1
|
Niessen L, Silva JJ, Frisvad JC, Taniwaki MH. The application of omics tools in food mycology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:423-474. [PMID: 40023565 DOI: 10.1016/bs.afnr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter explores the application of omics technologies in food mycology, emphasizing the significant impact of filamentous fungi on agriculture, medicine, biotechnology and the food industry. The chapter delves into the importance of understanding fungal secondary metabolism due to its implications for human health and industrial use. Several omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are reviewed for their role in studying the genetic potential and metabolic capabilities of food-related fungi. The potential of CRISPR/Cas9 in fungal research is highlighted, showing its ability to unlock the full genetic potential of these organisms. The chapter also addresses the challenges posed by Big Data research in Omics and the need for advanced data processing methods. Through these discussions, the chapter highlights the future benefits and challenges of omics-based research in food mycology and its potential to revolutionize our understanding and utilization of fungi in various domains.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | | | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
2
|
Ropero-Pérez C, Marcos JF, Manzanares P, Garrigues S. Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum. Fungal Biol Biotechnol 2024; 11:8. [PMID: 39003486 PMCID: PMC11245846 DOI: 10.1186/s40694-024-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use. RESULTS Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol. CONCLUSION Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.
Collapse
Affiliation(s)
- Carolina Ropero-Pérez
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
3
|
Zhao S, Yin R, Zhang M, Zhai Z, Shen Z, Mou Y, Xu D, Zhou L, Lai D. Efficient gene editing in the slow-growing, non-sporulating, melanized, endophytic fungus Berkleasmium sp. Dzf12 using a CRISPR/Cas9 system. World J Microbiol Biotechnol 2024; 40:176. [PMID: 38652405 DOI: 10.1007/s11274-024-03988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The endophytic fungus Berkleasmium sp. Dzf12 that was isolated from Dioscorea zingiberensis, is a proficient producer of palmarumycins, which are intriguing polyketides of the spirobisnaphthalene class. These compounds displayed a wide range of bioactivities, including antibacterial, antifungal, and cytotoxic activities. However, conventional genetic manipulation of Berkleasmium sp. Dzf12 is difficult and inefficient, partially due to the slow-growing, non-sporulating, and highly pigmented behavior of this fungus. Herein, we developed a CRISPR/Cas9 system suitable for gene editing in Berkleasmium sp. Dzf12. The protoplast preparation was optimized, and the expression of Cas9 in Berkleasmium sp. Dzf12 was validated. To assess the gene disruption efficiency, a putative 1, 3, 6, 8-tetrahydroxynaphthalene synthase encoding gene, bdpks, involved in 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis, was selected as the target for gene disruption. Various endogenous sgRNA promoters were tested, and different strategies to express sgRNA were compared, resulting in the construction of an optimal system using the U6 snRNA-1 promoter as the sgRNA promoter. Successful disruption of bdpks led to a complete abolishment of the production of spirobisnaphthalenes and melanin. This work establishes a useful gene targeting disruption system for exploration of gene functions in Berkleasmium sp. Dzf12, and also provides an example for developing an efficient CRISPR/Cas9 system to the fungi that are difficult to manipulate using conventional genetic tools.
Collapse
Affiliation(s)
- Siji Zhao
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Ruya Yin
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Mengwei Zhang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Ziqi Zhai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Zhen Shen
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Yan Mou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Dan Xu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Ligang Zhou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Daowan Lai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China.
| |
Collapse
|
4
|
Liu Q, Meng G, Wang M, Li X, Liu M, Wang F, Yang Y, Dong C. Safe-Harbor-Targeted CRISPR/Cas9 System and Cmhyd1 Overexpression Enhances Disease Resistance in Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15249-15260. [PMID: 37807760 DOI: 10.1021/acs.jafc.3c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fungal disease of mushroomCordyceps militaris (CM) caused byCalcarisporium cordycipiticola (CC) is destructive to fruiting body cultivation, resulting in significant economic loss and potential food safety risks. CRISPR/Cas9 genome editing has proven to be a powerful tool for crop improvement but seldom succeeded in mushrooms. Here, the first genomic safe-harbor site, CmSH1 locus, was identified in the CM genome. A safe-harbor-targeted CRISPR/Cas9 system based on an autonomously replicating plasmid was designed to facilitate alien gene integration at the CmSH1 locus. Cmhyd1, one of the hydrophobin genes, was confirmed as a defensive factor against CC infection, and Cmhyd1 overexpression by this system showed enhancement of disease resistance with negligible effect on the agronomic traits of CM. No off-target events and residues of plasmid sequence were tested by PCR and genome resequencing. This study provided the first safe harbor site for genetic manipulations, a safe harbor-targeted CRISPR/Cas9 system, and the first disease-resistant gene-editing breeding system in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei Province, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Igarashi T, Katayama T, Maruyama JI. CRISPR/Cas9 genome editing for comparative genetic analysis related to soy sauce brewing in Aspergillus sojae industrial strains. Biosci Biotechnol Biochem 2023; 87:1236-1248. [PMID: 37500264 DOI: 10.1093/bbb/zbad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Aspergillus sojae has traditionally been used in soy sauce brewing. Genetic modification techniques have been established in A. sojae, but it is difficult to apply them to various industrial strains. Although we have previously developed a CRISPR/Cpf1 system for genetic modification of A. sojae, another genome editing system was required for versatile modification. In addition, repetitive genetic modification using the CRISPR system has not been established in A. sojae. In this study, we demonstrated mutagenesis, gene deletion/integration, and large deletion of a chromosomal region in A. sojae using the CRISPR/Cas9 system. We also successfully performed repetitive genetic modification using a method that involved forced recycling of genome-editing plasmids. Moreover, we demonstrated that the effects of genetic modification related to soy sauce brewing differed among A. sojae industrial strains. These results showed that our technique of using the CRISPR/Cas9 system is a powerful tool for genetic modification in A. sojae.
Collapse
Affiliation(s)
- Takayuki Igarashi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Thai HD, Do LTBX, Nguyen XT, Vu TX, Tran HTT, Nguyen HQ, Tran VT. A newly constructed Agrobacterium-mediated transformation system based on the hisB auxotrophic marker for genetic manipulation in Aspergillus niger. Arch Microbiol 2023; 205:183. [PMID: 37032362 DOI: 10.1007/s00203-023-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Xuan Thi Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Huy Quang Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Gao J, Liu H, Zhang Z, Liang Z. Establishment, optimization, and application of genetic technology in Aspergillus spp. Front Microbiol 2023; 14:1141869. [PMID: 37025635 PMCID: PMC10071863 DOI: 10.3389/fmicb.2023.1141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Zhihong Liang,
| |
Collapse
|
8
|
Meng G, Wang X, Liu M, Wang F, Liu Q, Dong C. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris. Microb Biotechnol 2022; 15:2594-2606. [PMID: 35829671 PMCID: PMC9518986 DOI: 10.1111/1751-7915.14107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cordyceps militaris is a popular edible fungus with important economic value worldwide. In this study, an efficient CRISPR/Cas9 genome-editing system based on an autonomously replicating plasmid with an AMA1 sequence was constructed. Further, a precisely targeted gene deletion via homology-directed repair was effectively introduced in C. militaris. Gene editing was successful, with efficiencies of 55.1% and 89% for Cmwc-1 and Cmvvd, respectively. Precisely targeted gene deletion was achieved at an efficiency of 73.9% by a single guide RNA supplementation with donor DNAs. Double genes, Cmwc-1 and Cmvvd, were edited simultaneously with an efficiency of 10%. Plasmid loss was observed under non-selective culture conditions, which could permit recycling of the selectable marker and avoid the adverse effects of the CRISPR/Cas9 system on the fungus, which is beneficial for the generation of new cultivars. RNA Pol III promoters, endogenous tRNAPro of C. militaris, and chimeric AfU6-tRNAGly can be used to improve the efficiency. Polyethylene glycol-mediated protoplast transformation was markedly more efficient than Agrobacterium tumefaciens-mediated transformation of C. militaris. To our knowledge, this is the first description of genome editing and precisely targeted gene deletion in mushrooms based on AMA1 plasmids. Our findings will enable the modification of multiple genes in both functional genomics research and strain breeding.
Collapse
Affiliation(s)
- Guoliang Meng
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuping Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- China National Research Institute of Food and Fermentation Industries Co., LtdBeijingChina
| | - Mengqian Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fen Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Qizheng Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Caihong Dong
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. J Fungi (Basel) 2022; 8:jof8050467. [PMID: 35628723 PMCID: PMC9143064 DOI: 10.3390/jof8050467] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays crucial roles in the decomposition of organic materials as an important environmental microorganism as well as in the traditional fermentation and food processing industries. Furthermore, due to their strong potential to secrete a large variety of hydrolytic enzymes and other natural products by manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus species have been widely exploited as microbial cell factories. In recent years, with the development of next-generation genome sequencing technology and genetic engineering methods, the production and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species have been well studied. As a newly developed genome editing technology, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has been widely employed to improve the efficiency of gene modification in the strain type Aspergillus nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development of CRISPR/Cas9-based genome editing technology and its application in basic research and the production of recombination proteins and natural products in the Aspergillus species.
Collapse
|
10
|
Application of recyclable CRISPR/Cas9 tools for targeted genome editing in the postharvest pathogenic fungi Penicillium digitatum and Penicillium expansum. Curr Genet 2022; 68:515-529. [PMID: 35298666 DOI: 10.1007/s00294-022-01236-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Abstract
Penicillium digitatum and Penicillium expansum are plant pathogenic fungi that cause the green and blue mold diseases, respectively, leading to serious postharvest economic losses worldwide. Moreover, P. expansum can produce mycotoxins, which are hazardous compounds to human and animal health. The development of tools that allow multiple and precise genetic manipulation of these species is crucial for the functional characterization of their genes. In this sense, CRISPR/Cas9 represents an excellent opportunity for genome editing due to its efficiency, accuracy and versatility. In this study, we developed protoplast generation and transformation protocols and applied them to implement the CRISPR/Cas9 technology in both species for the first time. For this, we used a self-replicative, recyclable AMA1-based plasmid which allows unlimited number of genomic modifications without the limitation of integrative selection markers. As test case, we successfully targeted the wetA gene, which encodes a regulator of conidiophore development. Finally, CRISPR/Cas9-derived ΔwetA strains were analyzed. Mutants showed reduced axenic growth, differential pathogenicity and altered conidiogenesis and germination. Additionally, P. digitatum and P. expansum ΔwetA mutants showed distinct sensitivity to fungal antifungal proteins (AFPs), which are small, cationic, cysteine-rich proteins that have become interesting antifungals to be applied in agriculture, medicine and in the food industry. With this work, we demonstrate the feasibility of the CRISPR/Cas9 system, expanding the repertoire of genetic engineering tools available for these two important postharvest pathogens and open up the possibility to adapt them to other economically relevant phytopathogenic fungi, for which toolkits for genetic modifications are often limited.
Collapse
|
11
|
Li Q, Lu J, Zhang G, Liu S, Zhou J, Du G, Chen J. Recent advances in the development of Aspergillus for protein production. BIORESOURCE TECHNOLOGY 2022; 348:126768. [PMID: 35091037 DOI: 10.1016/j.biortech.2022.126768] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Aspergillus had been widely used in the industrial production of recombinant proteins. In addition to the safety and broad substrate utilization spectrum, its efficient post-translational modification and strong protein secretion capacity have significant advantages for developing an excellent protein-producing cell factory in industrial production. However, the difficulties in genetic manipulation of Aspergillus and varying expression levels of different heterologous proteins hampered its further development and application. Recently, the development of CRISPR genome editing and high-throughput screening platforms has facilitated the Aspergillus development of a wide range of modifications and applications. Meanwhile, multi-omics analysis and multiplexed genetic engineering have promoted effective knowledge mining. This paper provides a comprehensive and updated review of these advances, including high-throughput screening, genome editing, protein expression modules, and fermentation optimization. It also highlights and discusses the latest significant progress, aiming to provide a practical guide for implementing Aspergillus as an efficient protein-producing cell factory.
Collapse
Affiliation(s)
- Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jinchang Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Huang PW, Xu YS, Sun XM, Shi TQ, Gu Y, Ye C, Huang H. Development of an Efficient Gene Editing Tool in Schizochytrium sp. and Improving Its Lipid and Terpenoid Biosynthesis. Front Nutr 2022; 8:795651. [PMID: 34970583 PMCID: PMC8712325 DOI: 10.3389/fnut.2021.795651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Schizochytrium sp. HX-308 is a marine microalga with fast growth and high lipid content, which has potential as microbial cell factories for lipid compound biosynthesis. It is significant to develop efficient genetic editing tool and discover molecular target in Schizochytrium sp. HX-308 for lipid compound biosynthesis. In this study, we developed an efficient gene editing tool in HX-308 which was mediated by Agrobacterium tumefaciens AGL-1. Results showed that the random integration efficiency reached 100%, and the homologous recombination efficiency reached about 30%. Furthermore, the metabolic pathway of lipid and terpenoid biosynthesis were engineered. Firstly, the acetyl-CoA c-acetyltransferase was overexpressed in HX-308 with a strong constitutive promoter. With the overexpression of acetyl-CoA c-acetyltransferase, more acetyl-CoA was used to synthesize terpenoids, and the production of squalene, β-carotene and astaxanthin was increased 5.4, 1.8, and 2.4 times, respectively. Interestingly, the production of saturated fatty acids and polyunsaturated fatty acids also changed. Moreover, three Acyl-CoA oxidase genes which catalyze the first step of β-oxidation were knocked out using homologous recombination. Results showed that the production of lipids increased in the three knock-out strains. Our results demonstrated that the A. tumefaciens-mediated transformation method will be of great use for the study of function genes, as well as developing Schizochytrium sp. as a strong cell factory for producing high value products.
Collapse
Affiliation(s)
- Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
13
|
Ferrara M, Gallo A, Cervini C, Gambacorta L, Solfrizzo M, Baker SE, Perrone G. Evidence of the Involvement of a Cyclase Gene in the Biosynthesis of Ochratoxin A in Aspergillus carbonarius. Toxins (Basel) 2021; 13:toxins13120892. [PMID: 34941729 PMCID: PMC8705981 DOI: 10.3390/toxins13120892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Ochratoxin A (OTA) is a well-known mycotoxin with wide distribution in food and feed. Fungal genome sequencing has great utility for identifying secondary metabolites gene clusters for known and novel compounds. A comparative analysis of the OTA-biosynthetic cluster in A. steynii, A. westerdijkiae, A. niger, A. carbonarius, and P. nordicum has revealed a high synteny in OTA cluster organization in five structural genes (otaA, otaB, ota, otaR1, and otaD). Moreover, a recent detailed comparative genome analysis of Aspergilli OTA producers led to the identification of a cyclase gene, otaY, located in the OTA cluster between the otaA and otaB genes, encoding for a predicted protein with high similarity to SnoaLs domain. These proteins have been shown to catalyze ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. In the present study, we demonstrated an upregulation of the cyclase gene in A. carbonarius under OTA permissive conditions, consistent with the expression trends of the other OTA cluster genes and their role in OTA biosynthesis by complete gene deletion. Our results pointed out the involvement of a cyclase gene in OTA biosynthetic pathway for the first time. They represent a step forward in the understanding of the molecular basis of OTA biosynthesis in A. carbonarius.
Collapse
Affiliation(s)
- Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (L.G.); (M.S.); (G.P.)
- Correspondence:
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy;
| | - Carla Cervini
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| | - Lucia Gambacorta
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (L.G.); (M.S.); (G.P.)
| | - Michele Solfrizzo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (L.G.); (M.S.); (G.P.)
| | - Scott E. Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA;
- DOE Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (L.G.); (M.S.); (G.P.)
| |
Collapse
|
14
|
Abstract
The resistance markers could ensure the entry of the CRISPR/Cas9 system into Aspergillus niger cells instead of gene editing. To increase the efficiency of positive colony screening on the primary transformation plates, we designed a visualized multigene editing system (VMS) via a unique tRNA-guide RNA (gRNA) array containing the gRNAs of a pigment gene albA and target genes. Disruption of albA produces white colonies, and the sequences of the endogenous tRNAAla, tRNAPhe, tRNAArg, tRNAIle, and tRNALeu enhance gRNA release. The disruption efficiencies of multigene were analyzed in the A. niger strain AG11 using ammA, amyA, prtT, kusA, and glaA as reporters. In white colonies on the primary transformation plates, the disruption rates of one-, two-, three-, four-, and five-target genes reached 89.2, 70.91, 50, 22.41, and 4.17%, respectively. The VMS developed here provides an effective method for screening homokaryotic multigene editing strains of A. niger.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
A highly efficient identification of mutants generated by CRISPR/Cas9 using the non‑functional DsRed assisted selection in Aspergillus oryzae. World J Microbiol Biotechnol 2021; 37:132. [PMID: 34240255 DOI: 10.1007/s11274-021-03100-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
The CRISPR/Cas9 system has become a great tool for target gene knock-out in filamentous fungi. It is laborious and time-consuming that identification mutants from a large number of transformants through PCR or enzyme-cut method. Here, we first developed a CRISPR/Cas9 system in Aspergillus oryzae using AMA1-based autonomously replicating plasmid and Cas9 under the control of the Aspergillus nidulans gpdA promoter. By the genome editing technique, we successfully obtained mutations within each target gene in Aspergillus oryzae. Then, we put the protospacer sequence of a target gene and its protospacer adjacent motif (PAM) behind the start codon "ATG" of DsRed, yielding the non‑functional DsRed (nDsRed) reporter gene, and the nDsRed reporter gene could be rescued after successful targeted editing. Moreover, this method was also applied by targeting the kojic acid synthesis gene kojA, and the transformants with DsRed activity were found to harbor targeted mutations in kojA. These results suggest that the nDsRed can be used as a powerful tool to facilitate the identification of mutants generated by CRISPR/Cas9 in Aspergillus oryzae.
Collapse
|
16
|
Rozhkova AM, Kislitsin VY. CRISPR/Cas Genome Editing in Filamentous Fungi. BIOCHEMISTRY (MOSCOW) 2021; 86:S120-S139. [PMID: 33827404 DOI: 10.1134/s0006297921140091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.
Collapse
Affiliation(s)
- Aleksandra M Rozhkova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Valeriy Yu Kislitsin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
17
|
Recent Advances in Genome Editing Tools in Medical Mycology Research. J Fungi (Basel) 2021; 7:jof7040257. [PMID: 33808382 PMCID: PMC8067129 DOI: 10.3390/jof7040257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Manipulating fungal genomes is an important tool to understand the function of target genes, pathobiology of fungal infections, virulence potential, and pathogenicity of medically important fungi, and to develop novel diagnostics and therapeutic targets. Here, we provide an overview of recent advances in genetic manipulation techniques used in the field of medical mycology. Fungi use several strategies to cope with stress and adapt themselves against environmental effectors. For instance, mutations in the 14 alpha-demethylase gene may result in azole resistance in Aspergillusfumigatus strains and shield them against fungicide's effects. Over the past few decades, several genome editing methods have been introduced for genetic manipulations in pathogenic fungi. Application of restriction enzymes to target and cut a double-stranded DNA in a pre-defined sequence was the first technique used for cloning in Aspergillus and Candida. Genome editing technologies, including zinc-finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), have been also used to engineer a double-stranded DNA molecule. As a result, TALENs were considered more practical to identify single nucleotide polymorphisms. Recently, Class 2 type II Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 technology has emerged as a more useful tool for genome manipulation in fungal research.
Collapse
|
18
|
Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, Kuca K, Tripathi V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci 2021; 22:3327. [PMID: 33805113 PMCID: PMC8036902 DOI: 10.3390/ijms22073327] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007 Marseille, France;
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India;
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - George Thomas
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| |
Collapse
|
19
|
Jiang C, Lv G, Tu Y, Cheng X, Duan Y, Zeng B, He B. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Front Microbiol 2021; 12:638096. [PMID: 33643273 PMCID: PMC7905030 DOI: 10.3389/fmicb.2021.638096] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yitian Duan
- School of Information, Renmin University of China, Beijing, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
20
|
Improved 11α-hydroxycanrenone production by modification of cytochrome P450 monooxygenase gene in Aspergillus ochraceus. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:99-114. [PMID: 32697747 DOI: 10.2478/acph-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 01/19/2023]
Abstract
Eplerenone is a drug that protects the cardiovascular system. 11α-Hydroxycanrenone is a key intermediate in eplerenone synthesis. We found that although the cytochrome P450 (CYP) enzyme system in Aspergillus ochraceus strain MF018 could catalyse the conversion of canrenone to 11α-hydroxycanrenone, its biocatalytic efficiency is low. To improve the efficiency of 11α-hydroxycanrenone production, the CYP monooxygenase-coding gene of MF018 was predicted and cloned based on whole-genome sequencing results. A recombinant A. ochraceus strain MF010 with the high expression of CYP monooxygenase was then obtained through homologous recombination. The biocatalytic rate of this recombinant strain reached 93 % at 60 h without the addition of organic solvents or surfactants and was 17-18 % higher than that of the MF018 strain. Moreover, the biocatalytic time of the MF010 strain was reduced by more than 30 h compared with that of the MF018 strain. These results show that the recombinant A. ochraceus strain MF010 can overcome the limitation of substrate biocatalytic efficiency and thus holds a high poten tial for application in the industrial production of eplerenone.
Collapse
|
21
|
Jin FJ, Hu S, Wang BT, Jin L. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Front Microbiol 2021; 12:644404. [PMID: 33708187 PMCID: PMC7940364 DOI: 10.3389/fmicb.2021.644404] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
The filamentous fungus Aspergillus oryzae is an important strain in the traditional fermentation and food processing industries and is often used in the production of soy sauce, soybean paste, and liquor-making. In addition, A. oryzae has a strong capacity to secrete large amounts of hydrolytic enzymes; therefore, it has also been used in the enzyme industry as a cell factory for the production of numerous native and heterologous enzymes. However, the production and secretion of foreign proteins by A. oryzae are often limited by numerous bottlenecks that occur during transcription, translation, protein folding, translocation, degradation, transport, secretion, etc. The existence of these problems makes it difficult to achieve the desired target in the production of foreign proteins by A. oryzae. In recent years, with the decipherment of the whole genome sequence, basic research and genetic engineering technologies related to the production and utilization of A. oryzae have been well developed, such as the improvement of homologous recombination efficiency, application of selectable marker genes, development of large chromosome deletion technology, utilization of hyphal fusion techniques, and application of CRISPR/Cas9 genome editing systems. The development and establishment of these genetic engineering technologies provided a great deal of technical support for the industrial production and application of A. oryzae. This paper reviews the advances in basic research and genetic engineering technologies of the fermentation strain A. oryzae mentioned above to open up more effective ways and research space for the breeding of A. oryzae production strains in the future.
Collapse
Affiliation(s)
- Feng-Jie Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shuang Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Bao-Teng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Long Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
Exploring Endophytes Using “Omics”: An Approach for Sustainable Production of Bioactive Metabolites. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
van Rhijn N, Furukawa T, Zhao C, McCann BL, Bignell E, Bromley MJ. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol 2020; 145:103479. [PMID: 33122116 PMCID: PMC7768092 DOI: 10.1016/j.fgb.2020.103479] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Aspergillus fumigatus is a saprophytic fungal pathogen that is the cause of more than 300,000 life-threatening infections annually. Our understanding of pathogenesis and factors contributing to disease progression are limited. Development of rapid and versatile gene editing methodologies for A. fumigatus is essential. CRISPR-Cas9 mediated transformation has been widely used as a novel genome editing tool and has been used for a variety of editing techniques, such as protein tagging, gene deletions and site-directed mutagenesis in A. fumigatus. However, successful genome editing relies on time consuming, multi-step cloning procedures paired with the use of selection markers, which can result in a metabolic burden for the host and/or unintended transcriptional modifications at the site of integration. We have used an in vitro CRISPR-Cas9 assembly methodology to perform selection-free genome editing, including epitope tagging of proteins and site-directed mutagenesis. The repair template used during this transformation use 50 bp micro-homology arms and can be generated with a single PCR reaction or by purchasing synthesised single stranded oligonucleotides, decreasing the time required for complex construct synthesis.
Collapse
Affiliation(s)
- Norman van Rhijn
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bethany L McCann
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
24
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Son YE, Park HS. Genetic Manipulation and Transformation Methods for Aspergillus spp. MYCOBIOLOGY 2020; 49:95-104. [PMID: 37970179 PMCID: PMC10635212 DOI: 10.1080/12298093.2020.1838115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2023]
Abstract
Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Agrobacterium tumefaciens-Mediated Genetic Transformation of the Ect-endomycorrhizal Fungus Terfezia boudieri. Genes (Basel) 2020; 11:genes11111293. [PMID: 33143066 PMCID: PMC7693413 DOI: 10.3390/genes11111293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Mycorrhizal desert truffles such as Terfezia boudieri, Tirmania nivea, and Terfezia claveryi, form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens-mediated genetic transformation system in T. boudieri. This system was optimized for the developmental stage of the mycelia explants, bacterial optical density, infection and co-cultivation durations, and concentrations of the selection antibiotics. The pFPL-Rh plasmid harboring hph gene conferring hygromycin resistance as a selection marker and the red fluorescent protein gene were used as visual reporters. The optimal conditions were incubation with 200 μM of acetosyringone, attaining a bacterial optical density of 0.3 OD600; transfer time of 45 min; and co-cultivation for 3 days. This is the first report on a transformation system for T. boudieri, and the proposed protocol can be adapted for the transformation of other important desert truffles as well as ectomycorrhizal species.
Collapse
|
27
|
Králová M, Bergougnoux V, Frébort I. CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. J Biotechnol 2020; 325:341-354. [PMID: 33053363 DOI: 10.1016/j.jbiotec.2020.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 02/09/2023]
Abstract
Claviceps purpurea is a filamentous fungus well known as a widespread plant pathogen, but it is also an important ergot alkaloid producer exploited by the pharmaceutic industry. In this work, we demonstrated that CRISPR/Cas9 can be a tool for directed mutagenesis in C. purpurea targeting pyr4 and TrpE genes encoding the orotidine 5'-phosphate decarboxylase involved in pyrimidine biosynthesis and the α-subunit of the anthranilate synthase involved in tryptophan biosynthesis, respectively. After protoplast transformation and single spore isolation, homokaryotic mutants showing uridine or tryptophan auxotrophy were selected. In all cases, insertions or insertions combined with deletions were found mostly 3 bp upstream of the PAM sequence. However, transformation efficiencies of CRISPR/Cas9 and CRISPR/Cas9 mediated homology-directed repair only slightly improved in comparison to homologous recombination-mediated knocking-out of the TrpE gene. Moreover, Trp auxotrophs were non-infectious towards rye plants likely due to a decreased production of the plant hormones auxins, which are synthesized by C. purpurea from indole-3-glycerolphosphate in Trp-dependent and Trp-independent biosynthetic pathways, and help the fungus to colonize the plant host. It was demonstrated that the CRISPR/Cas9 vector containing autonomous replicative sequence AMA1 can be fully removed by further culturing of C. purpurea on non-selective media. This method enables introducing multiple mutations in Claviceps and makes feasible metabolic engineering of industrial strains.
Collapse
Affiliation(s)
- Michaela Králová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
28
|
Zhang T, Liu H, Lv B, Li C. Regulating Strategies for Producing Carbohydrate Active Enzymes by Filamentous Fungal Cell Factories. Front Bioeng Biotechnol 2020; 8:691. [PMID: 32733865 PMCID: PMC7360787 DOI: 10.3389/fbioe.2020.00691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Filamentous fungi are important eukaryotic organisms crucial in substrate degradation and carbon cycle on the earth and have been harnessed as cell factories for the production of proteins and other high value-added products in recent decades. As cell factories, filamentous fungi play a crucial role in industrial protein production as both native hosts and heterologous hosts. In this review, the regulation strategies of carbohydrate active enzyme expression at both transcription level and protein level are introduced, and the transcription regulations are highlighted with induction mechanism, signaling pathway, and promoter and transcription factor regulation. Afterward, the regulation strategies in protein level including suitable posttranslational modification, protein secretion enhancement, and protease reduction are also presented. Finally, the challenges and perspectives in this field are discussed. In this way, a comprehensive knowledge regarding carbohydrate active enzyme production regulation at both transcriptional and protein levels is provided with the particular goal of aiding in the practical application of filamentous fungi for industrial protein production.
Collapse
Affiliation(s)
- Teng Zhang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Hu Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Zhang S, Guo F, Yan W, Dai Z, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Front Bioeng Biotechnol 2020; 7:459. [PMID: 32047743 PMCID: PMC6997136 DOI: 10.3389/fbioe.2019.00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Industrial biology plays a crucial role in the fields of medicine, health, food, energy, and so on. However, the lack of efficient genetic engineering tools has restricted the rapid development of industrial biology. Recently, the emergence of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system brought a breakthrough in genome editing technologies due to its high orthogonality, versatility, and efficiency. In this review, we summarized the barriers of CRISPR/Cas9 and corresponding solutions for efficient genetic engineering in industrial microorganisms. In addition, the advances of industrial biology employing the CRISPR/Cas9 system were compared in terms of its application in bacteria, yeast, and filamentous fungi. Furthermore, the cooperation between CRISPR/Cas9 and synthetic biology was discussed to help build complex and programmable gene circuits, which can be used in industrial biotechnology.
Collapse
Affiliation(s)
- Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
30
|
Ferrara M, Haidukowski M, Logrieco AF, Leslie JF, Mulè G. A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum. Sci Rep 2019; 9:19836. [PMID: 31882627 PMCID: PMC6934662 DOI: 10.1038/s41598-019-56270-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/05/2019] [Indexed: 11/12/2022] Open
Abstract
Fusarium proliferatum causes diverse diseases of many economically important plants. The fungus produces several mycotoxins of which the fumonisins are the most toxic. Currently, deletion of key genes for mycotoxin biosynthesis is a laborious and time-consuming procedure. We developed a novel CRISPR/Cas9-based genome-editing tool for the direct delivery of preassembled Cas9 ribonucleoproteins into protoplasts of F. proliferatum. Our CRISPR–Cas9 system couples a site-specific double-strand DNA break mediated by two Cas9 ribonucleoproteins with microhomology recombination requiring only 50-bp regions flanking the target gene. This system reduces the risk of off-target mutations and minimizes the risk of altering any gene adjacent to the target region. We used this tool to delete a polyketide synthase gene (FUM1) required for fumonisin biosynthesis. The mutants generated are no longer able to produce fumonisins, confirming the key role of FUM1 in fumonisin biosynthesis. Our CRISPR-Cas9 system is an important new tool for genetic studies of Fusarium.
Collapse
Affiliation(s)
- Massimo Ferrara
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Giuseppina Mulè
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
31
|
Qiao YM, Yu RL, Zhu P. Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites. RSC Adv 2019; 9:35124-35134. [PMID: 35530690 PMCID: PMC9074735 DOI: 10.1039/c9ra06908a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
The revolutionary discovery of penicillin only marks the start of our exploration for valuable fungal natural products. Advanced genome sequencing technologies have translated the fungal genome into a huge reservoir of "recipes" - biosynthetic gene clusters (BGCs) - for biosynthesis. Studying complex fungal genetics demands specific gene manipulation strategies. This review summarizes the current progress in efficient gene targeting in fungal cells and heterologous expression systems for expressing fungal BGCs of fungal secondary metabolites.
Collapse
Affiliation(s)
- Yun-Ming Qiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Rui-Lin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| |
Collapse
|
32
|
Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl Microbiol Biotechnol 2019; 103:6919-6932. [PMID: 31332488 PMCID: PMC6690858 DOI: 10.1007/s00253-019-10007-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Filamentous fungi play an important role in human health and industrial/agricultural production. With the increasing number of full genomes available for fungal species, the study of filamentous fungi has brought about a wider range of genetic manipulation opportunities. However, the utilization of traditional methods to study fungi is time consuming and laborious. Recent rapid progress and wide application of a versatile genome editing technology, i.e., the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-related nuclease 9) system, has revolutionized biological research and has many innovative applications in a wide range of fields showing great promise in research and application of filamentous fungi. In this review, we introduce the CRISPR/Cas9 genome editing technology focusing on its application in research of filamentous fungi and we discuss the general considerations of genome editing using CRISPR/Cas9 system illustrating vector construction, multiple editing strategies, technical consideration of different sizes of homology arms on genome editing efficiency, off-target effects, and different transformation methodologies. In addition, we discuss the challenges encountered using CRISPR/Cas9 technology and give the perspectives of future applications of CRISPR/Cas9 technology for basic research and practical application of filamentous fungi.
Collapse
Affiliation(s)
- Runjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qing Zhai
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, Tibet, China
| | - Lu Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Enxia Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingyun Guo
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province/State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China.
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Dong H, Zheng J, Yu D, Wang B, Pan L. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes. J Microbiol Methods 2019; 163:105655. [DOI: 10.1016/j.mimet.2019.105655] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
|
34
|
Min T, Xiong L, Liang Y, Xu R, Fa C, Yang S, Hu H. Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii. World J Microbiol Biotechnol 2019; 35:109. [DOI: 10.1007/s11274-019-2687-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
35
|
Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6041-6059. [DOI: 10.1007/s00253-019-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/02/2023]
|
36
|
He B, Tu Y, Jiang C, Zhang Z, Li Y, Zeng B. Functional Genomics of Aspergillus oryzae: Strategies and Progress. Microorganisms 2019; 7:E103. [PMID: 30974907 PMCID: PMC6518170 DOI: 10.3390/microorganisms7040103] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 11/25/2022] Open
Abstract
Aspergillus oryzae has been used for the production of traditional fermentation and has promising potential to produce primary and secondary metabolites. Due to the tough cell walls and high drug resistance of A. oryzae, functional genomic characterization studies are relatively limited. The exploitation of selection markers and genetic transformation methods are critical for improving A. oryzae fermentative strains. In this review, we describe the genome sequencing of various A. oryzae strains. Recently developed selection markers and transformation strategies are also described in detail, and the advantages and disadvantages of transformation methods are presented. Lastly, we introduce the recent progress on highlighted topics in A. oryzae functional genomics including conidiation, protein secretion and expression, and secondary metabolites, which will be beneficial for improving the application of A. oryzae to industrial production.
Collapse
Affiliation(s)
- Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Yongkai Li
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
37
|
Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv 2019; 37:107361. [PMID: 30825514 DOI: 10.1016/j.biotechadv.2019.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Fungal strain engineering is commonly used in many areas of biotechnology, including the production of plant biomass degrading enzymes. Its aim varies from the production of specific enzymes to overall increased enzyme production levels and modification of the composition of the enzyme set that is produced by the fungus. Strain engineering involves a diverse range of methodologies, including classical mutagenesis, genetic engineering and genome editing. In this review, the main approaches for strain engineering of filamentous fungi in the field of plant biomass degradation will be discussed, including recent and not yet implemented methods, such as CRISPR/Cas9 genome editing and adaptive evolution.
Collapse
|
38
|
Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus Aspergillus oryzae. Appl Environ Microbiol 2019; 85:AEM.01896-18. [PMID: 30478227 DOI: 10.1128/aem.01896-18] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Filamentous fungi are used for food fermentation and industrial production of recombinant proteins. They also serve as a source of secondary metabolites and are recently expected as hosts for heterologous production of useful secondary metabolites. Multiple-step genetic engineering is required to enhance industrial production involving these fungi, but traditional sequential modification of multiple genes using a limited number of selection markers is laborious. Moreover, efficient genetic engineering techniques for industrial strains have not yet been established. We have previously developed a clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9-based mutagenesis technique for the industrial filamentous fungus Aspergillus oryzae, enabling mutation efficiency of 10 to 20%. Here, we improved the CRISPR/Cas9 approach by including an AMA1-based autonomously replicating plasmid harboring the drug resistance marker ptrA By using the improved mutagenesis technique, we successfully modified A. oryzae wild and industrial strains, with a mutation efficiency of 50 to 100%. Conditional expression of the Aoace2 gene from the AMA1-based plasmid severely inhibited fungal growth. This enabled forced recycling of the plasmid, allowing repeated genome editing. Further, double mutant strains were successfully obtained with high efficiency by expressing two guide RNA molecules from the genome-editing plasmid. Cotransformation of fungal cells with the genome-editing plasmid together with a circular donor DNA enabled marker-free multiplex gene deletion/integration in A. oryzae The presented repeatable marker-free genetic engineering approach for mutagenesis and gene deletion/integration will allow for efficient modification of multiple genes in industrial fungal strains, increasing their applicability.IMPORTANCE Multiple gene modifications of specific fungal strains are required for achieving industrial-scale production of enzymes and secondary metabolites. In the present study, we developed an efficient multiple genetic engineering technique for the filamentous fungus Aspergillus oryzae The approach is based on a clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system and recycling of an AMA1-based autonomous replicating plasmid. Because the plasmid harbors a drug resistance marker (ptrA), the approach does not require the construction of auxotrophic industrial strains prior to genome editing and allows for forced recycling of the gene-editing plasmid. The established plasmid-recycling technique involves an Aoace2-conditional expression cassette, whose induction severely impairs fungal growth. We used the developed genetic engineering techniques for highly efficient marker-free multiple gene deletion/integration in A. oryzae The genome-editing approaches established in the present study, which enable unlimited repeatable genetic engineering, will facilitate multiple gene modification of industrially important fungal strains.
Collapse
|
39
|
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
40
|
Muñoz IV, Sarrocco S, Malfatti L, Baroncelli R, Vannacci G. CRISPR-Cas for Fungal Genome Editing: A New Tool for the Management of Plant Diseases. FRONTIERS IN PLANT SCIENCE 2019; 10:135. [PMID: 30828340 PMCID: PMC6384228 DOI: 10.3389/fpls.2019.00135] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/28/2019] [Indexed: 05/02/2023]
Affiliation(s)
- Isabel Vicente Muñoz
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- *Correspondence: Sabrina Sarrocco
| | - Luca Malfatti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Riccardo Baroncelli
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Spain
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Tong Y, Weber T, Lee SY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 2019; 36:1262-1280. [DOI: 10.1039/c8np00089a] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
42
|
Urquhart AS, Mondo SJ, Mäkelä MR, Hane JK, Wiebenga A, He G, Mihaltcheva S, Pangilinan J, Lipzen A, Barry K, de Vries RP, Grigoriev IV, Idnurm A. Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales). Front Microbiol 2018; 9:3058. [PMID: 30619145 PMCID: PMC6300479 DOI: 10.3389/fmicb.2018.03058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023] Open
Abstract
Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.
Collapse
Affiliation(s)
- Andrew S Urquhart
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - James K Hane
- CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, WA, Australia
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Guifen He
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Sirma Mihaltcheva
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Song L, Ouedraogo JP, Kolbusz M, Nguyen TTM, Tsang A. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PLoS One 2018; 13:e0202868. [PMID: 30142205 PMCID: PMC6108506 DOI: 10.1371/journal.pone.0202868] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022] Open
Abstract
As a powerful tool for fast and precise genome editing, the CRISPR/Cas9 system has been applied in filamentous fungi to improve the efficiency of genome alteration. However, the method of delivering guide RNA (gRNA) remains a bottleneck in performing CRISPR mutagenesis in Aspergillus species. Here we report a gRNA transcription driven by endogenous tRNA promoters which include a tRNA gene plus 100 base pairs of upstream sequence. Co-transformation of a cas9-expressing plasmid with a linear DNA coding for gRNA demonstrated that 36 of the 37 tRNA promoters tested were able to generate the intended mutation in A. niger. When gRNA and cas9 were expressed in a single extra-chromosomal plasmid, the efficiency of gene mutation was as high as 97%. Co-transformation with DNA template for homologous recombination, the CRISPR/Cas9 system resulted ~42% efficiency of gene replacement in a strain with a functioning non-homologous end joining machinery (kusA+), and an efficiency of >90% gene replacement in a kusA- background. Our results demonstrate that tRNA promoter-mediated gRNA expressions are reliable and efficient in genome editing in A. niger.
Collapse
Affiliation(s)
- Letian Song
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Jean-Paul Ouedraogo
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Magdalena Kolbusz
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| |
Collapse
|
44
|
Al Abdallah Q, Souza ACO, Martin-Vicente A, Ge W, Fortwendel JR. Whole-genome sequencing reveals highly specific gene targeting by in vitro assembled Cas9-ribonucleoprotein complexes in Aspergillus fumigatus. Fungal Biol Biotechnol 2018; 5:11. [PMID: 29992034 PMCID: PMC5987418 DOI: 10.1186/s40694-018-0057-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background CRISPR/Cas9-based genome editing is quickly becoming a powerful tool within the field of fungal genetics. Adaptation of CRISPR/Cas9 systems are allowing for rapid and highly efficient gene targeting within fungi. We recently reported the adaptation of a simple CRISPR/Cas9 system for gene deletion that is effective across multiple genetic backgrounds of Aspergillus fumigatus. This system employs in vitro assembly of Cas9 ribonucleoproteins (RNPs) coupled with micro-homology repair templates for gene deletion. Although highly efficient at gene targeting in wild type genetic backgrounds of A. fumigatus, the potential for our system to produce unwanted off-target mutations has not been addressed. Results Next-generation Illumina sequencing was used to identify genome mutations among transformants isolated from standard (no Cas9) and Cas9-mediated integration of a hygromycin deletion cassette. Two different concentrations of Cas9 were utilized to examine the association of Cas9 concentration with total numbers and types of genomic mutations. For each of the three test groups (zero, low, and high Cas9), three transformants were sequenced and compared to the parent strain. Bioinformatics analyses revealed the average number of total mutations to be similar among all three test groups. A. fumigatus transformation using standard, non-Cas9-mediated methods resulted in an average of 373 ± 28 mutations. In comparison, transformation with in vitro assembled Cas9-RNPs using either high (1 µg/µl) or low (0.5 µg/µl) levels of Cas9 resulted in an average of 326 ± 19 and 395 ± 69 mutations, respectively. In all cases, the vast majority of mutations identified were intergenic. No correlation between the amount of Cas9 utilized for transformation and the overall number of mutations was found. Finally, the specific type of mutation introduced during the transformation process was not Cas9-dependent, as both single-nucleotide polymorphisms and insertion/deletion events were not significantly different between the experimental groups. Conclusions CRISPR/Cas9-based genome editing in A. fumigatus using in vitro assembled RNPs coupled with microhomology templates is a reliable method of gene targeting. This system is highly efficient and is not associated with increased off-target mutations caused by introduction of the Cas9 nuclease.
Collapse
Affiliation(s)
- Qusai Al Abdallah
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Ana Camila Oliveira Souza
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| |
Collapse
|
45
|
Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2018; 148:127-137. [PMID: 29654806 DOI: 10.1016/j.mimet.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
46
|
Pohl C, Mózsik L, Driessen AJM, Bovenberg RAL, Nygård YI. Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles. Methods Mol Biol 2018; 1772:213-232. [PMID: 29754231 DOI: 10.1007/978-1-4939-7795-6_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several CRISPR/Cas9 tools have been recently established for precise genome editing in a wide range of filamentous fungi. This genome editing platform offers high flexibility in target selection and the possibility of introducing genetic deletions without the introduction of transgenic sequences . This chapter describes an approach for the transformation of Penicillium chrysogenum protoplasts with preassembled ribonucleoprotein particles (RNPs) consisting of purified Cas9 protein and in vitro transcribed single guide RNA (sgRNA) for the deletion of genome sequences or their replacement with alternative sequences. This method is potentially transferable to all fungal strains where protoplasts can be obtained from.
Collapse
Affiliation(s)
- Carsten Pohl
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - László Mózsik
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Roel A L Bovenberg
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- DSM Biotechnology Center, DSM Food Specialties B.V., Delft, The Netherlands
| | - Yvonne I Nygård
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
47
|
Wakai S, Arazoe T, Ogino C, Kondo A. Future insights in fungal metabolic engineering. BIORESOURCE TECHNOLOGY 2017; 245:1314-1326. [PMID: 28483354 DOI: 10.1016/j.biortech.2017.04.095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Filamentous fungi exhibit versatile abilities, including organic acid fermentation, protein production, and secondary metabolism, amongst others, and thus have applications in the medical and food industries. Previous genomic analyses of several filamentous fungi revealed their further potential as host microorganisms for bioproduction. Recent advancements in molecular genetics, marker recycling, and genome editing could be used to alter transformation and metabolism, based on optimized design carbolated with computer science. In this review, we detail the current applications of filamentous fungi and describe modern molecular genetic tools that could be used to expand the role of these microorganisms in bioproduction. The present review shed light on the possibility of filamentous fungi as host microorganisms in the field of bioproduction in the future.
Collapse
Affiliation(s)
- Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takayoshi Arazoe
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
48
|
CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 2017; 101:7435-7443. [PMID: 28887634 DOI: 10.1007/s00253-017-8497-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
In recent years, a variety of genetic tools have been developed and applied to various filamentous fungi, which are widely applied in agriculture and the food industry. However, the low efficiency of gene targeting has for many years hampered studies on functional genomics in this important group of microorganisms. The emergence of CRISPR/Cas9 genome-editing technology has sparked a revolution in genetic research due to its high efficiency, versatility, and easy operation and opened the door for the discovery and exploitation of many new natural products. Although the application of the CRISPR/Cas9 system in filamentous fungi is still in its infancy compared to its common use in E. coli, yeasts, and mammals, the deep development of this system will certainly drive the exploitation of fungal diversity. In this review, we summarize the research progress on CRISPR/Cas9 systems in filamentous fungi and finally highlight further prospects in this area.
Collapse
|
49
|
Abstract
As eukaryotes, filamentous fungi share many features with humans, and they produce numerous active metabolites, some of which are toxic. Traditional genetic approaches are generally inefficient, but the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system that has been widely used for basic research on bacteria, mammals and plants offers a simple, fast, versatile technology for systemic research on filamentous fungi. In this review, we summarized the current knowledge on Cas9 and its variants, various selective markers used to screen positive clones, different ways used to detect off-target mutations, and different approaches used to express and transform the CRISPR complex. We also highlight several methods that improve the nuclease specificity and efficiency, and discuss current and potential applications of CRISPR/Cas9 system in filamentous fungi for pathogenesis decoding, confirmation of the gene and pathway, bioenergy process, drug discovery, and chromatin dynamics. We also describe how the synthetic gene circuit of CRISPR/Cas9 systems has been used in the response to various complex environmental signals to redirect metabolite flux and ensure continuous metabolite biosynthesis.
Collapse
Affiliation(s)
- Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ruijie Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|