1
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Wang X, Shi B, Li J, Fan Y, Li Y, Shi C, Ma C. A biphasic accelerated strand exchange amplification strategy for culture-independent and rapid detection of Salmonella enterica in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4083-4092. [PMID: 38855899 DOI: 10.1039/d4ay00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Salmonella enterica is a common foodborne pathogen that can cause food poisoning in humans. The organism also infects and causes disease in animals. Rapid and sensitive detection of S. enterica is essential to prevent the spread of this pathogen. Traditional technologies for the extraction and detection of this pathogen from complex food matrices are cumbersome and time-consuming. In this study, we introduced a novel strategy of biphasic assay integrated with an accelerated strand exchange amplification (ASEA) method for efficient detection of S. enterica without culture or other extraction procedures. Food samples are rapidly dried, resulting in a physical fluidic network inside the dried food matrix, which allows polymerases and primers to access the target DNA and initiate ASEA. The dried food matrix is defined as the solid phase, while amplification products are enriched in the supernatant (liquid phase) and generate fluorescence signals. The analytical performances demonstrated that this strategy was able to specifically identify S. enterica and did not show any cross-reaction with other common foodborne pathogens. For artificially spiked food samples, the strategy can detect 5.0 × 101 CFU mL-1S. enterica in milk, 1.0 × 102 CFU g-1 in duck, scallop or lettuce, and 1.0 × 103 CFU g-1 in either oyster or cucumber samples without pre-enrichment of the target pathogen. We further validated the strategy using 82 real food samples, and this strategy showed 92% sensitivity. The entire detection process can be finished, sample-to-answer, within 50 min, dramatically decreasing the detection time. Therefore, we believe that the proposed method enables rapid and sensitive detection of S. enterica and holds great promise for the food safety industry.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiujuan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Binghui Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Junfeng Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Tsougeni K, Kanioura A, Kastania AS, Ellinas K, Stellas A, Constantoudis V, Moschonas G, Andritsos ND, Velonakis M, Petrou PS, Kakabakos SE, Gogolides E, Tserepi A. A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need. BIOSENSORS 2024; 14:228. [PMID: 38785702 PMCID: PMC11118137 DOI: 10.3390/bios14050228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Legionella pneumophila has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods. Herein, a lab-on-a-chip device integrating sample preparation by accommodating bacteria capture, lysis, and DNA isothermal amplification with fast (less than 3 h) and highly sensitive, colorimetric end-point detection of L. pneumophila in water samples is presented, for use at the point of need. The method is based on the selective capture of viable bacteria on on-chip-immobilized and -lyophilized antibodies, lysis, the loop-mediated amplification (LAMP) of DNA, and end-point detection by a color change, observable by the naked eye and semiquantified by computational image analysis. Competitive advantages are demonstrated, such as low reagent consumption, portability and disposability, color change, storage at RT, and compliance with current legislation.
Collapse
Affiliation(s)
- Katerina Tsougeni
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
| | - Anastasia Kanioura
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
| | - Athina S. Kastania
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Kosmas Ellinas
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
| | - Antonios Stellas
- Nanometrisis P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece
| | - Vassilios Constantoudis
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
- Nanometrisis P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece
| | - Galatios Moschonas
- Eurofins Athens Analysis Laboratories, 29 Nafpliou Str., Metamorfosi, 144 52 Athens, Greece; (G.M.); (N.D.A.)
| | - Nikolaos D. Andritsos
- Eurofins Athens Analysis Laboratories, 29 Nafpliou Str., Metamorfosi, 144 52 Athens, Greece; (G.M.); (N.D.A.)
| | - Manolis Velonakis
- Eurofins Athens Analysis Laboratories, 29 Nafpliou Str., Metamorfosi, 144 52 Athens, Greece; (G.M.); (N.D.A.)
| | - Panagiota S. Petrou
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Sotirios E. Kakabakos
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Evangelos Gogolides
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Angeliki Tserepi
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| |
Collapse
|
4
|
Wang Z, Cui X, Hu A, Lu Z, Meng F, Zhou L, Bie X. Establishment of real-time fluorescence and visual LAMP for rapid detection of Escherichia coli O157:H7 and kits construction. Lett Appl Microbiol 2023; 76:ovad122. [PMID: 37863833 DOI: 10.1093/lambio/ovad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023]
Abstract
Escherichia coli O157:H7 is a common pathogenic bacterium in food and water that can pose a threat to human health. The aim of this study was to develop loop-mediated isothermal amplification (LAMP) method for the detection of E. coli O157:H7 in food based on the specific gene Ecs_2840 and to construct rapid detection kits based on the established methods. Specifically, we established two methods of real-time fluorescent LAMP (RT-LAMP) and visual LAMP with calcein as an indicator. In pure bacterial culture, the cell sensitivity and genomic sensitivity of the RT-LAMP kit were 8.8 × 100 CFU ml-1 and 4.61 fg µl-1, respectively. The sensitivity of the visual LAMP kit was 2.35 × 100 CFU ml-1 and 4.61 fg µl-1. Both kits had excellent specificity and anti-interference performance. In addition, milk inoculated with 2.26 × 100 CFU ml-1E. coli O157:H7 could be detected within the reaction time after enrichment for 3 h. The results showed that the LAMP kits were rapid, sensitive, and specific for the detection of E. coli O157:H7 in food and had good application prospects in food safety surveillance.
Collapse
Affiliation(s)
- Zuwei Wang
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Xinping Cui
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Antuo Hu
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Fanqiang Meng
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Libang Zhou
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| |
Collapse
|
5
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Knox A, Zerna G, Beddoe T. Current and Future Advances in the Detection and Surveillance of Biosecurity-Relevant Equine Bacterial Diseases Using Loop-Mediated Isothermal Amplification (LAMP). Animals (Basel) 2023; 13:2663. [PMID: 37627456 PMCID: PMC10451754 DOI: 10.3390/ani13162663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Horses play an important role throughout the world, whether for work, culture, or leisure, providing an ever-growing significant contribution to the economy. The increase in importation and movement of horses, both nationally and internationally, has inevitably allowed for the global equine industry to grow. Subsequently, however, the potential for transmission of fatal equine bacterial diseases has also escalated, and devasting outbreaks continue to occur. To prevent such events, disease surveillance and diagnosis must be heightened throughout the industry. Current common, or "gold-standard" techniques, have shown to be inadequate at times, thus requiring newer technology to impede outbreaks. Loop-mediated isothermal amplification (LAMP) has proven to be a reliable, rapid, and accessible tool in both diagnostics and surveillance. This review will discuss equine bacterial diseases of biosecurity relevance and their current diagnostic approaches, as well as their respective LAMP assay developments. Additionally, we will provide insight regarding newer technology and advancements associated with this technique and their potential use for the outlined diseases.
Collapse
Affiliation(s)
| | | | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3082, Australia; (A.K.); (G.Z.)
| |
Collapse
|
7
|
Hu R, Hu A, Lu Z, Zhou H, Wei W, Lu F, Zhao H, Bie X. Construction and optimization of a multiplex PMAxx-qPCR assay for viable Bacillus cereus and development of a detection kit. J Microbiol Methods 2023; 207:106705. [PMID: 36914099 DOI: 10.1016/j.mimet.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
In this study, a PMAxx-qPCR method for the detection and quantification of viable Bacillus cereus (B. cereus) was established based on the cesA gene that is involved in cereulide synthesis, enterotoxin gene bceT and hemolytic enterotoxin gene hblD combined with modified propidium monoazide (PMAxx). The sensitivity detection limit of the method was as follows: the DNA extracted by the kit reached 140 fg/μL, and the bacterial suspension without enrichment reached 2.24 × 101 CFU/mL; 14 nonB. cereus strains of the 17 tested strains all tested as negative, whereas the 2 strains of B. cereus carrying the target virulence gene(s) could be accurately detected. In terms of application, we assembled the constructed PMAxx-qPCR reaction into a detection kit and evaluated its application performance. The results showed that the detection kit has high sensitivity, strong anti-interference capability, and has good application potential. The purpose of this study is to provide a reliable detection method for the prevention and traceability of B. cereus infections.
Collapse
Affiliation(s)
- Ruirui Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Antuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Wanqing Wei
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Ding Y, Huang C, Zhang Y, Wang J, Wang X. Magnetic microbead enzyme-linked immunoassay based on phage encoded protein RBP 41-mediated for rapid and sensitive detection of Salmonella in food matrices. Food Res Int 2023; 163:112212. [PMID: 36596140 DOI: 10.1016/j.foodres.2022.112212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Rapid and sensitive quantitative detection methods are required to monitor and detect Salmonella throughout the food supply chain and early prevention of foodborne disease outbreaks. In this study, a magnetic microbead enzyme-linked immunoassay (MELISA) based on phage receptor binding protein was developed for rapid enrichment and detection of Salmonella in complex food matrices. RBP 41 from phage T102 acted as a species-specific recognition element for Salmonella by exploiting its strong binding capacity to Salmonella surface receptors. RBP 41-MBs were prepared by coupling recombinant RBP 41 with MBs and used to separate and enrich Salmonella cells from spiked food samples. The captured complexes were further integrated with ELISA procedures by HRP-labeled anti-Salmonella antibody for rapid and accurate detection of Salmonella. The whole method took <1.5 h and the detection limit was 10 CFU/mL. Therefore, MELISA was successfully developed for the detection of Salmonella in various spiked food samples (skim milk, lettuce, and chicken breast). The ELISA reaction process of this method was carried out on magnetic beads. It simplified the process of the traditional ELISA method and reduces the reaction time. This study expanded the use of phage-associated proteins and demonstrated the promising prospects for practical applications in the detection of foodborne pathogens.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Wang L, Lin H, Zhang J, Wang J. Phage long tail fiber protein-immobilized magnetic nanoparticles for rapid and ultrasensitive detection of Salmonella. Talanta 2022; 248:123627. [PMID: 35661002 DOI: 10.1016/j.talanta.2022.123627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
There is an urgent need to develop fast and sensitive detection methods for foodborne pathogens. But the conventional culture method that typically requires 2-3 days is not ideal for the rapid analysis. Food samples demonstrate a great challenge for direct detection due to the complex matrix. Hence, we present a new method based on the phage long-tail-fiber proteins (LTF4-a) immobilized magnetic nanoparticles (MNPs) for specific separation and concentration of Salmonella. The LTF4-a-MNP was prepared via the coupling of recombinant LTF4-a with MNPs and used to isolate and enrich Salmonella cells from contaminated food samples. The captured material was further integrated with the direct PCR program for accurate detection of Salmonella. Our study successfully established a new method for detecting contaminated food samples of Salmonella, the overall approach took no more than 3 h, which allowed a detection limit of 7 CFU/mL, demonstrating a promising alternative to the immunomagnetic separation method by replacing antibodies or aptamers, that is compatible with downstream analysis.
Collapse
Affiliation(s)
- Luokai Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jing Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| |
Collapse
|
10
|
Jin L, Wang S, Shao Q, Cheng Y. A rapid and facile analytical approach to detecting Salmonella Enteritidis with aptamer-based surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120625. [PMID: 34840047 DOI: 10.1016/j.saa.2021.120625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 05/22/2023]
Abstract
Salmonella should be absence in pharmaceutical preparations and foods according to regulations in many countries. Up to now, rapidly detecting Salmonella at 1 CFU·[10 g (mL) ]-1 in pharmaceutical preparation or 1 CFU·[25 g (mL) ]-1 in food samples is still a challenge. Herein, we present an aptamer-based surface-enhanced Raman spectroscopy (SERS) method for rapidly detecting Salmonella Enteritidis by using a handheld Raman instrument. The aptamer could specifically recognize S. Enteritidis, and 4-MBA self-assembled on the surface of Au@Ag NPs was used as a Raman reporter molecule. The method was validated to be high specific with no interference from other five pathogenic bacteria. It could identify S. Enteritidis contaminant at ∼ 1 CFU·(10 g)-1 spiked level in a real sample (Wenxin granule, a botanical drug) after 6 h of enrichment. The detection time was much shorter than that of the methods (more than 54 ∼ 96 h) in the standards of pharmaceutical preparations and foods. In addition, the method could quantitatively determinate S. Enteritidis with satisfactory results. The SERS peak intensities of 4-MBA at 1072 cm-1 showed a good linear correlation (R2 = 0.9873) with the logarithms of S. Enteritidis concentrations ranging from 4.17 × 102 to 1.39 × 107 CFU·mL-1. T-test result (P = 0.425) revealed that there was no significant difference between the determination results obtained by the SERS method and the plate counting method. Therefore, the study indicated that the method was practical and reliable, and it could be a promising alternative for the on-site detection of S. Enteritidis.
Collapse
Affiliation(s)
- Lei Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Qing Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
11
|
Puigmulé M, Coll M, Pérez-Serra A, López L, Picó F, Neto N, Corona M, Pinsach-Abuin M, Ferrer-Costa C, Buxó M, Queralt FX, Brugada R. High-quality RNA improves sensitivity of SARS-CoV-2 detection by colorimetric RT-LAMP. Exp Biol Med (Maywood) 2022; 247:276-281. [PMID: 34903068 PMCID: PMC8851528 DOI: 10.1177/15353702211054768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022] Open
Abstract
The global SARS-CoV-2 pandemic requires a rapid, reliable, and user-friendly diagnostic test to help control the spread of the virus. Reverse transcription and quantitative PCR (RT-qPCR) is currently the gold standard method for SARS-CoV-2 detection. Here, we develop a protocol based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and demonstrate increased sensitivity of this technique using fresh RNA extracts compared to RNA samples subjected to freezing/thawing cycles. We further compare RT-LAMP to RT-qPCR and demonstrate that the RT-LAMP approach has high sensitivity in fresh RNA extracts and can detect positive samples with Ct values between 8 and 35.
Collapse
Affiliation(s)
- Marta Puigmulé
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades
Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Medical Science Department, School of Medicine, University of
Girona, 17003 Girona, Spain
| | - Mònica Coll
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Laura López
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Ferran Picó
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Nuria Neto
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Mònica Corona
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Carles Ferrer-Costa
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
| | - Maria Buxó
- Statistical and Methodological Advice Unit, Institut
d’Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt,
Spain
| | - Francesc-Xavier Queralt
- ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital,
Parc Sanitari Martí i Julià, 17190 Salt, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d’Investigació
Biomèdica de Girona Dr. Josep Trueta (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades
Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Medical Science Department, School of Medicine, University of
Girona, 17003 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona,
17007 Girona, Spain
| |
Collapse
|
12
|
Fu Q, Yuan L, Cao F, Zang L, Ji D. Lateral flow strip biosensor based on streptavidin-coated gold nanoparticles with recombinase polymerase amplification for the quantitative point-of-care testing of Salmonella. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Wan J, Zheng L, Kong L, Lu Z, Tao Y, Feng Z, Lv F, Meng F, Bie X. Development of a rapid detection method for real-time fluorescent quantitative PCR of Salmonella spp. and Salmonella Enteritidis in ready-to-eat fruits and vegetables. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Wang S, Liu N, Zheng L, Cai G, Lin J. A lab-on-chip device for the sample-in-result-out detection of viable Salmonella using loop-mediated isothermal amplification and real-time turbidity monitoring. LAB ON A CHIP 2020; 20:2296-2305. [PMID: 32484172 DOI: 10.1039/d0lc00290a] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rapid screening of foodborne pathogens is key to prevent food poisoning. In this study, a lab-on-chip device was developed for rapid, automatic and sensitive detection of viable Salmonella typhimurium using loop-mediated isothermal amplification (LAMP) and smartphone real-time turbidity monitoring. First, magnetic nanoparticles (MNPs) coated with anti-Salmonella capture antibodies in propidium monoazide (PMA) were fully mixed with bacterial samples using two active magnetic stirring mixers at reverse rotating directions, and incubated in the serpentine channel with 470 nm blue light exposure, allowing specific formation of magnetic bacteria and sufficient PMA pretreatment of the DNA of dead bacteria. Then, the PMA-treated magnetic bacteria were separated in the separation chamber using the magnetic field and their genomic DNA templates were extracted using lysis buffer at 70 °C. Finally, the viable bacteria's DNA was amplified using LAMP in the detection chamber preloaded with the lyophilized LAMP reagents at 67.5 °C after blocking with paraffin oil to avoid aerosol cross contamination. Finally, the turbidity of the LAMP reaction system was monitored in a real-time manner for the quantitative detection of viable bacteria. The experimental results demonstrated that this device was able to automatically detect viable Salmonella as low as 14 CFU mL-1 in spiked chicken meat supernatants within 1.5 h. This device is very promising to provide a sample-in-result-out solution for the in-field detection of Salmonella and could be easily extended for other foodborne pathogens.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
15
|
A simple, sensitive and non-enzymatic signal amplification strategy driven by seesaw gate. Anal Chim Acta 2020; 1108:160-166. [DOI: 10.1016/j.aca.2020.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
|