1
|
Matsumoto E, Sasaki T, Higashiyama T, Sasaki N. Human RCC1L is involved in the maintenance of mitochondrial nucleoids and mtDNA. Sci Rep 2025; 15:13811. [PMID: 40259011 PMCID: PMC12012109 DOI: 10.1038/s41598-025-98397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Mitochondrial DNA (mtDNA) is organized with proteins into mitochondrial nucleoid (mt-nucleoid). The mt-nucleoid is a unit for the maintenance and function of mtDNA. The regulator of chromosome condensation 1-like protein (RCC1L) performs various functions in mitochondria, including translation, but its involvement in regulating mt-nucleoid maintenance is unknown. Herein, we found that human RCC1L was required to maintain mt-nucleoids and mtDNA. Human RCC1L has three splicing isoforms: RCC1LV1, RCC1LV2, and RCC1LV3. Knockout (KO) cells lacking all RCC1L isoforms, which were lethal without pyruvate and uridine, exhibited a decrease in mt-nucleoids and mtDNA, along with swollen and fragmented mitochondria. Among the three RCC1L isoforms, only RCC1LV1 recovered all phenotypes observed in RCC1L KO cells. As the treatment of wild-type cells with chloramphenicol, a mitochondrial translation inhibitor, did not lead to the decrease in mt-nucleoids accompanied by mtDNA depletion, the decrease in mt-nucleoids and mtDNA in RCC1L KO cells was not solely attributed to impaired mitochondrial translation. Using conditional RCC1L KO cells, we observed a rapid decrease in mt-nucleoids and mtDNA during a specific period following RCC1L loss. Our findings indicate that RCC1L regulates the maintenance of mt-nucleoids and mtDNA besides its role in mitochondrial translational regulation.
Collapse
Affiliation(s)
- Emi Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taeko Sasaki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Narie Sasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Center for Diversity, Equity & Inclusion, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
2
|
Magro G, Laterza V, Tosto F. Leigh Syndrome: A Comprehensive Review of the Disease and Present and Future Treatments. Biomedicines 2025; 13:733. [PMID: 40149709 PMCID: PMC11940177 DOI: 10.3390/biomedicines13030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Leigh syndrome (LS) is a severe neurodegenerative condition with an early onset, typically during early childhood or infancy. The disorder exhibits substantial clinical and genetic diversity. From a clinical standpoint, Leigh syndrome showcases a broad range of irregularities, ranging from severe neurological issues to minimal or no discernible abnormalities. The central nervous system is most affected, resulting in psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also experience involvement of the peripheral nervous system, such as polyneuropathy or myopathy, as well as non-neurological anomalies, such as diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). Mutations associated with Leigh syndrome impact genes in both the mitochondrial and nuclear genomes. Presently, LS remains without a cure and shows limited response to various treatments, although certain case reports suggest potential improvement with supplements. Ongoing preclinical studies are actively exploring new treatment approaches. This review comprehensively outlines the genetic underpinnings of LS, its current treatment methods, and preclinical investigations, with a particular focus on treatment.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| |
Collapse
|
3
|
Okano M, Yasuda M, Shimomura Y, Matsuoka Y, Shirouzu Y, Fujioka T, Kyo M, Tsuji S, Kaneko K, Hitomi H. Citrin-deficient patient-derived induced pluripotent stem cells as a pathological liver model for congenital urea cycle disorders. Mol Genet Metab Rep 2024; 40:101096. [PMID: 38872960 PMCID: PMC11170474 DOI: 10.1016/j.ymgmr.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Citrin deficiency is a congenital secondary urea cycle disorder lacking useful disease models for effective treatment development. In this study, human induced pluripotent stem cells (iPSCs) were generated from two patients with citrin deficiency and differentiated into hepatocyte-like cells (HLCs). Citrin-deficient HLCs produced albumin and liver-specific markers but completely lacked citrin protein and expressed argininosuccinate synthase only weakly. In addition, ammonia concentrations in a medium cultured with citrin-deficient HLCs were higher than with control HLCs. Sodium pyruvate administration significantly reduced ammonia concentrations in the medium of citrin-deficient HLCs and slightly reduced ammonia in HLCs differentiated from control iPSCs, though this change was not significant. Our results suggest that sodium pyruvate may be an efficient treatment for patients with citrin deficiency. Citrin-deficient iPSCs are a pathological liver model for congenital urea cycle disorders to clarify pathogenesis and develop novel therapies.
Collapse
Affiliation(s)
- Mai Okano
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Masahiro Yasuda
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Yui Shimomura
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Yasumasa Shirouzu
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Tatsuya Fujioka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Masatoshi Kyo
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Hirofumi Hitomi
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
4
|
Kurawaka M, Sasaki N, Yamazaki Y, Shimura F. Near-Physiological Concentrations of Extracellular Pyruvate Stimulated Glucose Utilization along with Triglyceride Accumulation and Mitochondrial Activity in HepG2 Cells. J Nutr Sci Vitaminol (Tokyo) 2023; 69:314-325. [PMID: 37940572 DOI: 10.3177/jnsv.69.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Pyruvate, a key intermediate in energy and nutrient metabolism, probably plays important roles in these regulations. In previous reports using cell lines, extracellular pyruvate of supraphysiological concentrations inhibited the glucose uptake by myotubes while being stimulated by adipocytes. As the effect of pyruvate on the glucose utilization is unclear in cultured hepatocytes. We have investigated the effects of extracellular pyruvate on the glucose utilization and the subsequent metabolic changes using the cell line HepG2. In a 24 h culture, pyruvate enhanced the glucose consumption more potently than 1 μM insulin, and this enhancement was detectable at a near-physiological concentrations of ≤1 mM. For metabolic changes following glucose consumption, the conversion ratio of glucose and pyruvate to extracellular lactate was approximately 1.0 without extracellular pyruvate. The addition of pyruvate decreased the conversion ratio to approximately 0.7, indicating that the glycolytic reaction switched from being an anaerobic to a partially aerobic feature. Consistent with this finding, pyruvate increased the accumulation of intracellular triglycerides which are produced through substrate supply from the mitochondria. Furthermore, pyruvate stimulated mitochondria activity as evidenced by increases in ATP content, mitochondrial DNA copy number, enhanced mitochondria-specific functional imaging and oxygen consumption. Interestingly, 1 mM pyruvate increased oxygen consumption immediately after addition. In this study, we found that near-physiological concentrations of extracellular pyruvate exerted various changes in metabolic events, including glucose influx, lactate conversion rations, TG accumulation, and mitochondrial activity in HepG2 cells.
Collapse
Affiliation(s)
- Misaki Kurawaka
- Department of Food and Nutritional Sciences, Graduate School of Human Life Sciences, Jumonji University Graduate School
| | - Naho Sasaki
- Department of Health and Nutrition, Faculty of Human Life, Jumonji University
| | - Yuko Yamazaki
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University
| | - Fumio Shimura
- Department of Food and Nutritional Sciences, Graduate School of Human Life Sciences, Jumonji University Graduate School
| |
Collapse
|
5
|
Uchida H, Sakamoto S, Shimizu S, Yanagi Y, Fukuda A, Horikawa R, Ito R, Matsunaga A, Murayama K, Kasahara M. Outcomes of liver transplantation for mitochondrial respiratory chain disorder in children. Pediatr Transplant 2021; 25:e14091. [PMID: 34265160 DOI: 10.1111/petr.14091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
AIM Mitochondrial respiratory chain disorder (MRCD) can cause acute liver failure (ALF), which may necessitate liver transplantation (LT). However, MRCD is often difficult to diagnose before LT and the indications of LT are controversial due to the likelihood of progressive neurological disease. The present study further characterized the patient population and described the outcomes. METHODS Thirteen patients who underwent LT for MRCD from November 2005 to May 2020 were enrolled in this study. RESULTS Six of 13 MRCD patients were diagnosed with a mitochondrial inner membrane protein 17-related mitochondrial DNA depletion syndrome (MTDPS). Overall, nine survived with a median follow-up of 1.8 years (IQR, 1.3-5.1 years); four died within 2 years. In the long-term, seven survivors showed no progression of hypotonia after LT and attended a normal kindergarten or primary school. Neurological abnormalities were observed in two survivors, including vison loss related to Leber's hereditary optic neuropathy in one patient and psychomotor retardation related to Leigh syndrome in the other. Three non-survivors after LT were diagnosed with MTDPS and died of severe pulmonary hypertension, which had developed at 8, 9, and 18 months after LT (n=1 each). The remaining patient died of postoperative respiratory infection with respiratory syncytial virus. CONCLUSION The long-term results support the performance of LT in patients with MRCD, although a genetic diagnosis is preferable for determining the accurate indications for LT in these patients. Furthermore, care should be taken to avoid complications due to mitochondrial dysfunction during the long-term follow-up.
Collapse
Affiliation(s)
- Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Ito
- Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
6
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
7
|
Ikawa M, Okazawa H, Yoneda M. Molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. Biochim Biophys Acta Gen Subj 2020; 1865:129832. [PMID: 33358866 DOI: 10.1016/j.bbagen.2020.129832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing evidence from pathological and biochemical investigations suggests that mitochondrial metabolic impairment and oxidative stress play a crucial role in the pathogenesis of mitochondrial diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and various neurodegenerative disorders. Recent advances in molecular imaging technology with positron emission tomography (PET) and functional magnetic resonance imaging (MRI) have accomplished a direct and non-invasive evaluation of the pathophysiological changes in living patients. SCOPE OF REVIEW In this review, we focus on the latest achievements of molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. MAJOR CONCLUSIONS Molecular imaging with PET and MRI exhibited mitochondrial metabolic changes, such as enhanced glucose utilization with lactic acid fermentation, suppressed fatty acid metabolism, decreased TCA-cycle metabolism, impaired respiratory chain activity, and increased oxidative stress, in patients with MELAS syndrome. In addition, PET imaging clearly demonstrated enhanced cerebral oxidative stress in patients with Parkinson's disease or amyotrophic lateral sclerosis. The magnitude of oxidative stress correlated well with clinical severity in patients, indicating that oxidative stress based on mitochondrial dysfunction is associated with the neurodegenerative changes in these diseases. GENERAL SIGNIFICANCE Molecular imaging is a promising tool to improve our knowledge regarding the pathogenesis of diseases associated with mitochondrial dysfunction and oxidative stress, and this would facilitate the development of potential antioxidants and mitochondrial therapies.
Collapse
Affiliation(s)
- Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan; Department of Advanced Medicine for Community Healthcare, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan; Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
8
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Burgin HJ, McKenzie M. Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 2020; 594:590-610. [PMID: 31944285 DOI: 10.1002/1873-3468.13735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria provide the main source of energy for eukaryotic cells, oxidizing fatty acids and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two key pathways involved in this process. Disruption of FAO can cause human disease, with patients commonly presenting with liver failure, hypoketotic glycaemia and rhabdomyolysis. However, patients with deficiencies in the FAO enzyme short-chain enoyl-CoA hydratase 1 (ECHS1) are typically diagnosed with Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy that is normally associated with OXPHOS dysfunction. Furthermore, some ECHS1-deficient patients also exhibit secondary OXPHOS defects. This sequela of FAO disorders has long been thought to be caused by the accumulation of inhibitory fatty acid intermediates. However, new evidence suggests that the mechanisms involved are more complex, and that disruption of OXPHOS protein complex biogenesis and/or stability is also involved. In this review, we examine the clinical, biochemical and genetic features of all ECHS1-deficient patients described to date. In particular, we consider the secondary OXPHOS defects associated with ECHS1 deficiency and discuss their possible contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Harrison James Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Li M, Zhou S, Chen C, Ma L, Luo D, Tian X, Dong X, Zhou Y, Yang Y, Cui Y. Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review. Ther Adv Endocrinol Metab 2020; 11:2042018820938240. [PMID: 32695307 PMCID: PMC7350055 DOI: 10.1177/2042018820938240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mitochondrial disease is a term used to describe a set of heterogeneous genetic diseases caused by impaired structure or function of mitochondria. Pyruvate therapy for mitochondrial disease is promising from a clinical point of view. METHODS According to PRISMA guidelines, the following databases were searched to identify studies regarding pyruvate therapy for mitochondrial disease: PubMed, EMBASE, Cochrane Library, and Clinicaltrials. The search was up to April 2019. The endpoints were specific biomarkers (plasma level of lactate, plasma level of pyruvate, L/P ratio) and clinical rating scales [Japanese mitochondrial disease-rating scale (JMDRS), Newcastle Mitochondrial Disease Adult Scale (NMDAS), and others]. Two researchers independently screened articles, extracted data, and assessed the quality of the studies. RESULTS A total of six studies were included. Considerable differences were noted between studies in terms of study design, patient information, and outcome measures. The collected evidence may indicate an effective potential of pyruvate therapy on the improvement of mitochondrial disease. The majority of the common adverse events of pyruvate therapy were diarrhea and short irritation of the stomach. CONCLUSION Pyruvate therapy with no serious adverse events may be a potential therapeutic candidate for patients with incurable mitochondrial diseases, such as Leigh syndrome. However, recent evidence taken from case series and case reports, and theoretical supports of basic research are not sufficient. The use of global registries to collect patient data and more adaptive trial designs with larger numbers of participants are necessary to clarify the efficacy of pyruvate therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Chaoyang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Lingyun Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Daohuang Luo
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xin Tian
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xiu Dong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | | | | |
Collapse
|
11
|
Kadoya T, Sakakibara A, Kitayama K, Yamada Y, Higuchi S, Kawakita R, Kawasaki Y, Fujino M, Murakami Y, Shimura M, Murayama K, Ohtake A, Okazaki Y, Koga Y, Yorifuji T. Successful treatment of infantile-onset ACAD9-related cardiomyopathy with a combination of sodium pyruvate, beta-blocker, and coenzyme Q10. J Pediatr Endocrinol Metab 2019; 32:1181-1185. [PMID: 31473688 DOI: 10.1515/jpem-2019-0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial acyl-CoA dehydrogenase 9 (ACAD9) deficiency is one of the common causes of respiratory chain complex I deficiency, which is characterized by cardiomyopathy, lactic acidemia, and muscle weakness. Infantile cardiomyopathy is the most common phenotype and is usually lethal by the age of 5 years. Riboflavin treatment is known to be effective in ~65% of the patients; however, the remaining are unresponsive to riboflavin and are in need of additional treatment measures. In this report, we describe a patient with ACAD9 deficiency who developed progressive cardiomyopathy at 8 months of age. As the patient's left ventricular ejection fraction (LVEF) kept decreasing to 45.4% at 1 year 8 months, sodium pyruvate treatment was introduced together with a beta-blocker and coenzyme Q10. This resulted in a steady improvement, with full and sustained normalization of cardiac function without riboflavin. The therapy, therefore, might be a useful addition for the treatment of ACAD9 deficiency.
Collapse
Affiliation(s)
- Takumi Kadoya
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Azumi Sakakibara
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Kana Kitayama
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Rie Kawakita
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yuki Kawasaki
- Division of Pediatric Cardiology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Mitsuhiro Fujino
- Division of Pediatric Cardiology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Yosuke Murakami
- Division of Pediatric Cardiology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Masaru Shimura
- Center for Medical Genetics and Division of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kei Murayama
- Center for Medical Genetics and Division of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
12
|
Haga H, Matsuo K, Yabuki Y, Zhang C, Han F, Fukunaga K. Enhancement of ATP production ameliorates motor and cognitive impairments in a mouse model of MPTP-induced Parkinson's disease. Neurochem Int 2019; 129:104492. [PMID: 31229554 DOI: 10.1016/j.neuint.2019.104492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Approximately 30-40% of patients with Parkinson's disease (PD) exhibit cognitive impairments. However, there are currently no clinically effective drugs for the treatment of cognitive impairment in patients with PD. Previous studies have suggested that mitochondrial dysfunction such as decreased adenosine triphosphate (ATP) production triggers dopaminergic neurodegeneration in patients with PD and that mitochondria represent a potential target for the development of novel treatments for preventing PD. Therefore, in the present study, we investigated the cognition-enhancing effects of ethyl pyruvate (EP) and 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl) piperazine dihydrochloride (SA4503) in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. PD model mice were generated via treatment with MPTP (25 mg/kg, i.p.) once a day for 5 consecutive days. Twenty-four hours after the final injection of MPTP, mice were intraperitoneally injected with EP (25, 50, 100 mg/kg) or SA4503 (1 mg/kg) once a day for 4 weeks. Chronic administration of EP (100 mg/kg i.p.) or SA4503 (1 mg/kg, i.p.) improved both motor deficits and cognitive impairments in MPTP-treated mice. Furthermore, treatment with EP or SA4503 attenuated decreases in the levels of ATP and tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc)/ventral tegmental area (VTA), striatum, and hippocampal CA1 region. Administration of EP or SA4503 protected the dopaminergic neurons from MPTP-induce toxicity and restored the dopamine levels in the striatum. Elevated 4-hydroxy-2-nonenal- (4-HNE-) and nitrotyrosine-reactive protein levels induced by MPTP-treatment were suppressed by EP or SA4503 treatment in the SNpc-VTA, striatum, and hippocampal CA1 region. These observations suggest that EP and SA4503 attenuate cognitive impairments and motor dysfunction in mice with MPTP-induced PD.
Collapse
Affiliation(s)
- Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Chen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 31005, China
| | - Feng Han
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
13
|
Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion 2019; 48:11-15. [PMID: 30738201 DOI: 10.1016/j.mito.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Biomarkers and two clinical rating scales-the Japanese mitochondrial disease-rating scale (JMDRS) and Newcastle mitochondrial disease adult scale (NMDAS)-are clinically used when treating patients with mitochondrial disease. We explored the biomarker(s) and clinical rating scale(s) that are appropriate in preparing the protocol for a future clinical trial of sodium pyruvate (SP) therapy. A 48-week, prospective, single-centre, exploratory, clinical study enrolled 11 Japanese adult patients with genetically, biochemically, and clinically confirmed mitochondrial disease; they had intractable lactic acidosis and received SP (0.5 g/kg t.i.d. PO). Plasma concentrations of lactate and pyruvate, lateral ventricular levels of lactate, and serum concentrations of growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 were measured at baseline and at weeks 12 and 48 of SP therapy. At week 48, plasma lactate (P = .004), the lactate/pyruvate ratio (P = .012), serum GDF15 (P = .020), and lateral ventricular lactate (P = .038) decreased significantly from the baseline values; the JMDRS and NMDAS scores did not decrease significantly, although the NMDAS overall score showed a strong tendency (P = .059). Two patients with end-stage MELAS at baseline died during SP therapy. The present study showed significant decreases in plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15. Therefore, the protocol for a future clinical study of SP therapy in this patient population needs to include plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15 as diagnostic indicators, and exclude patients with end-stage mitochondrial disease.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan.
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan; Institute of Fundamental Medicine and Biology, OpenLab Gene and Cell Technology, Kazan Federal University, Kazan Respublika Tatarstan, Russia
| | - Eisuke Inoue
- Division of Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazutaka Nashiki
- Center for Diagnostic Imaging, Kurume University Hospital, Kurume, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| |
Collapse
|
14
|
Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet 2018; 64:113-125. [PMID: 30459337 DOI: 10.1038/s10038-018-0528-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial diseases are inherited metabolic diseases based on disorders of energy production. The expansion of exome analyses has led to the discovery of many pathogenic nuclear genes associated with these diseases, and research into the pathogenesis of metabolic diseases has progressed. In cases of Leigh syndrome, it is desirable to perform both biochemical and genetic analyses, and pathogenic gene mutations have been identified in over half of the cases analyzed this way. Tandem mass screening and organic acid analyses of urine can sometimes provide important information that leads to the identification of pathogenic genes. Our comprehensive gene analyses have led to the discovery of several novel genes for mitochondrial diseases. Indeed, we reported that GTPBP3 and QRSL1 are involved in mitochondrial DNA maturation. In 2017, as a result of international collaboration, we also identified that mutations in ATAD3 and C1QBP cause mitochondrial disease. Given the varied pathogeneses, treatments for mitochondrial diseases should be specifically tailored to the mutated gene. Clinical trials of sodium pyruvate, 5-aminolevulinic acid with sodium ferrous citrate, and taurine as a treatment for mitochondrial disease have begun in Japan. Given that some mitochondrial diseases may respond well to certain treatments if the pathogenic gene can be identified, an early genetic diagnosis is crucial. Additionally, in Japan, prenatal diagnoses for mitochondrial diseases caused by nuclear genes have been achieved for genes shown to be pathogenic. Treatment and management approaches, including prenatal diagnoses, specifically tailored to the various phenotypes and pathologies of mitochondrial diseases are expected to become increasingly available.
Collapse
|
15
|
Sahenk Z, Yalvac ME, Amornvit J, Arnold WD, Chen L, Shontz KM, Lewis S. Efficacy of exogenous pyruvate in Trembler J mouse model of Charcot-Marie-Tooth neuropathy. Brain Behav 2018; 8:e01118. [PMID: 30239155 PMCID: PMC6192403 DOI: 10.1002/brb3.1118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Classic Charcot-Marie-Tooth (CMT) neuropathies including those with Schwann cell genetic defects exhibit a length-dependent process affecting the distal axon. Energy deprivation in the distal axon has been the proposed mechanism accounting for length-dependent distal axonal degeneration. We hypothesized that pyruvate, an intermediate glycolytic product, could restore nerve function, supplying lost energy to the distal axon. METHODS To test this possibility, we supplied pyruvate to the drinking water of the Trembler-J (TrJ ) mouse and assessed efficacy based on histology, electrophysiology, and functional outcomes. Pyruvate outcomes were compared with untreated TrJ controls alone or adeno-associated virus mediated NT-3 gene therapy (AAV1.NT-3)/pyruvate combinatorial approach. RESULTS Pyruvate supplementation resulted increased myelinated fiber (MF) densities and myelin thickness in sciatic nerves. Combining pyruvate with proven efficacy from AAV1.tMCK.NT-3 gene therapy provided additional benefits showing improved compound muscle action potential amplitudes and nerve conduction velocities compared to pyruvate alone cohort. The end point motor performance of both the pyruvate and the combinatorial therapy cohorts was better than untreated TrJ controls. In a unilateral sciatic nerve crush paradigm, pyruvate supplementation improved myelin-based outcomes in both regenerating and the contralateral uncrushed nerves. CONCLUSIONS This proof of principle study demonstrates that exogenous pyruvate alone or as adjunct therapy in TrJ may have clinical implications and is a candidate therapy for CMT neuropathies without known treatment.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- Department of Pediatrics and NeurologyNationwide Children’s Hospital and The Ohio State UniversityColumbusOhio
- Department of Pathology and Laboratory MedicineNationwide Children’s HospitalColumbusOhio
- Department of NeurologyThe Ohio State UniversityColumbusOhio
| | - Mehmet E. Yalvac
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Jakkrit Amornvit
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- King Chulalongkorn Memorial HospitalChulalongkorn UniversityBangkokThailand
- Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - William David Arnold
- Department of NeurologyThe Ohio State UniversityColumbusOhio
- Department of Physical Medicine and RehabilitationThe Ohio State University ColumbusOhio
| | - Lei Chen
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Kimberly M. Shontz
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Sarah Lewis
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| |
Collapse
|
16
|
Chen L, Cui Y, Jiang D, Ma C, Tse HF, Hwu WL, Lian Q. Management of Leigh syndrome: Current status and new insights. Clin Genet 2018; 93:1131-1140. [DOI: 10.1111/cge.13139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 01/11/2023]
Affiliation(s)
- L. Chen
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - Y. Cui
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - D. Jiang
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - C.Y. Ma
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - H.-F. Tse
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - W.-L. Hwu
- Department of Pediatrics and Medical Genetics; National Taiwan University Hospital; Taipei City Taiwan
| | - Q. Lian
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
- School of Biomedical Sciences; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
17
|
Liver Transplantation for Mitochondrial Respiratory Chain Disorder: A Single-Center Experience and Excellent Marker of Differential Diagnosis. Transplant Proc 2018; 49:1097-1102. [PMID: 28583535 DOI: 10.1016/j.transproceed.2017.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial respiratory chain disorder (MRCD) can cause liver failure requiring liver transplantation (LT), although it is often difficult to diagnose before LT. From 2005 to 2016, 9 MRCD patients with the median age at LT of 6 months underwent LT in our institute. Their clinical courses were retrospectively reviewed and the laboratory parameters were compared between the MRCD patients and 10 patients with acute liver failure unrelated to MRCD (non-MRCD). Five patients had extrahepatic manifestations, including developmental disorders in 3 and failure to thrive in 3, before LT. Only 3 patients (33.3%) were diagnosed before LT. Between MRCD and non-MRCD, lactate was significantly high and lactate-to-pyruvate ratio (L/P ratio) tended to be higher in MRCD. From the receiver operating characteristic curve, the optimal cutoff value of lactate was 50.0 mg/dL and that of L/P ratio was 23.2. Patient survival rate of MRCD was 77.8%, although 2 patients with mitochondrial depletion syndrome suffered from de novo pulmonary hypertension after LT. Our experiences showed the difficulty of preoperative diagnosis, and preoperative extrahepatic manifestations did not always mean poor outcome. Our study showed that lactate value and L/P ratio can be excellent predictors of MRCD.
Collapse
|
18
|
Ağaçayak E, Yaman Görük N, Küsen H, Yaman Tunç S, Başaranoğlu S, İçen MS, Yıldızbakan A, Yüksel H, Kalkanlı S, Gül T. Role of inflammation and oxidative stress in the etiology of primary ovarian insufficiency. Turk J Obstet Gynecol 2016; 13:109-115. [PMID: 28913104 PMCID: PMC5558299 DOI: 10.4274/tjod.00334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/05/2022] Open
Abstract
Objective: The aim of this study was to elucidate the etiology and treatment of primary ovarian insufficiency, which is of unknown cause in 95% of the cases. Materials and Methods: Thirty patients aged 18-40 years who presented to Dicle University Faculty of Medicine Clinic of Obstetrics and Gynecology between June 2012 and January 2014 and were diagnosed as having primary ovarian insufficiency based on their clinical and endocrinologic data, and 30 healthy controls were included in this study. Results: No significant differences were found between patients with primary ovarian insufficiency and control subjects in demographic data and lipid profile levels, thyroid- stimulating hormone, prolactin, and glucose. However, the neutrophil to lymphocyte ratio and levels of follicle-stimulating hormone, luteinizing hormone, total antioxidant status, total oxidant status, and oxidative stress index were significantly higher in patients with primary ovarian insufficiency than in control subjects. In the correlation analysis, follicle-stimulating hormone exhibited a positive correlation with total oxidant status, oxidative stress index, and the neutrophil to lymphocyte ratio (r=0.573** p<0.001, r=0.584** p<0.001, r=0.541 p<0.001, respectively) and correlated negatively with total antioxidant status (r=-0.437** p<0.001). Conclusion: The neutrophil to lymphocyte ratio, total oxidant status, and oxidative stress index levels are elevated in primary ovarian insufficiency. Therefore, anti-oxidative and anti-inflammatory treatment might be administered to patients in the early stage of primary ovarian insufficiency. However, larger studies are needed to clarify whether these elevated levels are a cause or a consequence of primary ovarian insufficiency.
Collapse
Affiliation(s)
- Elif Ağaçayak
- Dicle University Faculty of Medicine, Department of Obstetrics and Gynecology, Diyarbakır, Turkey
| | - Neval Yaman Görük
- Memorial Hospital, Clinic of Obstetrics and Gynecology, Diyarbakır, Turkey
| | - Hakan Küsen
- Şırnak State Hospital, Clinic of Obstetrics and Gynecology, Şırnak, Turkey
| | - Senem Yaman Tunç
- Dicle University Faculty of Medicine, Department of Obstetrics and Gynecology, Diyarbakır, Turkey
| | - Serdar Başaranoğlu
- İdil State Hospital, Clinic of Obstetrics and Gynecology, Şırnak, Turkey
| | - Mehmet Sait İçen
- Dicle University Faculty of Medicine, Department of Obstetrics and Gynecology, Diyarbakır, Turkey
| | - Ahmet Yıldızbakan
- Dicle University Faculty of Medicine, Department of Obstetrics and Gynecology, Diyarbakır, Turkey
| | - Hatice Yüksel
- Dicle University Faculty of Medicine, Department of Biochemistry, Diyarbakır, Turkey
| | - Sevgi Kalkanlı
- Dicle University Faculty of Medicine, Department Immunology and Medical Biology-Genetic, Diyarbakır, Turkey
| | - Talip Gül
- Dicle University Faculty of Medicine, Department of Obstetrics and Gynecology, Diyarbakır, Turkey
| |
Collapse
|
19
|
Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: A "Thrifty Substrate" Hypothesis. Diabetes Care 2016; 39:1108-14. [PMID: 27289126 DOI: 10.2337/dc16-0330] [Citation(s) in RCA: 737] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 02/03/2023]
Abstract
The striking and unexpected relative risk reductions in cardiovascular (CV) mortality (38%), hospitalization for heart failure (35%), and death from any cause (32%) observed in the EMPA-REG OUTCOME trial using an inhibitor of sodium-glucose cotransporter 2 (SGLT2) in patients with type 2 diabetes and high CV risk have raised the possibility that mechanisms other than those observed in the trial-modest improvement in glycemic control, small decrease in body weight, and persistent reductions in blood pressure and uric acid level-may be at play. We hypothesize that under conditions of mild, persistent hyperketonemia, such as those that prevail during treatment with SGLT2 inhibitors, β-hydroxybutyrate is freely taken up by the heart (among other organs) and oxidized in preference to fatty acids. This fuel selection improves the transduction of oxygen consumption into work efficiency at the mitochondrial level. In addition, the hemoconcentration that typically follows SGLT2 inhibition enhances oxygen release to the tissues, thereby establishing a powerful synergy with the metabolic substrate shift. These mechanisms would cooperate with other SGLT2 inhibition-induced changes (chiefly, enhanced diuresis and reduced blood pressure) to achieve the degree of cardioprotection revealed in the EMPA-REG OUTCOME trial. This hypothesis opens up new lines of investigation into the pathogenesis and treatment of diabetic and nondiabetic heart disease.
Collapse
Affiliation(s)
| | - Michael Mark
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Mayoux
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
20
|
Shinoda Y, Tagashira H, Bhuiyan MS, Hasegawa H, Kanai H, Fukunaga K. Haloperidol aggravates transverse aortic constriction-induced heart failure via mitochondrial dysfunction. J Pharmacol Sci 2016; 131:172-83. [PMID: 27435383 DOI: 10.1016/j.jphs.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/20/2022] Open
Abstract
Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R) and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca(2+) transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca(2+) transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC) and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca(2+) mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation.
Collapse
Affiliation(s)
- Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Hideyuki Hasegawa
- Department of Electrical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan; Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electrical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan; Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan.
| |
Collapse
|
21
|
Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int 2016; 16 Suppl 1:17-29. [DOI: 10.1111/ggi.12724] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Yasunori Fujita
- Research Teams for; Mechanism of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Yu Taniguchi
- Social Participation and Community Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Shoji Shinkai
- Social Participation and Community Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Masafumi Ito
- Research Teams for; Mechanism of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| |
Collapse
|
22
|
Gerards M, Sallevelt SCEH, Smeets HJM. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab 2016; 117:300-12. [PMID: 26725255 DOI: 10.1016/j.ymgme.2015.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, affecting 1 in 40,000 live births. Most patients present with symptoms between the ages of three and twelve months, but adult onset Leigh syndrome has also been described. The disease course is characterized by a rapid deterioration of cognitive and motor functions, in most cases resulting in death due to respiratory failure. Despite the high genetic heterogeneity of Leigh syndrome, patients present with identical, symmetrical lesions in the basal ganglia or brainstem on MRI, while additional clinical manifestations and age of onset varies from case to case. To date, mutations in over 60 genes, both nuclear and mitochondrial DNA encoded, have been shown to cause Leigh syndrome, still explaining only half of all cases. In most patients, these mutations directly or indirectly affect the activity of the mitochondrial respiratory chain or pyruvate dehydrogenase complex. Exome sequencing has accelerated the discovery of new genes and pathways involved in Leigh syndrome, providing novel insights into the pathophysiological mechanisms. This is particularly important as no general curative treatment is available for this devastating disorder, although several recent studies imply that early treatment might be beneficial for some patients depending on the gene or process affected. Timely, gene-based personalized treatment may become an important strategy in rare, genetically heterogeneous disorders like Leigh syndrome, stressing the importance of early genetic diagnosis and identification of new genes/pathways. In this review, we provide a comprehensive overview of the most important clinical manifestations and genes/pathways involved in Leigh syndrome, and discuss the current state of therapeutic interventions in patients.
Collapse
Affiliation(s)
- Mike Gerards
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands; Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
23
|
Auger C, Alhasawi A, Contavadoo M, Appanna VD. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 2015; 3:40. [PMID: 26161384 PMCID: PMC4479819 DOI: 10.3389/fcell.2015.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
The liver is involved in a variety of critical biological functions including the homeostasis of glucose, fatty acids, amino acids, and the synthesis of proteins that are secreted in the blood. It is also at the forefront in the detoxification of noxious metabolites that would otherwise upset the functioning of the body. As such, this vital component of the mammalian system is exposed to a notable quantity of toxicants on a regular basis. It therefore comes as no surprise that there are over a hundred disparate hepatic disorders, encompassing such afflictions as fatty liver disease, hepatitis, and liver cancer. Most if not all of liver functions are dependent on energy, an ingredient that is primarily generated by the mitochondrion, the power house of all cells. This organelle is indispensable in providing adenosine triphosphate (ATP), a key effector of most biological processes. Dysfunctional mitochondria lead to a shortage in ATP, the leakage of deleterious reactive oxygen species (ROS), and the excessive storage of fats. Here we examine how incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases. Exposure of liver cells to detrimental environmental hazards such as oxidative stress, metal toxicity, and various xenobiotics results in the inactivation of crucial mitochondrial enzymes and decreased ATP levels. The contribution of the latter to hepatic disorders and potential therapeutic cues to remedy these conditions are elaborated.
Collapse
Affiliation(s)
- Christopher Auger
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Azhar Alhasawi
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Manuraj Contavadoo
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Vasu D Appanna
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| |
Collapse
|
24
|
Kuroha Y, Tada M, Kawachi I, Nishizawa M, Matsubara N, Koike R. [Effect of sodium pyruvate on exercise intolerance and muscle weakness due to mitochondrial myopathy: a case report]. Rinsho Shinkeigaku 2015; 55:412-416. [PMID: 26103814 DOI: 10.5692/clinicalneurol.cn-000652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the case of a 19-year-old woman who had been suffering from general fatigue and exercise intolerance since 15 years old. At 18 years old, she experienced muscle weakness and myalgia of the calves. Six months later, she was admitted to our hospital. She showed muscle weakness of the neck and proximal limbs, and myalgia of the calves was prominent. Serum levels of creatine kinase (CK) and lactic acid were elevated, as was the level of lactic acid in cerebrospinal fluid. T2-weighted and short-inversion-time inversion recovery (STIR) imaging of the lower limbs showed hyperintensity on bilateral gastrocnemius muscles, and the region revealed Gd enhancement. Based on histopathological findings from muscle and identification of a m.3271T>C point mutation, mitochondrial myopathy was diagnosed. Rest and administration of vitamins B1 and B2, coenzyme Q10, and L-carnitine improved serum CK levels; however, exercise intolerance, myalgia, and lactic acidemia remained. Sodium pyruvate was then administered, and lactic acid levels, exercise intolerance, and findings on magnetic resonance imaging improved. Sodium pyruvate could prove effective in addressing both elevated serum lactic acid levels and exercise intolerance in mitochondrial disease.
Collapse
Affiliation(s)
- Yasuko Kuroha
- Department of Neurology, Nishi-Niigata Chuo National Hospital
| | | | | | | | | | | |
Collapse
|
25
|
Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion 2015; 20:34-42. [DOI: 10.1016/j.mito.2014.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/02/2014] [Accepted: 10/29/2014] [Indexed: 01/15/2023]
|
26
|
Tagashira H, Shinoda Y, Shioda N, Fukunaga K. Methyl pyruvate rescues mitochondrial damage caused by SIGMAR1 mutation related to amyotrophic lateral sclerosis. Biochim Biophys Acta Gen Subj 2014; 1840:3320-34. [PMID: 25175561 DOI: 10.1016/j.bbagen.2014.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a disease caused by motor neuron degeneration. Recently, a novel SIGMAR1 gene variant (p.E102Q) was discovered in some familial ALS patients. METHODS We address mechanisms underlying neurodegeneration caused by the mutation using Neuro2A cells overexpressing σ1R(E102Q), a protein of a SIGMAR1 gene variant (p.E102Q) and evaluate potential amelioration by ATP production via methyl pyruvate (MP) treatment. RESULTS σ1R(E102Q) overexpression promoted dissociation of the protein from the endoplasmic reticulum (ER) membrane and cytoplasmic aggregation, which in turn impaired mitochondrial ATP production and proteasome activity. Under ER stress conditions, overexpression of wild-type σ1R suppressed ER stress-induced mitochondrial injury, whereas σ1R(E102Q) overexpression aggravated mitochondrial damage and induced autophagic cell death. Moreover, σ1R(E102Q)-overexpressing cells showed aberrant extra-nuclear localization of the TAR DNA-binding protein (TDP-43), a condition exacerbated by ER stress. Treatment of cells with the mitochondrial Ca(2+) transporter inhibitor Ru360 mimicked the effects of σ1R(E102Q) overexpression, indicating that aberrant σ1R-mediated mitochondrial Ca(2+) transport likely underlies TDP-43 extra-nuclear localization, segregation in inclusion bodies, and ubiquitination. Finally, enhanced ATP production promoted by methyl pyruvate (MP) treatment rescued proteasome impairment and TDP-43 extra-nuclear localization caused by σ1R(E102Q) overexpression. CONCLUSIONS Our observations suggest that neurodegeneration seen in some forms of ALS are due in part to aberrant mitochondrial ATP production and proteasome activity as well as TDP-43 mislocalization resulting from the SIGMAR1 mutation. GENERAL SIGNIFICANCE ATP supplementation by MP represents a potential therapeutic strategy to treat ALS caused by SIGMAR1 mutation.
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Norifumi Shioda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan.
| |
Collapse
|
27
|
Fujii T, Nozaki F, Saito K, Hayashi A, Nishigaki Y, Murayama K, Tanaka M, Koga Y, Hiejima I, Kumada T. Efficacy of pyruvate therapy in patients with mitochondrial disease: a semi-quantitative clinical evaluation study. Mol Genet Metab 2014; 112:133-8. [PMID: 24830361 DOI: 10.1016/j.ymgme.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disorders of oxidative phosphorylation (OXPHOS) cause an increase in the NADH/NAD(+) ratio, which impairs the glycolysis pathway. Treatment with pyruvate is expected to decrease the ratio and thereby restore glycolysis. There are some case reports on the efficacy of pyruvate treatment for mitochondrial diseases. However, few of these reports assessed their results using a standardized scale. METHODS We monitored 4 bedridden patients with OXPHOS disorders who continued therapies of 0.5-1.0 g/kg/day of sodium pyruvate for more than 12 months. The efficacies of these treatments were evaluated with the Newcastle Pediatric Mitochondrial Disease Scale and the Gross Motor Function Measure with 88 items. RESULTS The ages of the patients at the treatment initiation ranged from 8-100 months. Of the 4 patients, 3 exhibited improvements within 1-3 months from the initiation of treatment. Among these 3 patients, one maintained the improvement for over 2 years. The remaining 2 regressed 3-6 months after the initiation of treatment. The blood lactate/pyruvate ratios did not correlate with the efficacy of treatment. CONCLUSION Pyruvate was effective even in bedridden patients with OXPHOS disorders, at least in the short term. Clinical trials with more patients and less severe disabilities are necessary to evaluate the long-term efficacy of this treatment. Biomarkers other than lactate and pyruvate need to be identified to biochemically monitor the efficacy of this treatment.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan.
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Keiko Saito
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Anri Hayashi
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Yutaka Nishigaki
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakane-cho, Itabashi, Tokyo 173-0015, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori, Chiba 266-0007, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakane-cho, Itabashi, Tokyo 173-0015, Japan
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Ikuko Hiejima
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| |
Collapse
|
28
|
Bonora M, De Marchi E, Patergnani S, Suski JM, Celsi F, Bononi A, Giorgi C, Marchi S, Rimessi A, Duszyński J, Pozzan T, Wieckowski MR, Pinton P. Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ 2014; 21:1198-208. [PMID: 24658399 DOI: 10.1038/cdd.2014.35] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial defects, affecting parameters such as mitochondrial number and shape, levels of respiratory chain complex components and markers of oxidative stress, have been associated with the appearance and progression of multiple sclerosis. Nevertheless, mitochondrial physiology has never been monitored during oligodendrocyte progenitor cell (OPC) differentiation, especially in OPCs challenged with proinflammatory cytokines. Here, we show that tumor necrosis factor alpha (TNF-α) inhibits OPC differentiation, accompanied by altered mitochondrial calcium uptake, mitochondrial membrane potential, and respiratory complex I activity as well as increased reactive oxygen species production. Treatment with a mitochondrial uncoupler (FCCP) to mimic mitochondrial impairment also causes cells to accumulate at the progenitor stage. Interestingly, AMP-activated protein kinase (AMPK) levels increase during TNF-α exposure and inhibit OPC differentiation. Overall, our data indicate that TNF-α induces metabolic changes, driven by mitochondrial impairment and AMPK activation, leading to the inhibition of OPC differentiation.
Collapse
Affiliation(s)
- M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - E De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - J M Suski
- 1] Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy [2] Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - F Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - A Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - A Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - J Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - T Pozzan
- 1] Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, Padua, Italy [2] Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy [3] Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Sezione di Padova, Padua, Italy
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Ikawa M, Yoneda M, Muramatsu T, Matsunaga A, Tsujikawa T, Yamamoto T, Kosaka N, Kinoshita K, Yamamura O, Hamano T, Nakamoto Y, Kimura H. Detection of preclinically latent hyperperfusion due to stroke-like episodes by arterial spin-labeling perfusion MRI in MELAS patients. Mitochondrion 2013; 13:676-80. [DOI: 10.1016/j.mito.2013.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
30
|
Ferriero R, Manco G, Lamantea E, Nusco E, Ferrante MI, Sordino P, Stacpoole PW, Lee B, Zeviani M, Brunetti-Pierri N. Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis. Sci Transl Med 2013; 5:175ra31. [PMID: 23467562 DOI: 10.1126/scitranslmed.3004986] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lactic acidosis is a buildup of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57BL/6 wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noa(m631) zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis.
Collapse
Affiliation(s)
- Rosa Ferriero
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kami K, Fujita Y, Igarashi S, Koike S, Sugawara S, Ikeda S, Sato N, Ito M, Tanaka M, Tomita M, Soga T. Metabolomic profiling rationalized pyruvate efficacy in cybrid cells harboring MELAS mitochondrial DNA mutations. Mitochondrion 2012; 12:644-53. [PMID: 22884939 DOI: 10.1016/j.mito.2012.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Pyruvate treatment was found to alleviate clinical symptoms of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome and is highly promising therapeutic. Using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), we measured time-changes of 161 intracellular and 85 medium metabolites to elucidate metabolic effects of pyruvate treatment on cybrid human 143B osteosarcoma cells harboring normal (2SA) and MELAS mutant (2SD) mitochondria. The results demonstrated dramatic and sustainable effects of pyruvate administration on the energy metabolism of 2SD cells, corroborating pyruvate as a metabolically rational treatment regimen for improving symptoms associated with MELAS and possibly other mitochondrial diseases.
Collapse
Affiliation(s)
- Kenjiro Kami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koga Y, Povalko N, Katayama K, Kakimoto N, Matsuishi T, Naito E, Tanaka M. Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene. Brain Dev 2012; 34:87-91. [PMID: 21454027 DOI: 10.1016/j.braindev.2011.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 01/16/2011] [Accepted: 03/01/2011] [Indexed: 11/20/2022]
Abstract
Leigh syndrome (LS) is a progressive untreatable degenerating mitochondrial disorder caused by either mitochondrial or nuclear DNA mutations. A patient was a second child of unconsanguineous parents. On the third day of birth, he was transferred to neonatal intensive care units because of severe lactic acidosis. Since he was showing continuous lactic acidosis, the oral supplementation of dichloroacetate (DCA) was introduced on 31st day of birth at initial dose of 50 mg/kg, followed by maintenance dose of 25 mg/kg/every 12 h. The patient was diagnosed with LS due to a point mutation of an A-C at nucleotide 599 in exon 6 in the pyruvate dehydrogenase E1α gene, resulting in the substitution of aspartate for threonine at position 200 (N200T). Although the concentrations of lactate and pyruvate in blood were slightly decreased, his clinical conditions were deteriorating progressively. In order to overcome the mitochondrial or cytosolic energy crisis indicated by lactic acidosis as well as clinical symptoms, we terminated the DCA and administered 0.5 g/kg/day TID of sodium pyruvate orally. We analyzed the therapeutic effects of DCA or sodium pyruvate in the patient, and found that pyruvate therapy significantly decreased lactate, pyruvate and alanine levels, showed no adverse effects such as severe neuropathy seen in DCA, and had better clinical response on development and epilepsy. Though the efficacy of pyruvate on LS will be evaluated by randomized double-blind placebo-controlled study design in future, pyruvate therapy is a possible candidate for therapeutic choice for currently incurable mitochondrial disorders such as LS.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, 67 Asahi Machi, Kurume, Fukuoka 830-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Li X, Wang L, Fan Y, Feng Q, Cui FZ. Biocompatibility and Toxicity of Nanoparticles and Nanotubes. JOURNAL OF NANOMATERIALS 2012; 2012. [DOI: 10.1155/2012/548389] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/03/2012] [Indexed: 02/02/2025]
Abstract
In recent years, nanoparticles (NPs) have increasingly found practical applications in technology, research, and medicine. The small particle size coupled with their unique chemical and physical properties is thought to underline their exploitable biomedical activities. Its form may be latex body, polymer, ceramic particle, metal particles, and the carbon particles. Due to their small size and physical resemblance to physiological molecules such as proteins, NPs possess the capacity to revolutionise medical imaging, diagnostics, therapeutics, as well as carry out functional biological processes. But these features may also underline their toxicity. Indeed, a detailed assessment of the factors that influence the biocompatibility and toxicity of NPs is crucial for the safe and sustainable development of the emerging NPs. Due to the unique structure, size, and shape, much effort has been dedicated to analyzing biomedical applications of nanotubes.This paper focuses on the current understanding of the biocompatibility and toxicity of NPs with an emphasis on nanotubes.
Collapse
|
34
|
Fazil M, Shadab, Baboota S, Sahni JK, Ali J. Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future. J Drug Target 2011; 20:97-113. [DOI: 10.3109/1061186x.2011.607499] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Kozlov AV, Bahrami S, Calzia E, Dungel P, Gille L, Kuznetsov AV, Troppmair J. Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure? Ann Intensive Care 2011; 1:41. [PMID: 21942988 PMCID: PMC3224479 DOI: 10.1186/2110-5820-1-41] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/26/2011] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, A-1200 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
36
|
Saito K, Kimura N, Oda N, Shimomura H, Kumada T, Miyajima T, Murayama K, Tanaka M, Fujii T. Pyruvate therapy for mitochondrial DNA depletion syndrome. Biochim Biophys Acta Gen Subj 2011; 1820:632-6. [PMID: 21855607 DOI: 10.1016/j.bbagen.2011.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mitochondrial DNA depletion syndromes are a group of heterogeneous autosomal recessive disorders associated with a severe reduction in mitochondrial DNA in the affected tissues. Sodium pyruvate has been reported to have a therapeutic effect in mitochondrial diseases. METHODS We analyzed the effects of 0.5g/kg of sodium pyruvate administered through a nasogastric tube in a one-year-old patient with myopathic mitochondrial DNA depletion syndrome. To evaluate the improvement, we used the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) and manual muscle testing. As the improvement of motor functions in this severely disabled infant could not be comprehensively detected by NPMDS, we also observed the infant's ability to perform several tasks such as pouting, winking, and number of times she could tap a toy xylophone with a stick. Blood lactate and pyruvate levels were also monitored. RESULTS After one month's treatment, the NPMDS score in section IV, the domain for the quality of life, improved from 17 to13. The infant became capable of raising her forearm, lower leg and wrist against gravity. The maximum number of times she could repeat each task increased and the movements became brisker and stronger. No significant change of the blood lactate level or lactate-to-pyruvate ratio, both of which were mildly increased at the initiation of the therapy, was observed despite the clinical improvement. CONCLUSION Sodium pyruvate administered at 0.5g/kg improved the muscle strength and the NPMDS score of an infant with myopathic mitochondrial DNA depletion syndrome. GENERAL SIGNIFICANCE Sodium pyruvate may be effective for ameliorating the clinical manifestations of mitochondrial diseases. This article is part of a Special Issue entitled: Biochemistry of Mitochondria.
Collapse
Affiliation(s)
- Keiko Saito
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama-City, Shiga, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hallows WC, Yu W, Smith BC, Devries MK, Devires MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011; 41:139-49. [PMID: 21255725 DOI: 10.1016/j.molcel.2011.01.002] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/13/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation.
Collapse
Affiliation(s)
- William C Hallows
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kumar M, Pathak D, Kriplani A, Ammini AC, Talwar P, Dada R. Nucleotide variations in mitochondrial DNA and supra-physiological ROS levels in cytogenetically normal cases of premature ovarian insufficiency. Arch Gynecol Obstet 2010; 282:695-705. [DOI: 10.1007/s00404-010-1623-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/20/2010] [Indexed: 12/21/2022]
|
39
|
Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:427-41. [DOI: 10.1016/j.nano.2009.11.007] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/03/2009] [Accepted: 11/18/2009] [Indexed: 01/01/2023]
|
40
|
Sakurai T, Ramoz N, Barreto M, Gazdoiu M, Takahashi N, Gertner M, Dorr N, Gama Sosa MA, De Gasperi R, Perez G, Schmeidler J, Mitropoulou V, Le HC, Lupu M, Hof PR, Elder GA, Buxbaum JD. Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders. Biol Psychiatry 2010; 67:887-94. [PMID: 20015484 PMCID: PMC4067545 DOI: 10.1016/j.biopsych.2009.08.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/23/2009] [Accepted: 08/11/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND SLC25A12, a susceptibility gene for autism spectrum disorders that is mutated in a neurodevelopmental syndrome, encodes a mitochondrial aspartate-glutamate carrier (aspartate-glutamate carrier isoform 1 [AGC1]). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate production. METHODS We characterized mice with a disruption of the Slc25a12 gene, followed by confirmatory in vitro studies. RESULTS Slc25a12-knockout mice, which showed no AGC1 by immunoblotting, were born normally but displayed delayed development and died around 3 weeks after birth. In postnatal day 13 to 14 knockout brains, the brains were smaller with no obvious alteration in gross structure. However, we found a reduction in myelin basic protein (MBP)-positive fibers, consistent with a previous report. Furthermore, the neocortex of knockout mice contained abnormal neurofilamentous accumulations in neurons, suggesting defective axonal transport and/or neurodegeneration. Slice cultures prepared from knockout mice also showed a myelination defect, and reduction of Slc25a12 in rat primary oligodendrocytes led to a cell-autonomous reduction in MBP expression. Myelin deficits in slice cultures from knockout mice could be reversed by administration of pyruvate, indicating that reduction in AGC1 activity leads to reduced production of aspartate/N-acetylaspartate and/or alterations in the dihydronicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide(+) ratio, resulting in myelin defects. CONCLUSIONS Our data implicate AGC1 activity in myelination and in neuronal structure and indicate that while loss of AGC1 leads to hypomyelination and neuronal changes, subtle alterations in AGC1 expression could affect brain development, contributing to increased autism susceptibility.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine,Department of Psychiatry, Mount Sinai School of Medicine,Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine,Black Family Stem Cell Institute, Mount Sinai School of Medicine
| | - Nicolas Ramoz
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine,Department of Psychiatry, Mount Sinai School of Medicine
| | - Marta Barreto
- Department of Psychiatry, Mount Sinai School of Medicine
| | | | | | | | - Nathan Dorr
- Department of Psychiatry, Mount Sinai School of Medicine
| | | | | | - Gissel Perez
- Department of Psychiatry, Mount Sinai School of Medicine
| | | | | | - H. Carl Le
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center
| | - Mihaela Lupu
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of Medicine
| | - Gregory A. Elder
- Department of Psychiatry, Mount Sinai School of Medicine,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine,Department of Psychiatry, Mount Sinai School of Medicine,Department of Neuroscience, Mount Sinai School of Medicine,Department of Genetics and Genomics Science, Mount Sinai School of Medicine
| |
Collapse
|
41
|
Iizuka T, Sakai F. Pathophysiology of stroke-like episodes in MELAS: neuron–astrocyte uncoupling in neuronal hyperexcitability. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.09.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is a distinct clinical syndrome characterized by fluctuated encephalopathy, migraineous headache, seizure and stroke-like episodes. The molecular mechanism of MELAS mutations has been elucidated; however, the pathogenesis of stroke-like episodes remains largely unknown. Three main hypotheses include ischemic, metabolic and neuronal hyperexcitability hypotheses. Recently, emerging hypotheses include alterations in nitric oxide homeostasis and over-reduction/oxidative stress mechanisms. Although neuron–astrocyte communication is crucial in various physiological functions, it has not been seriously considered in the pathophysiology of stroke-like episodes. This review summarizes what is known about the molecular mechanisms of gene mutation, clinico-radiological, clinico-physiological and pathological features of stroke-like episodes, as well as its pathogenesis. We finally discuss potential mechanisms involved in the pathogenesis of stroke-like episodes based on currently available clinical data and the current understanding of the mechanisms of neuron–astrocyte communications. We propose that neuron–astrocyte uncoupling is a new target of research in mitochondrial disorders.
Collapse
Affiliation(s)
- Takahiro Iizuka
- Department of Neurology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Fumihiko Sakai
- International Headache Center, Shinyurigaoka, Kanagawa, Japan
| |
Collapse
|
42
|
Behera MA, Dai Q, Garde R, Saner C, Jungheim E, Price TM. Progesterone stimulates mitochondrial activity with subsequent inhibition of apoptosis in MCF-10A benign breast epithelial cells. Am J Physiol Endocrinol Metab 2009; 297:E1089-96. [PMID: 19690070 PMCID: PMC2781356 DOI: 10.1152/ajpendo.00209.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of progesterone on breast epithelial cells remain poorly defined with observations showing both proliferative and antiproliferative effects. As an example, progesterone levels correlate with increased epithelial cell proliferation, but there is discordance between the dividing cells and the cells with nuclear progesterone receptor expression. The release of paracrine growth factors from nuclear receptor-positive cells has been postulated as a mechanism, since in vitro studies show a lack of growth effect by progesterone in breast epithelial cells lacking nuclear receptors. This study examined possible nongenomic effects of progesterone in breast epithelia by using MCF-10A cells known to lack nuclear progesterone receptor expression. Treatment for 30-60 min with progesterone or the progestin, R5020, increased mitochondrial activity as shown by an increase in mitochondrial membrane potential (hyperpolarization) with a concordant increase in total cellular ATP. The reaction was inhibited by a specific progesterone receptor antagonist and not affected by the translation inhibitor cycloheximide. Progestin treatment inhibited apoptosis induced by activation of the FasL pathway, as shown by a decrease in sub-G(1) cell fraction during fluorescence-activated cell sorting and a decrease in caspase 3/7 levels. Progestin treatment did not alter the cell cycle over 48 h. Our study demonstrates a nongenomic action of progesterone on benign breast epithelial cells, resulting in enhanced cellular respiration and protection from apoptosis.
Collapse
|
43
|
Komaki H, Nishigaki Y, Fuku N, Hosoya H, Murayama K, Ohtake A, Goto YI, Wakamoto H, Koga Y, Tanaka M. Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochim Biophys Acta Gen Subj 2009; 1800:313-5. [PMID: 19616603 DOI: 10.1016/j.bbagen.2009.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recently we proposed the therapeutic potential of pyruvate therapy for mitochondrial diseases. Leigh syndrome is a progressive neurodegenerative disorder ascribed to either mitochondrial or nuclear DNA mutations. METHODS In an attempt to circumvent the mitochondrial dysfunction, we orally applied sodium pyruvate and analyzed its effect on an 11-year-old female with Leigh syndrome due to cytochrome c oxidase deficiency accompanied by cardiomyopathy. The patient was administered sodium pyruvate at a maintenance dose of 0.5 g/kg/day and followed up for 1 year. RESULTS The exercise intolerance was remarkably improved so that she became capable of running. Echocardiography indicated improvements both in the left ventricle ejection fraction and in the fractional shortening. Electrocardiography demonstrated amelioration of the inverted T waves. When the pyruvate administration was interrupted because of a gastrointestinal infection, the serum lactate level became elevated and the serum pyruvate level, decreased, suggesting that the pyruvate administration was effective in decreasing the lactate-to-pyruvate ratio. CONCLUSIONS These data indicate that pyruvate therapy was effective in improving exercise intolerance at least in a patient with cytochrome c oxidase deficiency. GENERAL SIGNIFICANCE Administration of sodium pyruvate may prove effective for other patients with cytochrome c oxidase deficiency due to mitochondrial or nuclear DNA mutations.
Collapse
Affiliation(s)
- Hirofumi Komaki
- Department of Pediatric Neurology, National Center Hospital of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mutoh K, Kurokawa K, Kobayashi K, Saheki T. Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate. J Inherit Metab Dis 2008; 31 Suppl 2:S343-7. [PMID: 18958581 DOI: 10.1007/s10545-008-0914-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 11/30/2022]
Abstract
Citrin deficiency is a common congenital metabolic defect not only in East Asian populations but also in other populations around the world. It has been shown that although liver transplantation is ultimately required in many patients to prevent neurological decompensation associated with hyperammonaemia, arginine is effective in lowering ammonia in hyperammonaemic patients, and a high-protein low-carbohydrate diet may provide some benefit to infants in improving failure to thrive. In the present study, the clinical symptoms and laboratory findings are reported for a 13-year-old citrin-deficient girl in the early stage of adult-onset type II citrullinaemia (CTLN2), and the therapeutic effect of orally administered arginine and sodium pyruvate was investigated. The patient complained of anorexia, lethargy, fatigue and poor growth, and showed laboratory findings typical of CTLN2; elevated levels of plasma citrulline, threonine-to-serine ratio, and serum pancreatic secretory trypsin inhibitor. Oral administration of arginine and sodium pyruvate for over 3 years improved her clinical symptoms and has almost completely normalized her laboratory findings. It is suggested that the administration of arginine and sodium pyruvate with low-carbohydrate meals may be an effective therapy in patients with citrin deficiency in order either to prolong metabolic normalcy or to provide a safer and more affordable alternative to liver transplantation.
Collapse
Affiliation(s)
- K Mutoh
- Department of Pediatrics, Shimada Municipal Hospital, Shimada, Japan
| | | | | | | |
Collapse
|