of America
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, 76 Lipman Dr, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States of America
| | - N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd., Piscataway, NJ 08854, United States of America.
| |
Collapse
|
4
|
Arantes TD, Theodoro RC, Teixeira MDM, Bagagli E. Use of fluorescent oligonucleotide probes for differentiation between Paracoccidioides brasiliensis and Paracoccidioides lutzii in yeast and mycelial phase. Mem Inst Oswaldo Cruz 2017; 112:140-145. [PMID: 28177048 PMCID: PMC5293123 DOI: 10.1590/0074-02760160374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture. OBJECTIVE In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene. METHODS Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5' end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5' end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi. FINDINGS The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4',6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic. MAIN CONCLUSION Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis.
Collapse
Affiliation(s)
- Thales Domingos Arantes
- Universidade Estadual Paulista, Instituto de Biociências de Botucatu, Departamento de Microbiologia e Imunologia, Botucatu, SP, Brasil.,Universidade Federal do Rio Grande do Norte, Centro de Biociências, Instituto de Medicina Tropical, Programa de Pós-Graduação em Bioquímica, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Raquel Cordeiro Theodoro
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Instituto de Medicina Tropical, Programa de Pós-Graduação em Bioquímica, Campus Universitário Lagoa Nova, Natal, RN, Brasil.,Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Natal, RN, Brasil
| | - Marcus de Melo Teixeira
- Northern Arizona Center for Valley Fever Research, Translational Genomics Research Institute - Tgen North, Phoenix, AZ, US
| | - Eduardo Bagagli
- Universidade Estadual Paulista, Instituto de Biociências de Botucatu, Departamento de Microbiologia e Imunologia, Botucatu, SP, Brasil
| |
Collapse
|
5
|
Matsubayashi M, Shimada Y, Li YY, Harada H, Kubota K. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters. PLoS One 2017; 12:e0172888. [PMID: 28264042 PMCID: PMC5338771 DOI: 10.1371/journal.pone.0172888] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2–8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester.
Collapse
Affiliation(s)
- Miri Matsubayashi
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yusuke Shimada
- Department of Frontier Science for Advanced Environment, Tohoku University, Sendai, Miyagi, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Hideki Harada
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
6
|
Neuenschwander SM, Salcher MM, Pernthaler J. Fluorescence in situ hybridization and sequential catalyzed reporter deposition (2C-FISH) for the flow cytometric sorting of freshwater ultramicrobacteria. Front Microbiol 2015; 6:247. [PMID: 25873914 PMCID: PMC4379941 DOI: 10.3389/fmicb.2015.00247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/13/2015] [Indexed: 12/18/2022] Open
Abstract
Flow cytometric sorting is a powerful tool to physically separate cells within mixed microbial communities. If combined with phylogenetic staining (fluorescence in situ hybridization, FISH) it allows to specifically sort defined genotypic microbial populations from complex natural samples. However, the targeted enrichment of freshwater ultramicrobacteria, such as members of the LD12 clade of Alphaproteobacteria (SAR11-IIIb), is still challenging. Current FISH protocols, even in combination with signal amplification by catalyzed reporter deposition (CARD), are not sufficiently sensitive for the distinction of these bacteria from background noise by flow cytometry, presumably due to their low ribosome content and small cell sizes. We, therefore, modified a CARD based flow sorting protocol with the aim of increasing its sensitivity to a level sufficient for ultramicrobacteria. This was achieved by a second signal amplification step mediated by horseradish peroxidase labeled antibodies targeted to the fluorophores that were previously deposited by CARD-FISH staining. The protocol was tested on samples from an oligo-mesotrophic lake. Ultramicrobacteria affiliated with LD12 Alphaproteobacteria could be successfully sorted to high purity by flow cytometry. The ratios of median fluorescence signal to background ranged around 20, and hybridization rates determined by flow cytometry were comparable to those obtained by fluorescence microscopy. Potential downstream applications of our modified cell staining approach range from the analysis of microdiversity within 16S rRNA-defined populations to that of functional properties, such as the taxon-specific incorporation rates of organic substrates.
Collapse
Affiliation(s)
| | | | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, University of ZurichKilchberg, Switzerland
| |
Collapse
|
7
|
Primers: Functional Genes and 16S rRNA Genes for Methanogens. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Aoki M, Ehara M, Saito Y, Yoshioka H, Miyazaki M, Saito Y, Miyashita A, Kawakami S, Yamaguchi T, Ohashi A, Nunoura T, Takai K, Imachi H. A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One 2014; 9:e105356. [PMID: 25141130 PMCID: PMC4139340 DOI: 10.1371/journal.pone.0105356] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/19/2014] [Indexed: 11/18/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Masayuki Ehara
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yumi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Hideyoshi Yoshioka
- Institute for Geo-resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yayoi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Ai Miyashita
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shuji Kawakami
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
- Department of Construction Systems Engineering, Anan National College of Technology, Anan, Tokushima, Japan
| | - Takashi Yamaguchi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Akiyoshi Ohashi
- Department of Social and Environmental Engineering, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
9
|
Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L. Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PLoS One 2014; 9:e95793. [PMID: 24755945 PMCID: PMC3995938 DOI: 10.1371/journal.pone.0095793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022] Open
Abstract
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria.
Collapse
Affiliation(s)
- Ilya Kirov
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Katrijn Van Laere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
- * E-mail:
| | - Jan De Riek
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Ellen De Keyser
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Nadine Van Roy
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ludmila Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| |
Collapse
|
10
|
Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1120-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Saengkerdsub S, Ricke SC. Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol 2013; 40:97-116. [PMID: 23425063 DOI: 10.3109/1040841x.2013.763220] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the molecular techniques used in animal-based-methanogen studies will be discussed along with how methanogens interact not only with other microorganisms but with their animal hosts as well. These methods not only indicate the diversity and levels of methanogens, but also provide insight on their ecological functions. Most molecular techniques have been based on either 16S rRNA genes or methyl-coenzyme M reductase, a ubiquitous enzyme in methanogens. The most predominant methanogens in animals belong to the genus Methanobrevibacter. Besides methanogens contributing to overall H2 balance, methanogens also have mutual interactions with other bacteria. In addition to shared metabolic synergism, the host animal retrieves additional energy from the diet when methanogens are co-colonized with other normal flora. By comparing genes in methanogens with other bacteria, possible gene transfer between methanogens and other bacteria in the same environments appears to occur. Finally, diets in conjunction with the genetics of methanogens and hosts may represent the biological framework that dictate the extent of methanogen prevalence in these ecosystems. In addition, host evolution including the immune system could serve as an additional selective pressure for methanogen colonization.
Collapse
Affiliation(s)
- Suwat Saengkerdsub
- Department of Food Science, Center for Food Safety, University of Arkansas , Fayetteville, AR , USA , and
| | | |
Collapse
|
12
|
Kubota K. CARD-FISH for environmental microorganisms: technical advancement and future applications. Microbes Environ 2012; 28:3-12. [PMID: 23124765 PMCID: PMC4070690 DOI: 10.1264/jsme2.me12107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has become a standard technique in environmental microbiology. More than 20 years have passed since this technique was first described, and it is currently used for the detection of ribosomal RNA, messenger RNA, and functional genes encoded on chromosomes. This review focuses on the advancement and applications of FISH combined with catalyzed reporter deposition (CARD, also known as tyramide signal amplification or TSA), in the detection of environmental microorganisms. Significant methodological improvements have been made in CARD-FISH technology, including its combination with other techniques and instruments.
Collapse
Affiliation(s)
- Kengo Kubota
- Department of Civil and Environmental Engineering, Tohoku University, Miyagi, Japan.
| |
Collapse
|
13
|
Kawakami S, Hasegawa T, Imachi H, Yamaguchi T, Harada H, Ohashi A, Kubota K. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes. J Microbiol Methods 2011; 88:218-23. [PMID: 22172287 DOI: 10.1016/j.mimet.2011.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/17/2022]
Abstract
In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences.
Collapse
Affiliation(s)
- Shuji Kawakami
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Narihiro T, Sekiguchi Y. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microb Biotechnol 2011; 4:585-602. [PMID: 21375721 PMCID: PMC3819009 DOI: 10.1111/j.1751-7915.2010.00239.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/12/2010] [Indexed: 11/28/2022] Open
Abstract
For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α-subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers.
Collapse
Affiliation(s)
- Takashi Narihiro
- International Patent Organism Depositary (IPOD), Tsukuba, Ibaraki 305‐8566, Japan
| | - Yuji Sekiguchi
- Bio‐medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305‐8566, Japan
| |
Collapse
|
15
|
Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y, Saito Y, Yamaguchi T, Tomaru H, Takeuchi R, Morono Y, Inagaki F, Takai K. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME JOURNAL 2011; 5:1913-25. [PMID: 21654849 DOI: 10.1038/ismej.2011.64] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial methanogenesis in subseafloor sediments is a key process in the carbon cycle on the Earth. However, the cultivation-dependent evidences have been poorly demonstrated. Here we report the cultivation of a methanogenic microbial consortium from subseafloor sediments using a continuous-flow-type bioreactor with polyurethane sponges as microbial habitats, called down-flow hanging sponge (DHS) reactor. We anaerobically incubated methane-rich core sediments collected from off Shimokita Peninsula, Japan, for 826 days in the reactor at 10 °C. Synthetic seawater supplemented with glucose, yeast extract, acetate and propionate as potential energy sources was provided into the reactor. After 289 days of operation, microbiological methane production became evident. Fluorescence in situ hybridization analysis revealed the presence of metabolically active microbial cells with various morphologies in the reactor. DNA- and RNA-based phylogenetic analyses targeting 16S rRNA indicated the successful growth of phylogenetically diverse microbial components during cultivation in the reactor. Most of the phylotypes in the reactor, once it made methane, were more closely related to culture sequences than to the subsurface environmental sequence. Potentially methanogenic phylotypes related to the genera Methanobacterium, Methanococcoides and Methanosarcina were predominantly detected concomitantly with methane production, while uncultured archaeal phylotypes were also detected. Using the methanogenic community enrichment as subsequent inocula, traditional batch-type cultivations led to the successful isolation of several anaerobic microbes including those methanogens. Our results substantiate that the DHS bioreactor is a useful system for the enrichment of numerous fastidious microbes from subseafloor sediments and will enable the physiological and ecological characterization of pure cultures of previously uncultivated subseafloor microbial life.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Subsurface Geobiology Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moraru C, Lam P, Fuchs BM, Kuypers MMM, Amann R. GeneFISH--an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 2011; 12:3057-73. [PMID: 20629705 DOI: 10.1111/j.1462-2920.2010.02281.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our knowledge concerning the metabolic potentials of as yet to be cultured microorganisms has increased tremendously with the advance of sequencing technologies and the consequent discoveries of novel genes. On the other hand, it is often difficult to reliably assign a particular gene to a phylogenetic clade, because these sequences are usually found on genomic fragments that carry no direct marker of cell identity, such as rRNA genes. Therefore, the aim of the present study was to develop geneFISH - a protocol for linking gene presence with cell identity in environmental samples, the signals of which can be visualized at a single cell level. This protocol combines rRNA-targeted catalysed reporter deposition - fluorescence in situ hybridization and in situ gene detection. To test the protocol, it was applied to seawater samples from the Benguela upwelling system. For gene detection, a polynucleotide probe mix was used, which was designed based on crenarchaeotal amoA clone libraries prepared from each seawater sample. Each probe in the mix was selected to bind to targets with up to 5% mismatches. To determine the hybridization parameters, the T(m) of probes, targets and hybrids was estimated based on theoretical calculations and in vitro measurements. It was shown that at least 30%, but potentially the majority of the Crenarchaeota present in these samples harboured the amoA gene and were therefore likely to be catalysing the oxidation of ammonia.
Collapse
Affiliation(s)
- Cristina Moraru
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
17
|
Kumar S, Dagar SS, Mohanty AK, Sirohi SK, Puniya M, Kuhad RC, Sangu KPS, Griffith GW, Puniya AK. Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 2011; 98:457-72. [PMID: 21475941 DOI: 10.1007/s00114-011-0791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.
Collapse
Affiliation(s)
- Sanjay Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biotechnol 2010; 86:1281-92. [DOI: 10.1007/s00253-010-2524-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 01/14/2023]
|
19
|
Kawakami S, Kubota K, Imachi H, Yamaguchi T, Harada H, Ohashi A. Detection of Single Copy Genes by Two-Pass Tyramide Signal Amplification Fluorescence in situ Hybridization (Two-Pass TSA-FISH) with Single Oligonucleotide Probes. Microbes Environ 2010; 25:15-21. [DOI: 10.1264/jsme2.me09180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shuji Kawakami
- Department of Environmental Systems Engineering, Nagaoka University of Technology
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Tohoku University
| | - Hiroyuki Imachi
- Subsurface Geobiology Advanced Research (SUGAR) Team, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC)
| | - Takashi Yamaguchi
- Department of Environmental Systems Engineering, Nagaoka University of Technology
| | - Hideki Harada
- Department of Civil and Environmental Engineering, Tohoku University
| | - Akiyoshi Ohashi
- Department of Social and Environmental Systems Engineering, Hiroshima University
| |
Collapse
|
20
|
Armani M, Rodriguez-Canales J, Gillespie J, Tangrea M, Erickson H, Emmert-Buck MR, Shapiro B, Smela E. 2D-PCR: a method of mapping DNA in tissue sections. LAB ON A CHIP 2009; 9:3526-3534. [PMID: 20024032 PMCID: PMC2910845 DOI: 10.1039/b910807f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel approach was developed for mapping the location of target DNA in tissue sections. The method combines a high-density, multi-well plate with an innovative single-tube procedure to directly extract, amplify, and detect the DNA in parallel while maintaining the two-dimensional (2D) architecture of the tissue. A 2D map of the gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was created from a tissue section and shown to correlate with the spatial area of the sample. It is anticipated that this approach may be easily adapted to assess the status of multiple genes within tissue sections, yielding a molecular map that directly correlates with the histology of the sample. This will provide investigators with a new tool to interrogate the molecular heterogeneity of tissue specimens.
Collapse
Affiliation(s)
- Michael Armani
- Bioengineering Graduate Program, University of Maryland, College Park, MD, USA
- Fischell Department of Bio-Engineering, University of Maryland, College Park, MD, USA
- Pathogenetics Unit, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Jaime Rodriguez-Canales
- Laser Microdissection Core, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Michael Tangrea
- Pathogenetics Unit, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Heidi Erickson
- University of Texas, M. D. Anderson Cancer Center, Department of Thoracic Head & Neck Medical Oncology, Houston, TX, USA
| | - Michael R. Emmert-Buck
- Pathogenetics Unit, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Shapiro
- Bioengineering Graduate Program, University of Maryland, College Park, MD, USA
- Fischell Department of Bio-Engineering, University of Maryland, College Park, MD, USA
| | - Elisabeth Smela
- Bioengineering Graduate Program, University of Maryland, College Park, MD, USA
- Department of Mechanical Engineering, University of Maryland, 2176 Martin Hall, College Park, MD, 20742, USA
| |
Collapse
|
21
|
Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol 2008; 74:5068-77. [PMID: 18552182 DOI: 10.1128/aem.00208-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a method that is widely used to detect and quantify microorganisms in environmental samples and medical specimens by fluorescence microscopy. Difficulties with FISH arise if the rRNA content of the probe target organisms is low, causing dim fluorescence signals that are not detectable against the background fluorescence. This limitation is ameliorated by technical modifications such as catalyzed reporter deposition (CARD)-FISH, but the minimal numbers of rRNA copies needed to obtain a visible signal of a microbial cell after FISH or CARD-FISH have not been determined previously. In this study, a novel competitive FISH approach was developed and used to determine, based on a thermodynamic model of probe competition, the numbers of 16S rRNA copies per cell required to detect bacteria by FISH and CARD-FISH with oligonucleotide probes in mixed pure cultures and in activated sludge. The detection limits of conventional FISH with Cy3-labeled probe EUB338-I were found to be 370 +/- 45 16S rRNA molecules per cell for Escherichia coli hybridized on glass microscope slides and 1,400 +/- 170 16S rRNA copies per E. coli cell in activated sludge. For CARD-FISH the values ranged from 8.9 +/- 1.5 to 14 +/- 2 and from 36 +/- 6 to 54 +/- 7 16S rRNA molecules per cell, respectively, indicating that the sensitivity of CARD-FISH was 26- to 41-fold higher than that of conventional FISH. These results suggest that optimized FISH protocols using oligonucleotide probes could be suitable for more recent applications of FISH (for example, to detect mRNA in situ in microbial cells).
Collapse
|
22
|
Czechowska K, Johnson DR, van der Meer JR. Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 2008; 11:205-12. [DOI: 10.1016/j.mib.2008.04.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 10/21/2022]
|
23
|
Marco ML, Wells-Bennik MH. Impact of bacterial genomics on determining quality and safety in the dairy production chain. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Evaluation of enzymatic cell treatments for application of CARD-FISH to methanogens. J Microbiol Methods 2008; 72:54-9. [DOI: 10.1016/j.mimet.2007.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/11/2007] [Accepted: 10/19/2007] [Indexed: 11/22/2022]
|
25
|
Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2007; 74:1305-15. [PMID: 18165358 DOI: 10.1128/aem.02233-07] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Chuang HP, Imachi H, Tandukar M, Kawakami S, Harada H, Ohashi A. Microbial Community that Catalyzes Partial Nitrification at Low Oxygen Atmosphere as Revealed by 16S rRNA and amoA Genes. J Biosci Bioeng 2007; 104:525-8. [DOI: 10.1263/jbb.104.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/01/2007] [Indexed: 11/17/2022]
|
27
|
mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification. J Microbiol Methods 2007; 71:246-55. [DOI: 10.1016/j.mimet.2007.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/15/2007] [Accepted: 09/03/2007] [Indexed: 11/21/2022]
|
28
|
Lau SCK, Liu WT. Recent advances in molecular techniques for the detection of phylogenetic markers and functional genes in microbial communities. FEMS Microbiol Lett 2007; 275:183-90. [PMID: 17651392 DOI: 10.1111/j.1574-6968.2007.00853.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The detection and analysis of nucleic acids extracted from microbial communities are the ultimate ways to determine the diversity and functional capability of microbial communities in the environments. However, it remains a challenge to use molecular techniques for unequivocal determination and quantification of microbial species composition and functional activities. Considerable efforts have been made to enhance the capability of molecular techniques. Here an update of the recent developments in molecular techniques for environmental microbiology is provided.
Collapse
Affiliation(s)
- Stanley C K Lau
- Division of Environmental Science and Engineering, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
29
|
Xu R, Gan X, Fang Y, Zheng S, Dong Q. A simple, rapid, and sensitive integrated protein microarray for simultaneous detection of multiple antigens and antibodies of five human hepatitis viruses (HBV, HCV, HDV, HEV, and HGV). Anal Biochem 2006; 362:69-75. [PMID: 17239337 DOI: 10.1016/j.ab.2006.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/03/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Protein microarrays for parallel detection of multiple viral antigens and antibodies have not yet been described in the field of human hepatitis virus infections. Here, we describe a simple, rapid and sensitive integrated protein microarray with three different reaction models. The integrated protein microarray could simultaneously determine in human sera two viral antigens (HBsAg, HBeAg) and seven viral antibodies (HBsAb, HBcAb, HBeAb, HCVAb, HDVAb, HEVAb, HGVAb) of human hepatitis viruses within 20 min. The results of the protein microarray were assessed directly by the naked eye but can also be analyzed by a quantitative detector. The detection limit of this protein microarray was 0.1 ng/ml for HBsAg. Overall, >85% concordance was observed between the integrated protein microarrays and an enzyme-linked immunosorbent assay for above hepatitis viral antigen and antibody detections in human sera. This integrated protein microarray can be easily optimized for clinical use and epidemiological screening for multiple hepatitis virus infections.
Collapse
Affiliation(s)
- Rongzhen Xu
- Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | | | | | | | | |
Collapse
|