1
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
2
|
Kim D, Hong J, Choi Y, Han J, Kim S, Jo G, Yoon JY, Chae H, Yoon H, Lee C, Hong HJ. Generation and Characterization of Monoclonal Antibodies to the Ogawa Lipopolysaccharide of Vibrio cholerae O1 from Phage-Displayed Human Synthetic Fab Library. J Microbiol Biotechnol 2020; 30:1760-1768. [PMID: 32876069 PMCID: PMC9728160 DOI: 10.4014/jmb.2005.05046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Vibrio cholerae, cause of the life-threatening diarrheal disease cholera, can be divided into different serogroups based on the structure of its lipopolysaccharide (LPS), which consists of lipid-A, corepolysaccharide and O-antigen polysaccharide (O-PS). The O1 serogroup, the predominant cause of cholera, includes two major serotypes, Inaba and Ogawa. These serotypes are differentiated by the presence of a single 2-O-methyl group in the upstream terminal perosamine of the Ogawa O-PS, which is absent in the Inaba O-PS. To ensure the consistent quality and efficacy of the current cholera vaccines, accurate measurement and characterization of each of these two serotypes is highly important. In this study, we efficiently screened a phage-displayed human synthetic Fab library by bio-panning against Ogawa LPS and finally selected three unique mAbs (D9, E11, and F7) that specifically react with Ogawa LPS. The mAbs bound to Vibrio cholerae vaccine in a dose-dependent fashion. Sequence and structure analyses of antibody paratopes suggest that IgG D9 might have the same fine specificity as that of the murine mAbs, which were shown to bind to the upstream terminal perosamine of Ogawa O-PS, whereas IgGs F7 and E11 showed some different characteristics in the paratopes. To our knowledge, this study is the first to demonstrate the generation of Ogawa-specific mAbs using phage display technology. The mAbs will be useful for identification and quantification of Ogawa LPS in multivalent V. cholerae vaccines.
Collapse
Affiliation(s)
- Dain Kim
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Jisu Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Yoonjoo Choi
- Medical Research Center, Chonnam National University Medical School, Hwasun 5818, Republic of Korea
| | - Jemin Han
- Eubiologics Co., Ltd., Chuncheon 2422, Republic of Korea
| | - Sangkyu Kim
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Gyunghee Jo
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Jun-Yeol Yoon
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Heesu Chae
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Hyeseon Yoon
- Eubiologics Co., Ltd., Chuncheon 2422, Republic of Korea
| | - Chankyu Lee
- Eubiologics Co., Ltd., Chuncheon 2422, Republic of Korea,Corresponding authors H.J.Hong Phone: 82-33-250-8381 Fax: 82-33-259-5643 E-mail:
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 2434, Republic of Korea,Scripps Korea Antibody Institute, Chuncheon 231, Republic of Korea,Corresponding authors H.J.Hong Phone: 82-33-250-8381 Fax: 82-33-259-5643 E-mail:
| |
Collapse
|
3
|
Pengsuk C, Wangman P, Chaivisuthangkura P, Sithigorngul P, Longyant S. Nanogold‐based immunochromatographic strip test for rapid detection of clinical and environmental strains of
Vibrio cholerae. J Food Saf 2020. [DOI: 10.1111/jfs.12874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chalinan Pengsuk
- Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| | - Pradit Wangman
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| |
Collapse
|
4
|
Jamal RB, Shipovskov S, Ferapontova EE. Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5561. [PMID: 32998409 PMCID: PMC7582323 DOI: 10.3390/s20195561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
Microbiological safety of the human environment and health needs advanced monitoring tools both for the specific detection of bacteria in complex biological matrices, often in the presence of excessive amounts of other bacterial species, and for bacteria quantification at a single cell level. Here, we discuss the existing electrochemical approaches for bacterial analysis that are based on the biospecific recognition of whole bacterial cells. Perspectives of such assays applications as emergency-use biosensors for quick analysis of trace levels of bacteria by minimally trained personnel are argued.
Collapse
Affiliation(s)
| | | | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark; (R.B.J.); (S.S.)
| |
Collapse
|
5
|
Lee WI, Park Y, Shrivastava S, Jung T, Meeseepong M, Lee J, Jeon B, Yang S, Lee NE. A fully integrated bacterial pathogen detection system based on count-on-a-cartridge platform for rapid, ultrasensitive, highly accurate and culture-free assay. Biosens Bioelectron 2020; 152:112007. [DOI: 10.1016/j.bios.2020.112007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
|
6
|
Wangman P, Chaivisuthangkura P, Taengchaiyaphum S, Pengsuk C, Sithigorngul P, Longyant S. Development of a rapid immunochromatographic strip test for the detection of Vibrio parahaemolyticus toxin B that cause acute hepatopancreatic necrosis disease. JOURNAL OF FISH DISEASES 2020; 43:207-214. [PMID: 31752048 DOI: 10.1111/jfd.13115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Here, two monoclonal antibodies (MAbs) specific to different epitopes on ToxB, a toxin produced by Vibrio parahaemolyticus that causes acute hepatopancreatic necrosis disease (VPAHPND ), were employed to develop a rapid strip test. One MAb was conjugated to colloidal gold to bind to ToxB at the application pad, and another MAb was used to capture colloidal gold MAb-protein complexes at the test line (T) on the nitrocellulose strip. To validate test performance, a downstream control line (C) of goat anti-mouse immunoglobulin G antibody was used to capture the free colloidal gold conjugate MAb. The sample in the application buffer could be applied directly to the application well, and the test result was obtained within 15 min. The sensitivity of the kit is approximately 6.25 µg/ml of toxin, which was equivalent to the toxin produced by approximately 107 cfu/ml of bacteria. This kit is convenient and easy to use since it can be used to identify VPAHPND directly using a single colony of bacteria grown on agar culture plates. Because of its high specificity and simplicity, as well as not being reliant on sophisticated equipment or specialized skills, this strip test could be used by farmers for surveillance for ToxB-producing bacteria.
Collapse
Affiliation(s)
- Pradit Wangman
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Bangkok, Thailand
| | - Chalinan Pengsuk
- Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
7
|
Wang D, Zhu J, Zhang Z, Zhang Q, Zhang W, Yu L, Jiang J, Chen X, Wang X, Li P. Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation. Toxins (Basel) 2019; 11:56. [PMID: 30669515 PMCID: PMC6356774 DOI: 10.3390/toxins11010056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, a lateral flow immunoassay via time-resolved fluorescence was developed for the rapid, on-site, simultaneous, and quantitative sensing aflatoxin B₁ (AFB₁), zearalenone (ZEA), and chlorothalonil (CTN) in maize and peanut. The sample preparation was optimized to a single step, combining the grinding and extraction. Under optimal conditions, the sensing method lowered the limits of detection (LOD) to 0.16, 0.52, and 1.21 µg/kg in maize and 0.18, 0.57, and 1.47 µg/kg in peanut with an analytical range of 0.48⁻20, 1.56⁻200, and 3.63⁻300 µg/kg for AFB₁, ZEA and CTN, respectively. The protocol could be completed within 15 min, including sample preparation and lateral flow immunoassay. The recovery range was 83.24⁻110.80%. An excellent correlation was observed between this approach and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for mycotoxins and gas chromatography-tandem mass spectrometry (GC-MS/MS) for pesticide in maize and peanut. This work could be applied in on-site multi-class sensing for food safety.
Collapse
Affiliation(s)
- Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Jianguo Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Jun Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Xiaomei Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Xuefang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| |
Collapse
|
8
|
Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem 2019; 49:510-533. [DOI: 10.1080/10408347.2018.1561243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shalini Muniandy
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Ignatius Julian Dinshaw
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Central Unit of Advanced Research Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Rahman M, Heng LY, Futra D, Ling TL. Ultrasensitive Biosensor for the Detection of Vibrio cholerae DNA with Polystyrene-co-acrylic Acid Composite Nanospheres. NANOSCALE RESEARCH LETTERS 2017; 12:474. [PMID: 28774152 PMCID: PMC5539059 DOI: 10.1186/s11671-017-2236-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae (V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M (R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% (n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% (n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Department of General Educational Development (GED), Faculty of Science and Information Technology, Daffodil International University, 102 & 102/1, Shukrabad, Mirpur Road, Dhanmondi, Dhaka, 1207, Bangladesh.
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia.
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute For Environment and Development (LESTARI), University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia
| | - Dedi Futra
- Department of Chemistry Education, Faculty of Education, Graduate Program, University Riau, Pekanbaru, Riau, 28131, Indonesia
| | - Tan Ling Ling
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute For Environment and Development (LESTARI), University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia
| |
Collapse
|
10
|
Identification of Vibrio cholerae serotypes in high-risk marine products with non-gel sieving capillary electrophoresis. Anal Biochem 2016; 494:68-75. [DOI: 10.1016/j.ab.2015.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
11
|
Wang Y, Salazar JK. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Compr Rev Food Sci Food Saf 2015; 15:183-205. [DOI: 10.1111/1541-4337.12175] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Wang
- Div. of Food Processing Science and Technology; U.S. Food and Drug Administration; Bedford Park IL U.S.A
| | - Joelle K. Salazar
- Div. of Food Processing Science and Technology; U.S. Food and Drug Administration; Bedford Park IL U.S.A
| |
Collapse
|
12
|
Shan S, Lai W, Xiong Y, Wei H, Xu H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:745-53. [PMID: 25539027 DOI: 10.1021/jf5046415] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Food contaminated by foodborne pathogens causes diseases, affects individuals, and even kills those affected individuals. As such, rapid and sensitive detection methods should be developed to screen pathogens in food. One current detection method is lateral flow immunoassay, an efficient technique because of several advantages, including rapidity, simplicity, stability, portability, and sensitivity. This review presents the format and principle of lateral flow immunoassay strip and the development of conventional lateral flow immunoassay for detecting foodborne pathogens. Furthermore, novel strategies that can be applied to enhance the sensitivity of lateral flow immunoassay to detect foodborne pathogens are presented; these strategies include innovating new label application, designing new formats of lateral flow immunoassay, combining with other methods, and developing signal amplification systems. With these advancements, detection sensitivity and detection time can be greatly improved.
Collapse
Affiliation(s)
- Shan Shan
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | | | | | | | | |
Collapse
|